25#include "absl/container/btree_map.h"
26#include "absl/container/btree_set.h"
27#include "absl/container/flat_hash_map.h"
28#include "absl/container/flat_hash_set.h"
29#include "absl/log/check.h"
30#include "absl/log/log.h"
31#include "absl/log/vlog_is_on.h"
32#include "absl/strings/str_cat.h"
33#include "absl/types/span.h"
74 return proto.domain_size() == 2 && proto.domain(0) == proto.domain(1);
80 int64_t* single_value) {
81 const auto [sum_min, sum_max] =
82 mapping->ComputeMinMaxActivity(proto, integer_trail);
84 const Domain complement =
85 Domain(sum_min, sum_max)
87 if (complement.IsEmpty())
return false;
88 const int64_t value = complement.
Min();
90 if (complement.Size() == 1) {
91 if (single_value !=
nullptr) {
92 *single_value = value;
102 bool view_all_booleans_as_integers,
Model* m) {
110 CHECK_EQ(sat_solver->NumVariables(), 0);
112 BooleanVariable new_var(0);
113 std::vector<BooleanVariable> false_variables;
114 std::vector<BooleanVariable> true_variables;
117 mapping->reverse_boolean_map_.resize(num_proto_variables, -1);
118 for (
int i = 0;
i < num_proto_variables; ++
i) {
120 if (domain.size() != 2)
continue;
121 if (domain[0] >= 0 && domain[1] <= 1) {
122 mapping->booleans_[
i] = new_var;
123 mapping->reverse_boolean_map_[new_var] =
i;
124 if (domain[1] == 0) {
125 false_variables.push_back(new_var);
126 }
else if (domain[0] == 1) {
127 true_variables.push_back(new_var);
133 sat_solver->SetNumVariables(new_var.value());
134 for (
const BooleanVariable var : true_variables) {
137 for (
const BooleanVariable var : false_variables) {
144 std::vector<int> var_to_instantiate_as_integer;
145 if (view_all_booleans_as_integers) {
146 var_to_instantiate_as_integer.resize(num_proto_variables);
147 for (
int i = 0;
i < num_proto_variables; ++
i) {
148 var_to_instantiate_as_integer[
i] =
i;
152 absl::flat_hash_set<int> used_variables;
154 const bool some_linerization =
167 if (some_linerization) {
190 for (
int i = 0;
i < num_proto_variables; ++
i) {
192 used_variables.insert(
i);
197 var_to_instantiate_as_integer.assign(used_variables.begin(),
198 used_variables.end());
207 int reservation_size = var_to_instantiate_as_integer.size();
210 const int ct_size = ct.linear().vars().size();
212 reservation_size +=
static_cast<int>(std::round(std::sqrt(ct_size)));
216 reservation_size += 1;
217 const int ct_size = model_proto.
objective().
vars().size() + 1;
219 reservation_size +=
static_cast<int>(std::round(std::sqrt(ct_size)));
227 mapping->reverse_integer_map_.resize(var_to_instantiate_as_integer.size(),
229 for (
const int i : var_to_instantiate_as_integer) {
230 const auto& var_proto = model_proto.
variables(
i);
231 mapping->integers_[
i] =
235 DCHECK_LT(index, mapping->reverse_integer_map_.size());
236 mapping->reverse_integer_map_[index] =
i;
243 for (
int i = 0;
i < num_proto_variables; ++
i) {
248 encoder->AssociateToIntegerEqualValue(
267 mapping->intervals_[c] = intervals_repository->CreateInterval(
273 mapping->intervals_[c] = intervals_repository->CreateInterval(
279 mapping->already_loaded_ct_.insert(&ct);
286 if (symmetry.permutations().empty())
return;
289 const int num_vars = model_proto.
variables().size();
290 std::vector<bool> can_be_used_in_symmetry(num_vars,
true);
293 for (
int v = 0; v < num_vars; ++v) {
294 if (!mapping->IsBoolean(v)) can_be_used_in_symmetry[v] =
false;
299 sat_solver->AddPropagator(symmetry_handler);
300 const int num_literals = 2 * sat_solver->NumVariables();
301 symmetry_handler->SetNumLiterals(num_literals);
304 bool can_be_used =
true;
305 for (
const int var : perm.support()) {
306 if (!can_be_used_in_symmetry[var]) {
311 if (!can_be_used)
continue;
314 auto literal_permutation =
315 std::make_unique<SparsePermutation>(num_literals);
316 int support_index = 0;
317 const int num_cycle = perm.cycle_sizes().size();
318 for (
int i = 0;
i < num_cycle; ++
i) {
319 const int size = perm.cycle_sizes(
i);
320 const int saved_support_index = support_index;
321 for (
int j = 0; j < size; ++j) {
322 const int var = perm.support(support_index++);
323 literal_permutation->AddToCurrentCycle(
324 mapping->Literal(var).Index().value());
326 literal_permutation->CloseCurrentCycle();
330 support_index = saved_support_index;
331 for (
int j = 0; j < size; ++j) {
332 const int var = perm.support(support_index++);
333 literal_permutation->AddToCurrentCycle(
334 mapping->Literal(var).NegatedIndex().value());
336 literal_permutation->CloseCurrentCycle();
338 symmetry_handler->AddSymmetry(std::move(literal_permutation));
342 symmetry_handler->num_permutations(),
343 " symmetry to the SAT solver.");
361 if (sat_solver->ModelIsUnsat())
return;
366 struct EqualityDetectionHelper {
372 bool operator<(
const EqualityDetectionHelper& o)
const {
373 if (literal.
Variable() == o.literal.Variable()) {
374 if (value == o.value)
return is_equality && !o.is_equality;
375 return value < o.value;
377 return literal.
Variable() < o.literal.Variable();
380 std::vector<std::vector<EqualityDetectionHelper>> var_to_equalities(
393 struct InequalityDetectionHelper {
398 bool operator<(
const InequalityDetectionHelper& o)
const {
399 if (literal.
Variable() == o.literal.Variable()) {
400 return i_lit.
var < o.i_lit.var;
402 return literal.
Variable() < o.literal.Variable();
405 std::vector<InequalityDetectionHelper> inequalities;
412 if (ct.enforcement_literal().size() != 1)
continue;
413 if (ct.linear().vars_size() != 1)
continue;
417 mapping->
Literal(ct.enforcement_literal(0));
418 if (sat_solver->Assignment().LiteralIsFalse(enforcement_literal))
continue;
420 const int ref = ct.linear().vars(0);
424 const Domain domain_if_enforced =
429 if (domain_if_enforced.
IsEmpty()) {
430 if (!sat_solver->AddUnitClause(enforcement_literal.
Negated()))
return;
436 if (domain_if_enforced.
Max() >= domain.
Max() &&
437 domain_if_enforced.
Min() > domain.
Min()) {
438 inequalities.push_back({&ct, enforcement_literal,
440 mapping->Integer(var),
441 IntegerValue(domain_if_enforced.
Min()))});
442 }
else if (domain_if_enforced.
Min() <= domain.
Min() &&
443 domain_if_enforced.
Max() < domain.
Max()) {
444 inequalities.push_back({&ct, enforcement_literal,
446 mapping->Integer(var),
447 IntegerValue(domain_if_enforced.
Max()))});
453 if (domain_if_enforced.
Min() > domain.
Min()) {
457 mapping->Integer(var), IntegerValue(domain_if_enforced.
Min())));
459 if (domain_if_enforced.
Max() < domain.
Max()) {
463 IntegerValue(domain_if_enforced.
Max())));
474 if (inter.
Min() == 0) {
475 detector->ProcessConditionalZero(enforcement_literal,
476 mapping->Integer(var));
478 var_to_equalities[var].push_back(
479 {&ct, enforcement_literal, inter.
Min(),
true});
486 var_to_equalities[var].push_back(
487 {&ct, enforcement_literal, inter.
Min(),
false});
493 int num_inequalities = 0;
494 std::sort(inequalities.begin(), inequalities.end());
495 for (
int i = 0;
i + 1 < inequalities.size();
i++) {
496 if (inequalities[
i].literal != inequalities[
i + 1].literal.Negated()) {
503 if (integer_trail->IntegerLiteralIsTrue(inequalities[
i].i_lit) ||
504 integer_trail->IntegerLiteralIsFalse(inequalities[
i].i_lit)) {
507 if (integer_trail->IntegerLiteralIsTrue(inequalities[
i + 1].i_lit) ||
508 integer_trail->IntegerLiteralIsFalse(inequalities[
i + 1].i_lit)) {
512 const auto pair_a = encoder->Canonicalize(inequalities[
i].i_lit);
513 const auto pair_b = encoder->Canonicalize(inequalities[
i + 1].i_lit);
514 if (pair_a.first == pair_b.second) {
516 encoder->AssociateToIntegerLiteral(inequalities[
i].literal,
517 inequalities[
i].i_lit);
518 mapping->already_loaded_ct_.insert(inequalities[
i].ct);
519 mapping->already_loaded_ct_.insert(inequalities[
i + 1].ct);
524 int num_half_inequalities = 0;
525 for (
const auto inequality : inequalities) {
526 if (mapping->ConstraintIsAlreadyLoaded(inequality.ct))
continue;
529 encoder->GetOrCreateAssociatedLiteral(inequality.i_lit)));
530 if (sat_solver->ModelIsUnsat())
return;
532 ++num_half_inequalities;
533 mapping->already_loaded_ct_.insert(inequality.ct);
534 mapping->is_half_encoding_ct_.insert(inequality.ct);
536 if (!inequalities.empty()) {
537 SOLVER_LOG(logger,
"[Encoding] ", num_inequalities,
538 " literals associated to VAR >= value, and ",
539 num_half_inequalities,
" half-associations.");
545 int num_equalities = 0;
546 int num_half_equalities = 0;
547 int num_fully_encoded = 0;
548 int num_partially_encoded = 0;
549 for (
int i = 0;
i < var_to_equalities.size(); ++
i) {
550 std::vector<EqualityDetectionHelper>& encoding = var_to_equalities[
i];
551 std::sort(encoding.begin(), encoding.end());
552 if (encoding.empty())
continue;
554 absl::flat_hash_set<int64_t> values;
555 const IntegerVariable var = mapping->integers_[
i];
556 for (
int j = 0; j + 1 < encoding.size(); j++) {
557 if ((encoding[j].value != encoding[j + 1].value) ||
558 (encoding[j].literal != encoding[j + 1].literal.Negated()) ||
559 (encoding[j].is_equality !=
true) ||
560 (encoding[j + 1].is_equality !=
false)) {
565 encoder->AssociateToIntegerEqualValue(encoding[j].literal, var,
566 IntegerValue(encoding[j].value));
567 mapping->already_loaded_ct_.insert(encoding[j].ct);
568 mapping->already_loaded_ct_.insert(encoding[j + 1].ct);
569 values.insert(encoding[j].value);
575 if (sat_solver->ModelIsUnsat())
return;
577 if (time_limit->LimitReached())
return;
585 for (
const auto equality : encoding) {
586 if (mapping->ConstraintIsAlreadyLoaded(equality.ct))
continue;
587 if (equality.is_equality) {
600 encoder->GetOrCreateAssociatedLiteral(
604 encoder->GetOrCreateAssociatedLiteral(
607 const Literal eq = encoder->GetOrCreateLiteralAssociatedToEquality(
608 var, equality.value);
612 ++num_half_equalities;
613 mapping->already_loaded_ct_.insert(equality.ct);
614 mapping->is_half_encoding_ct_.insert(equality.ct);
618 if (encoder->VariableIsFullyEncoded(var)) {
621 ++num_partially_encoded;
625 if (num_equalities > 0 || num_half_equalities > 0) {
626 SOLVER_LOG(logger,
"[Encoding] ", num_equalities,
627 " literals associated to VAR == value, and ",
628 num_half_equalities,
" half-associations.");
630 if (num_fully_encoded > 0) {
632 "[Encoding] num_fully_encoded_variables:", num_fully_encoded);
634 if (num_partially_encoded > 0) {
635 SOLVER_LOG(logger,
"[Encoding] num_partially_encoded_variables:",
636 num_partially_encoded);
641 int num_element_encoded = 0;
651 int num_support_clauses = 0;
652 int num_dedicated_propagator = 0;
653 std::vector<Literal> clause;
654 std::vector<Literal> selectors;
655 std::vector<AffineExpression> exprs;
656 std::vector<AffineExpression> negated_exprs;
662 absl::btree_map<IntegerVariable, std::vector<ValueLiteralPair>>
663 var_to_value_literal_list;
666 for (
const auto& var_value : implied_bounds->GetImpliedValues(literal)) {
667 var_to_value_literal_list[var_value.first].push_back(
668 {var_value.second, literal});
673 std::vector<IntegerVariable> encoded_variables;
674 std::string encoded_variables_str;
677 for (
auto& [var, encoding] : var_to_value_literal_list) {
679 VLOG(2) <<
"X" << var.value() <<
" has " << encoding.size()
680 <<
" implied values, and a domain of size "
682 ->InitialVariableDomain(var)
688 ++num_element_encoded;
689 element_encodings->
Add(var, encoding, c);
691 encoded_variables.push_back(var);
692 absl::StrAppend(&encoded_variables_str,
" X", var.value());
698 bool need_extra_propagation =
false;
699 std::sort(encoding.begin(), encoding.end(),
701 for (
int i = 0, j = 0;
i < encoding.size();
i = j) {
703 const IntegerValue value = encoding[
i].value;
704 while (j < encoding.size() && encoding[j].value == value) ++j;
708 if (!encoder->IsFixedOrHasAssociatedLiteral(
710 !encoder->IsFixedOrHasAssociatedLiteral(
712 need_extra_propagation =
true;
715 encoder->AssociateToIntegerEqualValue(encoding[
i].literal, var,
719 if (encoder->GetAssociatedEqualityLiteral(var, value) ==
721 need_extra_propagation =
true;
729 ++num_support_clauses;
731 for (
int k =
i; k < j; ++k) clause.push_back(encoding[k].literal);
733 encoder->GetOrCreateLiteralAssociatedToEquality(var, value);
734 clause.push_back(eq_lit.
Negated());
739 sat_solver->AddProblemClause(clause);
742 if (need_extra_propagation) {
743 ++num_dedicated_propagator;
746 negated_exprs.clear();
747 for (
const auto [value, literal] : encoding) {
748 selectors.push_back(literal);
759 NegationOf(var), negated_exprs, selectors, {}, m);
764 if (encoded_variables.size() > 1 && VLOG_IS_ON(1)) {
765 VLOG(1) <<
"exactly_one(" << c <<
") encodes " << encoded_variables.size()
766 <<
" variables at the same time: " << encoded_variables_str;
770 if (num_element_encoded > 0) {
772 "[Encoding] num_element_encoding: ", num_element_encoded);
774 if (num_support_clauses > 0) {
775 SOLVER_LOG(logger,
"[Encoding] Added ", num_support_clauses,
776 " element support clauses, and ", num_dedicated_propagator,
777 " dedicated propagators.");
788 int64_t num_associations = 0;
789 int64_t num_set_to_false = 0;
791 if (!ct.enforcement_literal().empty())
continue;
793 if (ct.linear().vars_size() != 2)
continue;
794 if (!ConstraintIsEq(ct.linear()))
continue;
796 const IntegerValue rhs(ct.linear().domain(0));
799 IntegerVariable var1 = mapping->Integer(ct.linear().vars(0));
800 IntegerVariable var2 = mapping->Integer(ct.linear().vars(1));
801 IntegerValue coeff1(ct.linear().coeffs(0));
802 IntegerValue coeff2(ct.linear().coeffs(1));
814 if (coeff1 == 0 || coeff2 == 0)
continue;
819 for (
int i = 0;
i < 2; ++
i) {
820 for (
const auto [value1, literal1] :
821 encoder->PartialGreaterThanEncoding(var1)) {
822 const IntegerValue bound2 =
FloorRatio(rhs - value1 * coeff1, coeff2);
824 encoder->AssociateToIntegerLiteral(
827 std::swap(var1, var2);
828 std::swap(coeff1, coeff2);
836 for (
int i = 0;
i < 2; ++
i) {
837 const auto copy = encoder->PartialDomainEncoding(var1);
838 for (
const auto value_literal : copy) {
839 const IntegerValue value1 = value_literal.value;
840 const IntegerValue intermediate = rhs - value1 * coeff1;
841 if (intermediate % coeff2 != 0) {
844 if (!sat_solver->AddUnitClause(value_literal.literal.Negated())) {
850 encoder->AssociateToIntegerEqualValue(value_literal.literal, var2,
851 intermediate / coeff2);
853 std::swap(var1, var2);
854 std::swap(coeff1, coeff2);
858 if (num_associations > 0) {
859 VLOG(1) <<
"Num associations from equivalences = " << num_associations;
861 if (num_set_to_false > 0) {
862 VLOG(1) <<
"Num literals set to false from equivalences = "
874 std::vector<bool> already_seen(num_proto_variables,
false);
889 std::vector<std::vector<int>> enforcement_intersection(num_proto_variables);
890 absl::btree_set<int> literals_set;
895 already_seen[var] =
true;
896 enforcement_intersection[var].clear();
899 literals_set.clear();
903 if (!already_seen[var]) {
908 std::vector<int>& vector_ref = enforcement_intersection[var];
910 for (
const int literal : vector_ref) {
911 if (literals_set.contains(literal)) {
912 vector_ref[new_size++] = literal;
915 vector_ref.resize(new_size);
917 already_seen[var] =
true;
923 int num_optionals = 0;
924 for (
int var = 0; var < num_proto_variables; ++var) {
926 const int64_t min = var_proto.
domain(0);
927 const int64_t max = var_proto.
domain(var_proto.
domain().size() - 1);
928 if (min == max)
continue;
929 if (min == 0 && max == 1)
continue;
930 if (enforcement_intersection[var].empty())
continue;
935 if (num_optionals > 0) {
937 " optional variables. Note that for now we DO NOT do anything "
938 "with this information.");
949 if (strategy.domain_reduction_strategy() ==
952 const int var = expr.vars(0);
953 if (!mapping->IsInteger(var))
continue;
954 const IntegerVariable variable = mapping->Integer(var);
955 if (!integer_trail->IsFixed(variable)) {
968 auto* mapping = m->GetOrCreate<CpModelMapping>();
970 std::vector<Literal> literals = mapping->Literals(ct.bool_or().literals());
971 for (
const int ref : ct.enforcement_literal()) {
972 literals.push_back(mapping->Literal(ref).Negated());
975 if (literals.size() == 3) {
976 m->GetOrCreate<ProductDetector>()->ProcessTernaryClause(literals);
982 std::vector<Literal> literals;
983 for (
const int ref : ct.enforcement_literal()) {
984 literals.push_back(mapping->Literal(ref).Negated());
986 auto* sat_solver = m->GetOrCreate<SatSolver>();
987 for (
const Literal literal : mapping->Literals(ct.bool_and().literals())) {
988 literals.push_back(literal);
989 sat_solver->AddProblemClause(literals);
998 if (!implications->AddAtMostOne(
999 mapping->Literals(ct.at_most_one().literals()))) {
1000 m->GetOrCreate<
SatSolver>()->NotifyThatModelIsUnsat();
1005 auto* mapping = m->GetOrCreate<CpModelMapping>();
1007 const auto& literals = mapping->Literals(ct.exactly_one().literals());
1009 if (literals.size() == 3) {
1010 m->GetOrCreate<
ProductDetector>()->ProcessTernaryExactlyOne(literals);
1015 auto* mapping = m->GetOrCreate<CpModelMapping>();
1017 mapping->Literals(ct.bool_xor().literals()),
true));
1024void LoadEquivalenceAC(
const std::vector<Literal> enforcement_literal,
1025 IntegerValue coeff1, IntegerVariable var1,
1026 IntegerValue coeff2, IntegerVariable var2,
1027 const IntegerValue rhs,
Model* m) {
1028 auto* encoder = m->GetOrCreate<IntegerEncoder>();
1029 CHECK(encoder->VariableIsFullyEncoded(var1));
1030 CHECK(encoder->VariableIsFullyEncoded(var2));
1031 absl::flat_hash_map<IntegerValue, Literal> term1_value_to_literal;
1032 for (
const auto value_literal : encoder->FullDomainEncoding(var1)) {
1033 term1_value_to_literal[coeff1 * value_literal.value] =
1034 value_literal.literal;
1036 const auto copy = encoder->FullDomainEncoding(var2);
1037 for (
const auto value_literal : copy) {
1038 const IntegerValue target = rhs - value_literal.value * coeff2;
1039 if (!term1_value_to_literal.contains(target)) {
1041 {value_literal.literal.Negated()}));
1043 const Literal target_literal = term1_value_to_literal[target];
1045 {value_literal.literal.Negated(), target_literal}));
1047 {value_literal.literal, target_literal.Negated()}));
1051 term1_value_to_literal.erase(target);
1057 std::vector<Literal> implied_false;
1058 for (
const auto entry : term1_value_to_literal) {
1059 implied_false.push_back(entry.second);
1061 std::sort(implied_false.begin(), implied_false.end());
1062 for (
const Literal l : implied_false) {
1069void LoadEquivalenceNeqAC(
const std::vector<Literal> enforcement_literal,
1070 IntegerValue coeff1, IntegerVariable var1,
1071 IntegerValue coeff2, IntegerVariable var2,
1072 const IntegerValue rhs,
Model* m) {
1073 auto* encoder = m->GetOrCreate<IntegerEncoder>();
1074 CHECK(encoder->VariableIsFullyEncoded(var1));
1075 CHECK(encoder->VariableIsFullyEncoded(var2));
1076 absl::flat_hash_map<IntegerValue, Literal> term1_value_to_literal;
1077 for (
const auto value_literal : encoder->FullDomainEncoding(var1)) {
1078 term1_value_to_literal[coeff1 * value_literal.value] =
1079 value_literal.literal;
1081 const auto copy = encoder->FullDomainEncoding(var2);
1082 for (
const auto value_literal : copy) {
1083 const IntegerValue target_value = rhs - value_literal.value * coeff2;
1084 const auto& it = term1_value_to_literal.find(target_value);
1085 if (it != term1_value_to_literal.end()) {
1086 const Literal target_literal = it->second;
1088 enforcement_literal,
1089 {value_literal.literal.Negated(), target_literal.Negated()}));
1095 if (ct.enforcement_literal().size() != 1)
return false;
1096 if (ct.linear().vars().size() > 2)
return false;
1097 if (ct.linear().domain().size() != 2)
return false;
1098 if (ct.linear().domain(0) != 0)
return false;
1099 if (ct.linear().domain(1) != 0)
return false;
1100 for (
const int64_t coeff : ct.linear().coeffs()) {
1101 if (std::abs(coeff) != 1)
return false;
1109 std::vector<IntegerVariable>* vars,
1110 std::vector<IntegerValue>* coeffs,
1122 const int num_terms = vars->size();
1123 std::vector<std::pair<IntegerVariable, IntegerValue>> terms;
1125 terms.reserve(num_terms);
1126 for (
int i = 0;
i < num_terms; ++
i) {
1127 terms.push_back({(*vars)[
i], (*coeffs)[
i]});
1129 std::sort(terms.begin(), terms.end(),
1130 [](
const std::pair<IntegerVariable, IntegerValue> a,
1131 const std::pair<IntegerVariable, IntegerValue>
b) {
1132 const int64_t abs_coeff_a = std::abs(a.second.value());
1133 const int64_t abs_coeff_b = std::abs(b.second.value());
1134 if (abs_coeff_a != abs_coeff_b) {
1135 return abs_coeff_a < abs_coeff_b;
1137 if (a.second !=
b.second) {
1138 return a.second < b.second;
1140 return a.first <
b.first;
1143 std::vector<int64_t> sorted_coeffs;
1144 sorted_coeffs.resize(num_terms);
1145 for (
int i = 0;
i < num_terms; ++
i) {
1146 sorted_coeffs[
i] = terms[
i].second.value();
1148 const std::vector<std::pair<int, int>> buckets =
1151 std::vector<IntegerVariable> bucket_sum_vars;
1152 std::vector<IntegerValue> bucket_sum_coeffs;
1153 std::vector<IntegerVariable> local_vars;
1154 std::vector<IntegerValue> local_coeffs;
1156 auto* integer_trail = m->GetOrCreate<IntegerTrail>();
1157 for (
const auto [start, size] : buckets) {
1160 const auto [var, coeff] = terms[start];
1161 bucket_sum_vars.push_back(var);
1162 bucket_sum_coeffs.push_back(coeff);
1167 local_coeffs.clear();
1168 int64_t bucket_lb = 0;
1169 int64_t bucket_ub = 0;
1172 for (
int i = 0;
i < size; ++
i) {
1173 const auto [var, coeff] = terms[start +
i];
1174 gcd = std::gcd(gcd, std::abs(coeff.value()));
1175 local_vars.push_back(var);
1176 local_coeffs.push_back(coeff);
1177 const int64_t term1 = (coeff * integer_trail->LowerBound(var)).value();
1178 const int64_t term2 = (coeff * integer_trail->UpperBound(var)).value();
1179 bucket_lb += std::min(term1, term2);
1180 bucket_ub += std::max(term1, term2);
1183 if (gcd == 0)
continue;
1186 for (IntegerValue& ref : local_coeffs) ref /= gcd;
1191 const IntegerVariable bucket_sum =
1192 integer_trail->AddIntegerVariable(bucket_lb, bucket_ub);
1193 bucket_sum_vars.push_back(bucket_sum);
1194 bucket_sum_coeffs.push_back(IntegerValue(gcd));
1195 local_vars.push_back(bucket_sum);
1196 local_coeffs.push_back(-1);
1209 *vars = bucket_sum_vars;
1210 *coeffs = bucket_sum_coeffs;
1214 auto* mapping = m->GetOrCreate<CpModelMapping>();
1216 if (ct.linear().vars().empty()) {
1220 std::vector<Literal> clause;
1221 for (
const int ref : ct.enforcement_literal()) {
1222 clause.push_back(mapping->Literal(ref).Negated());
1226 VLOG(1) <<
"Trivially UNSAT constraint: " << ct;
1227 m->GetOrCreate<
SatSolver>()->NotifyThatModelIsUnsat();
1232 if (IsPartOfProductEncoding(ct)) {
1233 const Literal l = mapping->Literal(ct.enforcement_literal(0));
1234 auto* detector = m->GetOrCreate<ProductDetector>();
1235 if (ct.linear().vars().size() == 1) {
1238 detector->ProcessConditionalZero(l,
1239 mapping->Integer(ct.linear().vars(0)));
1240 }
else if (ct.linear().vars().size() == 2) {
1241 const IntegerVariable x = mapping->Integer(ct.linear().vars(0));
1242 const IntegerVariable y = mapping->Integer(ct.linear().vars(1));
1243 detector->ProcessConditionalEquality(
1245 ct.linear().coeffs(0) == ct.linear().coeffs(1) ? NegationOf(y) : y);
1249 auto* integer_trail = m->GetOrCreate<IntegerTrail>();
1250 std::vector<IntegerVariable> vars = mapping->Integers(ct.linear().vars());
1251 std::vector<IntegerValue> coeffs(ct.linear().coeffs().begin(),
1252 ct.linear().coeffs().end());
1258 IntegerValue min_sum(0);
1259 IntegerValue max_sum(0);
1260 IntegerValue max_domain_size(0);
1261 bool all_booleans =
true;
1262 for (
int i = 0;
i < vars.size(); ++
i) {
1263 if (all_booleans && !mapping->IsBoolean(ct.linear().vars(i))) {
1264 all_booleans =
false;
1266 const IntegerValue lb = integer_trail->LowerBound(vars[i]);
1267 const IntegerValue ub = integer_trail->UpperBound(vars[i]);
1268 max_domain_size = std::max(max_domain_size, ub - lb + 1);
1269 const IntegerValue term_a = coeffs[
i] * lb;
1270 const IntegerValue term_b = coeffs[
i] * ub;
1271 min_sum += std::min(term_a, term_b);
1272 max_sum += std::max(term_a, term_b);
1277 auto* root_level_lin2_bounds = m->GetOrCreate<RootLevelLinear2Bounds>();
1281 int64_t rhs_min = ct.linear().domain(0);
1282 int64_t rhs_max = ct.linear().domain(ct.linear().domain().size() - 1);
1283 rhs_min = std::max(rhs_min, min_sum.value());
1284 rhs_max = std::min(rhs_max, max_sum.value());
1286 if (vars.size() == 2) {
1287 LinearExpression2 expr(vars[0], vars[1], coeffs[0], coeffs[1]);
1288 root_level_lin2_bounds->Add(expr, rhs_min, rhs_max);
1289 }
else if (vars.size() == 3) {
1294 for (
int i = 0;
i < 3; ++
i) {
1295 for (
int j = 0; j < 3; ++j) {
1296 if (i == j)
continue;
1297 const int other = 3 -
i - j;
1299 const IntegerValue coeff = coeffs[other];
1300 const IntegerValue other_lb =
1302 ? coeff * integer_trail->LowerBound(vars[other]).value()
1303 : coeff * integer_trail->UpperBound(vars[other]).value();
1304 const IntegerValue other_ub =
1306 ? coeff * integer_trail->UpperBound(vars[other]).value()
1307 : coeff * integer_trail->LowerBound(vars[other]).value();
1308 LinearExpression2 expr(vars[i], vars[j], coeffs[i], coeffs[j]);
1309 root_level_lin2_bounds->Add(expr, rhs_min - other_ub,
1310 rhs_max - other_lb);
1316 const SatParameters& params = *m->GetOrCreate<SatParameters>();
1317 const IntegerValue domain_size_limit(
1318 params.max_domain_size_when_encoding_eq_neq_constraints());
1319 if (ct.linear().vars_size() == 2 && !integer_trail->IsFixed(vars[0]) &&
1320 !integer_trail->IsFixed(vars[1]) &&
1321 max_domain_size <= domain_size_limit) {
1322 auto* encoder = m->GetOrCreate<IntegerEncoder>();
1323 if (params.boolean_encoding_level() > 0 && ConstraintIsEq(ct.linear()) &&
1324 ct.linear().domain(0) != min_sum && ct.linear().domain(0) != max_sum &&
1325 encoder->VariableIsFullyEncoded(vars[0]) &&
1326 encoder->VariableIsFullyEncoded(vars[1])) {
1327 VLOG(3) <<
"Load AC version of " << ct <<
", var0 domain = "
1328 << integer_trail->InitialVariableDomain(vars[0])
1329 <<
", var1 domain = "
1330 << integer_trail->InitialVariableDomain(vars[1]);
1331 return LoadEquivalenceAC(mapping->Literals(ct.enforcement_literal()),
1332 IntegerValue(coeffs[0]), vars[0],
1333 IntegerValue(coeffs[1]), vars[1],
1334 IntegerValue(ct.linear().domain(0)), m);
1337 int64_t single_value = 0;
1338 if (params.boolean_encoding_level() > 0 &&
1339 ConstraintIsNEq(ct.linear(), mapping, integer_trail, &single_value) &&
1340 single_value != min_sum && single_value != max_sum &&
1341 encoder->VariableIsFullyEncoded(vars[0]) &&
1342 encoder->VariableIsFullyEncoded(vars[1])) {
1343 VLOG(3) <<
"Load NAC version of " << ct <<
", var0 domain = "
1344 << integer_trail->InitialVariableDomain(vars[0])
1345 <<
", var1 domain = "
1346 << integer_trail->InitialVariableDomain(vars[1])
1347 <<
", value = " << single_value;
1348 return LoadEquivalenceNeqAC(mapping->Literals(ct.enforcement_literal()),
1349 IntegerValue(coeffs[0]), vars[0],
1350 IntegerValue(coeffs[1]), vars[1],
1351 IntegerValue(single_value), m);
1358 const bool pseudo_boolean = ct.linear().domain_size() == 2 && all_booleans;
1359 if (!pseudo_boolean &&
1360 ct.linear().vars().size() > params.linear_split_size()) {
1361 const auto& domain = ct.linear().domain();
1363 domain.size() > 2 || min_sum < domain[0],
1364 domain.size() > 2 || max_sum > domain[1], &vars, &coeffs, m);
1367 if (ct.linear().domain_size() == 2) {
1368 const int64_t lb = ct.linear().domain(0);
1369 const int64_t ub = ct.linear().domain(1);
1370 std::vector<Literal> enforcement_literals =
1371 mapping->Literals(ct.enforcement_literal());
1373 std::vector<LiteralWithCoeff> cst;
1374 for (
int i = 0;
i < vars.size(); ++
i) {
1375 const int ref = ct.linear().vars(i);
1376 cst.push_back({mapping->Literal(ref), coeffs[
i].value()});
1378 m->GetOrCreate<SatSolver>()->AddLinearConstraint(
1380 (max_sum > ub), ub, &enforcement_literals, &cst);
1396 const bool is_linear1 = vars.size() == 1 && coeffs[0] == 1;
1398 bool special_case =
false;
1399 std::vector<Literal> clause;
1400 std::vector<Literal> for_enumeration;
1401 auto* encoding = m->GetOrCreate<IntegerEncoder>();
1402 const int domain_size = ct.linear().domain_size();
1403 for (
int i = 0;
i < domain_size;
i += 2) {
1404 const int64_t lb = ct.linear().domain(i);
1405 const int64_t ub = ct.linear().domain(i + 1);
1408 if (min_sum > ub)
continue;
1409 if (max_sum < lb)
continue;
1413 if (min_sum >= lb && max_sum <= ub)
return;
1418 encoding->GetOrCreateLiteralAssociatedToEquality(vars[0], lb));
1420 }
else if (min_sum >= lb) {
1421 clause.push_back(encoding->GetOrCreateAssociatedLiteral(
1422 IntegerLiteral::LowerOrEqual(vars[0], ub)));
1424 }
else if (max_sum <= ub) {
1425 clause.push_back(encoding->GetOrCreateAssociatedLiteral(
1426 IntegerLiteral::GreaterOrEqual(vars[0], lb)));
1434 if (ct.enforcement_literal().empty() && clause.size() == 1 &&
1435 i + 1 == domain_size) {
1436 special_case =
true;
1439 const Literal subdomain_literal(
1440 special_case ? clause.back().Negated()
1442 clause.push_back(subdomain_literal);
1443 for_enumeration.push_back(subdomain_literal);
1453 const std::vector<Literal> enforcement_literals =
1454 mapping->Literals(ct.enforcement_literal());
1457 if (params.enumerate_all_solutions() && !enforcement_literals.empty()) {
1458 Literal linear_is_enforced;
1459 if (enforcement_literals.size() == 1) {
1460 linear_is_enforced = enforcement_literals[0];
1463 std::vector<Literal> maintain_linear_is_enforced;
1464 for (
const Literal e_lit : enforcement_literals) {
1465 m->Add(
Implication(e_lit.Negated(), linear_is_enforced.Negated()));
1466 maintain_linear_is_enforced.push_back(e_lit.Negated());
1468 maintain_linear_is_enforced.push_back(linear_is_enforced);
1471 for (
const Literal lit : for_enumeration) {
1472 m->Add(
Implication(linear_is_enforced.Negated(), lit.Negated()));
1473 if (special_case)
break;
1477 if (!special_case) {
1478 for (
const Literal e_lit : enforcement_literals) {
1479 clause.push_back(e_lit.Negated());
1486 auto* mapping = m->GetOrCreate<CpModelMapping>();
1487 const std::vector<Literal> enforcement_literals =
1488 mapping->Literals(ct.enforcement_literal());
1489 const std::vector<AffineExpression> expressions =
1490 mapping->Affines(ct.all_diff().exprs());
1494void LoadAlwaysFalseConstraint(
const ConstraintProto& ct,
Model* m) {
1495 if (ct.enforcement_literal().empty()) {
1498 ConstraintProto new_ct = ct;
1499 BoolArgumentProto& bool_or = *new_ct.mutable_bool_or();
1500 for (
const int literal : ct.enforcement_literal()) {
1501 bool_or.add_literals(NegatedRef(literal));
1503 LoadBoolOrConstraint(new_ct, m);
1507 auto* mapping = m->GetOrCreate<CpModelMapping>();
1508 const std::vector<Literal> enforcement_literals =
1509 mapping->Literals(ct.enforcement_literal());
1511 std::vector<AffineExpression> terms;
1513 terms.push_back(mapping->Affine(expr));
1515 switch (terms.size()) {
1517 auto* integer_trail = m->GetOrCreate<IntegerTrail>();
1520 LoadAlwaysFalseConstraint(ct, m);
1522 }
else if (enforcement_literals.empty()) {
1525 m->GetOrCreate<SatSolver>()->NotifyThatModelIsUnsat();
1528 LinearConstraintBuilder builder(m, 1, 1);
1529 builder.AddTerm(prod, 1);
1536 LinearConstraintBuilder builder(m, 0, 0);
1537 builder.AddTerm(prod, 1);
1538 builder.AddTerm(terms[0], -1);
1547 LOG(FATAL) <<
"Loading int_prod with arity > 2, should not be here.";
1554 auto* integer_trail = m->GetOrCreate<IntegerTrail>();
1556 const std::vector<Literal> enforcement_literals =
1557 mapping->Literals(ct.enforcement_literal());
1561 if (integer_trail->IsFixed(denom)) {
1563 integer_trail->FixedValue(denom), div));
1565 if (VLOG_IS_ON(1)) {
1566 LinearConstraintBuilder builder(m);
1567 if (m->GetOrCreate<ProductDecomposer>()->TryToLinearize(num, denom,
1569 VLOG(1) <<
"Division " << ct <<
" can be linearized";
1577 auto* mapping = m->GetOrCreate<CpModelMapping>();
1580 const std::vector<Literal> enforcement_literals =
1581 mapping->Literals(ct.enforcement_literal());
1585 CHECK(integer_trail->IsFixed(mod));
1586 const IntegerValue fixed_modulo = integer_trail->FixedValue(mod);
1591void LoadLinMaxConstraint(
const ConstraintProto& ct,
Model* m) {
1592 if (ct.lin_max().exprs().empty()) {
1597 auto* mapping = m->GetOrCreate<CpModelMapping>();
1598 const LinearExpression max = mapping->GetExprFromProto(ct.lin_max().target());
1599 std::vector<LinearExpression> negated_exprs;
1600 negated_exprs.reserve(ct.lin_max().exprs_size());
1601 for (
int i = 0; i < ct.lin_max().exprs_size(); ++i) {
1602 negated_exprs.push_back(
1603 NegationOf(mapping->GetExprFromProto(ct.lin_max().exprs(i))));
1606 AddIsEqualToMinOf(mapping->Literals(ct.enforcement_literal()),
1607 NegationOf(max), negated_exprs, m);
1611 auto* mapping = m->GetOrCreate<CpModelMapping>();
1613 mapping->Intervals(ct.no_overlap().intervals()), m);
1616void LoadNoOverlap2dConstraint(
const ConstraintProto& ct,
Model* m) {
1617 if (ct.no_overlap_2d().x_intervals().empty())
return;
1619 const std::vector<Literal> enforcement_literals =
1620 mapping->
Literals(ct.enforcement_literal());
1621 const std::vector<IntervalVariable> x_intervals =
1622 mapping->Intervals(ct.no_overlap_2d().x_intervals());
1623 const std::vector<IntervalVariable> y_intervals =
1624 mapping->Intervals(ct.no_overlap_2d().y_intervals());
1629void LoadCumulativeConstraint(
const ConstraintProto& ct,
Model* m) {
1630 auto* mapping = m->GetOrCreate<CpModelMapping>();
1631 const std::vector<Literal> enforcement_literals =
1632 mapping->Literals(ct.enforcement_literal());
1633 const std::vector<IntervalVariable> intervals =
1634 mapping->Intervals(ct.cumulative().intervals());
1635 const AffineExpression capacity = mapping->Affine(ct.cumulative().capacity());
1636 const std::vector<AffineExpression> demands =
1637 mapping->Affines(ct.cumulative().demands());
1638 m->Add(
Cumulative(enforcement_literals, intervals, demands, capacity));
1641void LoadReservoirConstraint(
const ConstraintProto& ct,
Model* m) {
1642 auto* mapping = m->GetOrCreate<CpModelMapping>();
1644 const std::vector<Literal> enforcement_literals =
1645 mapping->Literals(ct.enforcement_literal());
1646 const std::vector<AffineExpression> times =
1647 mapping->Affines(ct.reservoir().time_exprs());
1648 const std::vector<AffineExpression> level_changes =
1649 mapping->Affines(ct.reservoir().level_changes());
1650 std::vector<Literal> presences;
1651 const int size = ct.reservoir().time_exprs().size();
1652 for (
int i = 0;
i < size; ++
i) {
1653 if (!ct.reservoir().active_literals().empty()) {
1654 presences.push_back(mapping->Literal(ct.reservoir().active_literals(
i)));
1656 presences.push_back(encoder->GetTrueLiteral());
1659 AddReservoirConstraint(enforcement_literals, times, level_changes, presences,
1660 ct.reservoir().min_level(), ct.reservoir().max_level(),
1664void LoadCircuitConstraint(
const ConstraintProto& ct,
Model* m) {
1665 const auto& circuit = ct.circuit();
1666 if (circuit.tails().empty())
return;
1668 std::vector<int> tails(circuit.tails().begin(), circuit.tails().end());
1669 std::vector<int> heads(circuit.heads().begin(), circuit.heads().end());
1671 const std::vector<Literal> enforcement_literals =
1672 mapping->
Literals(ct.enforcement_literal());
1673 const std::vector<Literal> literals = mapping->Literals(circuit.literals());
1674 const int num_nodes =
ReindexArcs(&tails, &heads);
1679void LoadRoutesConstraint(
const ConstraintProto& ct,
Model* m) {
1680 const auto& routes = ct.routes();
1681 if (routes.tails().empty())
return;
1683 std::vector<int> tails(routes.tails().begin(), routes.tails().end());
1684 std::vector<int> heads(routes.heads().begin(), routes.heads().end());
1686 const std::vector<Literal> enforcement_literals =
1687 mapping->
Literals(ct.enforcement_literal());
1688 std::vector<Literal> literals = mapping->Literals(routes.literals());
1689 const int num_nodes =
ReindexArcs(&tails, &heads);
1695bool LoadConstraint(
const ConstraintProto& ct,
Model* m) {
1696 switch (ct.constraint_case()) {
1714 case ConstraintProto::ConstraintProto::kLinear:
1717 case ConstraintProto::ConstraintProto::kAllDiff:
1720 case ConstraintProto::ConstraintProto::kIntProd:
1723 case ConstraintProto::ConstraintProto::kIntDiv:
1726 case ConstraintProto::ConstraintProto::kIntMod:
1729 case ConstraintProto::ConstraintProto::kLinMax:
1732 case ConstraintProto::ConstraintProto::kInterval:
1735 case ConstraintProto::ConstraintProto::kNoOverlap:
1738 case ConstraintProto::ConstraintProto::kNoOverlap2D:
1741 case ConstraintProto::ConstraintProto::kCumulative:
1744 case ConstraintProto::ConstraintProto::kReservoir:
1747 case ConstraintProto::ConstraintProto::kCircuit:
1750 case ConstraintProto::ConstraintProto::kRoutes:
Domain IntersectionWith(const Domain &domain) const
bool Contains(int64_t value) const
Domain Complement() const
Domain InverseMultiplicationBy(int64_t coeff) const
::int32_t literals(int index) const
int literals_size() const
::int32_t literals(int index) const
ConstraintCase constraint_case() const
::int32_t enforcement_literal(int index) const
const ::operations_research::sat::BoolArgumentProto & exactly_one() const
const ::operations_research::sat::IntervalConstraintProto & interval() const
const ::operations_research::sat::RoutesConstraintProto & routes() const
const ::operations_research::sat::CircuitConstraintProto & circuit() const
sat::Literal Literal(int ref) const
std::vector< sat::Literal > Literals(const ProtoIndices &indices) const
const ::operations_research::sat::SymmetryProto & symmetry() const
const ::operations_research::sat::IntegerVariableProto & variables(int index) const
const ::operations_research::sat::ConstraintProto & constraints(int index) const
bool has_objective() const
const ::operations_research::sat::DecisionStrategyProto & search_strategy(int index) const
int constraints_size() const
int variables_size() const
const ::operations_research::sat::CpObjectiveProto & objective() const
::int32_t vars(int index) const
static constexpr DomainReductionStrategy SELECT_MEDIAN_VALUE
void RegisterWith(GenericLiteralWatcher *watcher)
bool Add(Literal literal, IntegerLiteral integer_literal)
void ReserveSpaceForNumVariables(int num_vars)
::int64_t domain(int index) const
const ::operations_research::sat::LinearExpressionProto & size() const
const ::operations_research::sat::LinearExpressionProto & end() const
const ::operations_research::sat::LinearExpressionProto & start() const
LiteralIndex Index() const
BooleanVariable Variable() const
Literal(int signed_value)
T Add(std::function< T(Model *)> f)
::int32_t literals(int index) const
bool enumerate_all_solutions() const
bool use_optional_variables() const
bool AddProblemClause(absl::Span< const Literal > literals, bool shared=false)
void STLSortAndRemoveDuplicates(T *v, const LessFunc &less_func)
std::function< std::vector< ValueLiteralPair >(Model *)> FullyEncodeVariable(IntegerVariable var)
void LoadBoolXorConstraint(const ConstraintProto &ct, Model *m)
IntegerValue FloorRatio(IntegerValue dividend, IntegerValue positive_divisor)
void LoadCumulativeConstraint(const ConstraintProto &ct, Model *m)
bool RefIsPositive(int ref)
void LoadLinMaxConstraint(const ConstraintProto &ct, Model *m)
void LoadIntProdConstraint(const ConstraintProto &ct, Model *m)
std::function< void(Model *)> WeightedSumGreaterOrEqual(absl::Span< const IntegerVariable > vars, const VectorInt &coefficients, int64_t lower_bound)
void AddWeightedSumLowerOrEqual(absl::Span< const Literal > enforcement_literals, absl::Span< const IntegerVariable > vars, absl::Span< const IntegerValue > coefficients, int64_t upper_bound, Model *model)
const LiteralIndex kNoLiteralIndex(-1)
void DetectOptionalVariables(const CpModelProto &model_proto, Model *m)
void LoadBoolOrConstraint(const ConstraintProto &ct, Model *m)
std::function< void(Model *)> ClauseConstraint(absl::Span< const Literal > literals)
void AddWeightedSumGreaterOrEqual(absl::Span< const Literal > enforcement_literals, absl::Span< const IntegerVariable > vars, absl::Span< const IntegerValue > coefficients, int64_t lower_bound, Model *model)
std::function< void(Model *)> EnforcedClause(absl::Span< const Literal > enforcement_literals, absl::Span< const Literal > clause)
std::function< BooleanVariable(Model *)> NewBooleanVariable()
std::function< void(Model *)> FixedDivisionConstraint(absl::Span< const Literal > enforcement_literals, AffineExpression a, IntegerValue b, AffineExpression c)
bool HasEnforcementLiteral(const ConstraintProto &ct)
std::vector< IntegerVariable > NegationOf(absl::Span< const IntegerVariable > vars)
void LoadVariables(const CpModelProto &model_proto, bool view_all_booleans_as_integers, Model *m)
void LoadConditionalLinearConstraint(const absl::Span< const Literal > enforcement_literals, const LinearConstraint &cst, Model *model)
void LoadIntModConstraint(const ConstraintProto &ct, Model *m)
const IntegerVariable kNoIntegerVariable(-1)
std::function< void(Model *)> Implication(absl::Span< const Literal > enforcement_literals, IntegerLiteral i)
const IntervalVariable kNoIntervalVariable(-1)
void LoadBooleanSymmetries(const CpModelProto &model_proto, Model *m)
void AddNonOverlappingRectangles(const std::vector< Literal > &enforcement_literals, const std::vector< IntervalVariable > &x, const std::vector< IntervalVariable > &y, Model *model)
std::function< void(Model *)> ProductConstraint(absl::Span< const Literal > enforcement_literals, AffineExpression a, AffineExpression b, AffineExpression p)
void LoadRoutesConstraint(const ConstraintProto &ct, Model *m)
void LoadAlwaysFalseConstraint(const ConstraintProto &ct, Model *m)
void LoadAtMostOneConstraint(const ConstraintProto &ct, Model *m)
void AddFullEncodingFromSearchBranching(const CpModelProto &model_proto, Model *m)
std::function< void(Model *)> DivisionConstraint(absl::Span< const Literal > enforcement_literals, AffineExpression num, AffineExpression denom, AffineExpression div)
std::vector< int > UsedVariables(const ConstraintProto &ct)
void LoadCircuitConstraint(const ConstraintProto &ct, Model *m)
void ExtractElementEncoding(const CpModelProto &model_proto, Model *m)
void LoadReservoirConstraint(const ConstraintProto &ct, Model *m)
std::vector< std::pair< int, int > > HeuristicallySplitLongLinear(absl::Span< const int64_t > coeffs)
int ReindexArcs(IntContainer *tails, IntContainer *heads, absl::flat_hash_map< int, int > *mapping_output=nullptr)
void LoadSubcircuitConstraint(int num_nodes, absl::Span< const int > tails, absl::Span< const int > heads, absl::Span< const Literal > enforcement_literals, absl::Span< const Literal > literals, Model *model, bool multiple_subcircuit_through_zero)
void LoadNoOverlapConstraint(const ConstraintProto &ct, Model *m)
void LoadAllDiffConstraint(const ConstraintProto &ct, Model *m)
std::function< void(Model *)> FixedModuloConstraint(absl::Span< const Literal > enforcement_literals, AffineExpression a, IntegerValue b, AffineExpression c)
std::function< void(Model *)> Cumulative(const std::vector< Literal > &enforcement_literals, const std::vector< IntervalVariable > &vars, absl::Span< const AffineExpression > demands, AffineExpression capacity, SchedulingConstraintHelper *helper)
void LoadNoOverlap2dConstraint(const ConstraintProto &ct, Model *m)
Domain ReadDomainFromProto(const ProtoWithDomain &proto)
void LoadBoolAndConstraint(const ConstraintProto &ct, Model *m)
void LoadExactlyOneConstraint(const ConstraintProto &ct, Model *m)
std::function< void(Model *)> AllDifferentOnBounds(absl::Span< const Literal > enforcement_literals, absl::Span< const AffineExpression > expressions)
void AddDisjunctive(const std::vector< Literal > &enforcement_literals, const std::vector< IntervalVariable > &intervals, Model *model)
std::function< void(Model *)> ExactlyOneConstraint(absl::Span< const Literal > literals)
std::function< void(Model *)> LiteralXorIs(absl::Span< const Literal > enforcement_literals, const std::vector< Literal > &literals, bool value)
PositiveOnlyIndex GetPositiveOnlyIndex(IntegerVariable var)
void PropagateEncodingFromEquivalenceRelations(const CpModelProto &model_proto, Model *m)
const BooleanVariable kNoBooleanVariable(-1)
void LoadLinearConstraint(const ConstraintProto &ct, Model *m)
bool VariableIsPositive(IntegerVariable i)
IndexReferences GetReferencesUsedByConstraint(const ConstraintProto &ct)
void ExtractEncoding(const CpModelProto &model_proto, Model *m)
void SplitAndLoadIntermediateConstraints(bool lb_required, bool ub_required, std::vector< IntegerVariable > *vars, std::vector< IntegerValue > *coeffs, Model *m)
void LoadIntDivConstraint(const ConstraintProto &ct, Model *m)
std::function< void(Model *)> WeightedSumLowerOrEqual(absl::Span< const IntegerVariable > vars, const VectorInt &coefficients, int64_t upper_bound)
IntegerLiteral GreaterOrEqual(IntegerValue bound) const
IntegerLiteral LowerOrEqual(IntegerValue bound) const
std::vector< int > variables
static IntegerLiteral GreaterOrEqual(IntegerVariable i, IntegerValue bound)
static IntegerLiteral LowerOrEqual(IntegerVariable i, IntegerValue bound)
#define SOLVER_LOG(logger,...)