Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
diffn.cc
Go to the documentation of this file.
1// Copyright 2010-2025 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
14#include "ortools/sat/diffn.h"
15
16#include <stddef.h>
17
18#include <algorithm>
19#include <cstddef>
20#include <cstdint>
21#include <iterator>
22#include <limits>
23#include <optional>
24#include <string>
25#include <utility>
26#include <vector>
27
28#include "absl/container/flat_hash_set.h"
29#include "absl/log/check.h"
30#include "absl/numeric/bits.h"
31#include "absl/types/span.h"
39#include "ortools/sat/integer.h"
43#include "ortools/sat/model.h"
46#include "ortools/sat/sat_parameters.pb.h"
52
53namespace operations_research {
54namespace sat {
55
56namespace {
57
58IntegerVariable CreateVariableWithTightDomain(
59 absl::Span<const AffineExpression> exprs, Model* model) {
60 IntegerValue min = kMaxIntegerValue;
61 IntegerValue max = kMinIntegerValue;
62 auto* integer_trail = model->GetOrCreate<IntegerTrail>();
63 for (const AffineExpression& e : exprs) {
64 min = std::min(min, integer_trail->LevelZeroLowerBound(e));
65 max = std::max(max, integer_trail->LevelZeroUpperBound(e));
66 }
67 return integer_trail->AddIntegerVariable(min, max);
68}
69
70IntegerVariable CreateVariableAtOrAboveMinOf(
71 absl::Span<const AffineExpression> exprs, Model* model) {
72 const IntegerVariable var = CreateVariableWithTightDomain(exprs, model);
73 auto* constraint = new MinPropagator({exprs.begin(), exprs.end()}, var,
74 model->GetOrCreate<IntegerTrail>());
75 constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
76 model->TakeOwnership(constraint);
77
78 return var;
79}
80
81IntegerVariable CreateVariableAtOrBelowMaxOf(
82 absl::Span<const AffineExpression> exprs, Model* model) {
83 std::vector<AffineExpression> negated_exprs(exprs.begin(), exprs.end());
84 for (AffineExpression& affine : negated_exprs) affine = affine.Negated();
85
86 const IntegerVariable var =
87 CreateVariableWithTightDomain(negated_exprs, model);
88 auto* constraint = new MinPropagator(std::move(negated_exprs), var,
89 model->GetOrCreate<IntegerTrail>());
90 constraint->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
91 model->TakeOwnership(constraint);
92
93 return NegationOf(var);
94}
95
96// Add a cumulative relaxation. That is, on one dimension, it does not enforce
97// the rectangle aspect, allowing vertical slices to move freely.
98void AddDiffnCumulativeRelationOnX(SchedulingConstraintHelper* x,
100 Model* model) {
101 // Note that we only need one side!
102 // We want something <= max_end - min_start
103 //
104 // TODO(user): Use conditional affine min/max !!
105 const IntegerVariable min_start_var =
106 CreateVariableAtOrAboveMinOf(y->Starts(), model);
107 const IntegerVariable max_end_var =
108 CreateVariableAtOrBelowMaxOf(y->Ends(), model);
109
110 auto* integer_trail = model->GetOrCreate<IntegerTrail>();
111 if (integer_trail->UpperBound(max_end_var) <
112 integer_trail->LowerBound(min_start_var)) {
113 // Trivial infeasible case, will be handled by the linear constraint
114 // from the interval.
115 return;
116 }
117 // (max_end - min_start) >= capacity.
118 const AffineExpression capacity(model->Add(NewIntegerVariable(
119 0, CapSub(integer_trail->UpperBound(max_end_var).value(),
120 integer_trail->LowerBound(min_start_var).value()))));
121 const std::vector<int64_t> coeffs = {-capacity.coeff.value(), -1, 1};
122 model->Add(
123 WeightedSumGreaterOrEqual({capacity.var, min_start_var, max_end_var},
124 coeffs, capacity.constant.value()));
125
126 SchedulingDemandHelper* demands =
127 model->GetOrCreate<IntervalsRepository>()->GetOrCreateDemandHelper(
128 x, y->Sizes());
129
130 // Propagator responsible for applying Timetabling filtering rule. It
131 // increases the minimum of the start variables, decrease the maximum of the
132 // end variables, and increase the minimum of the capacity variable.
133 const SatParameters& params = *model->GetOrCreate<SatParameters>();
134 if (params.use_timetabling_in_no_overlap_2d()) {
135 TimeTablingPerTask* time_tabling =
136 new TimeTablingPerTask(capacity, x, demands, model);
137 time_tabling->RegisterWith(model->GetOrCreate<GenericLiteralWatcher>());
138 model->TakeOwnership(time_tabling);
139 }
140
141 // Propagator responsible for applying the Overload Checking filtering rule.
142 // It increases the minimum of the capacity variable.
143 if (params.use_energetic_reasoning_in_no_overlap_2d()) {
144 AddCumulativeOverloadChecker(capacity, x, demands, model);
145 }
146}
147
148} // namespace
149
150void AddNonOverlappingRectangles(const std::vector<IntervalVariable>& x,
151 const std::vector<IntervalVariable>& y,
152 Model* model) {
154 NoOverlap2DConstraintHelper* no_overlap_helper =
155 repository->GetOrCreate2DHelper(x, y);
156
157 GenericLiteralWatcher* const watcher =
159
160 CreateAndRegisterMandatoryOverlapPropagator(no_overlap_helper, model, watcher,
161 3);
162
165 model);
166 constraint->Register(/*fast_priority=*/3, /*slow_priority=*/4);
167 model->TakeOwnership(constraint);
168
169 RectanglePairwisePropagator* pairwise_propagator =
170 new RectanglePairwisePropagator(no_overlap_helper, model);
171 watcher->SetPropagatorPriority(pairwise_propagator->RegisterWith(watcher), 4);
172 model->TakeOwnership(pairwise_propagator);
173
174 const SatParameters& params = *model->GetOrCreate<SatParameters>();
175 const bool add_cumulative_relaxation =
176 params.use_timetabling_in_no_overlap_2d() ||
177 params.use_energetic_reasoning_in_no_overlap_2d();
178
179 if (add_cumulative_relaxation) {
180 SchedulingConstraintHelper* x_helper = repository->GetOrCreateHelper(x);
181 SchedulingConstraintHelper* y_helper = repository->GetOrCreateHelper(y);
182
183 // We must first check if the cumulative relaxation is possible.
184 bool some_boxes_are_only_optional_on_x = false;
185 bool some_boxes_are_only_optional_on_y = false;
186 for (int i = 0; i < x.size(); ++i) {
187 if (x_helper->IsOptional(i) && y_helper->IsOptional(i) &&
188 x_helper->PresenceLiteral(i) != y_helper->PresenceLiteral(i)) {
189 // Abort as the task would be conditioned by two literals.
190 return;
191 }
192 if (x_helper->IsOptional(i) && !y_helper->IsOptional(i)) {
193 // We cannot use x_size as the demand of the cumulative based on
194 // the y_intervals.
195 some_boxes_are_only_optional_on_x = true;
196 }
197 if (y_helper->IsOptional(i) && !x_helper->IsOptional(i)) {
198 // We cannot use y_size as the demand of the cumulative based on
199 // the y_intervals.
200 some_boxes_are_only_optional_on_y = true;
201 }
202 }
203 if (!some_boxes_are_only_optional_on_y) {
204 AddDiffnCumulativeRelationOnX(x_helper, y_helper, model);
205 }
206 if (!some_boxes_are_only_optional_on_x) {
207 AddDiffnCumulativeRelationOnX(y_helper, x_helper, model);
208 }
209 }
210
211 if (params.use_area_energetic_reasoning_in_no_overlap_2d()) {
213 new NonOverlappingRectanglesEnergyPropagator(no_overlap_helper, model);
214 GenericLiteralWatcher* const watcher =
216 watcher->SetPropagatorPriority(energy_constraint->RegisterWith(watcher), 5);
217 model->TakeOwnership(energy_constraint);
218 }
219
220 if (params.use_try_edge_reasoning_in_no_overlap_2d()) {
221 CreateAndRegisterTryEdgePropagator(no_overlap_helper, model, watcher, 5);
222 }
223}
224
225#define RETURN_IF_FALSE(f) \
226 if (!(f)) return false;
227
230 if (!VLOG_IS_ON(1)) return;
231 std::vector<std::pair<std::string, int64_t>> stats;
232 stats.push_back(
233 {"NonOverlappingRectanglesEnergyPropagator/called", num_calls_});
234 stats.push_back(
235 {"NonOverlappingRectanglesEnergyPropagator/conflicts", num_conflicts_});
236 stats.push_back(
237 {"NonOverlappingRectanglesEnergyPropagator/conflicts_two_boxes",
238 num_conflicts_two_boxes_});
239 stats.push_back({"NonOverlappingRectanglesEnergyPropagator/refined",
240 num_refined_conflicts_});
241 stats.push_back(
242 {"NonOverlappingRectanglesEnergyPropagator/conflicts_with_slack",
243 num_conflicts_with_slack_});
244
245 shared_stats_->AddStats(stats);
246}
247
249 // TODO(user): double-check/revisit the algo for box of variable sizes.
250 const int num_boxes = helper_.NumBoxes();
251 if (!helper_.SynchronizeAndSetDirection()) return false;
252
253 Rectangle bounding_box = {.x_min = std::numeric_limits<IntegerValue>::max(),
254 .x_max = std::numeric_limits<IntegerValue>::min(),
255 .y_min = std::numeric_limits<IntegerValue>::max(),
256 .y_max = std::numeric_limits<IntegerValue>::min()};
257 std::vector<RectangleInRange> active_box_ranges;
258 active_box_ranges.reserve(num_boxes);
259 for (int box = 0; box < num_boxes; ++box) {
260 if (!helper_.IsPresent(box)) continue;
261 RectangleInRange rec = helper_.GetItemRangeForSizeMin(box);
262 if (rec.x_size == 0 || rec.y_size == 0) continue;
263 bounding_box.GrowToInclude(rec.bounding_area);
264 active_box_ranges.push_back(std::move(rec));
265 }
266
267 if (active_box_ranges.size() < 2) {
268 return true;
269 }
270
271 // Our algo is quadratic, so we don't want to run it on really large problems.
272 if (active_box_ranges.size() > 1000) {
273 return true;
274 }
275
276 if (std::max(bounding_box.SizeX(), bounding_box.SizeY()) *
277 active_box_ranges.size() >
278 std::numeric_limits<int32_t>::max()) {
279 // Avoid integer overflows if the area of the boxes get comparable with
280 // INT64_MAX
281 return true;
282 }
283
284 num_calls_++;
285
286 std::optional<Conflict> best_conflict =
287 FindConflict(std::move(active_box_ranges));
288 if (!best_conflict.has_value()) {
289 return true;
290 }
291 num_conflicts_++;
292
293 // We found a conflict, so we can afford to run the propagator again to
294 // search for a best explanation. This is specially the case since we only
295 // want to re-run it over the items that participate in the conflict, so it is
296 // a much smaller problem.
297 IntegerValue best_explanation_size =
298 best_conflict->opp_result.GetItemsParticipatingOnConflict().size();
299 bool refined = false;
300 while (true) {
301 std::vector<RectangleInRange> items_participating_in_conflict;
302 items_participating_in_conflict.reserve(
303 best_conflict->items_for_opp.size());
304 for (const auto& item :
305 best_conflict->opp_result.GetItemsParticipatingOnConflict()) {
306 items_participating_in_conflict.push_back(
307 best_conflict->items_for_opp[item.index]);
308 }
309 std::optional<Conflict> conflict =
310 FindConflict(items_participating_in_conflict);
311 if (!conflict.has_value()) break;
312 // We prefer an explanation with the least number of boxes.
313 if (conflict->opp_result.GetItemsParticipatingOnConflict().size() >=
314 best_explanation_size) {
315 // The new explanation isn't better than the old one. Stop trying.
316 break;
317 }
318 best_explanation_size =
319 conflict->opp_result.GetItemsParticipatingOnConflict().size();
320 best_conflict = std::move(conflict);
321 refined = true;
322 }
323
324 num_refined_conflicts_ += refined;
325 const std::vector<RectangleInRange> generalized_explanation =
326 GeneralizeExplanation(*best_conflict);
327 if (best_explanation_size == 2) {
328 num_conflicts_two_boxes_++;
329 }
330 helper_.ReportConflictFromInfeasibleBoxRanges(generalized_explanation);
331 return false;
332}
333
334std::optional<NonOverlappingRectanglesEnergyPropagator::Conflict>
335NonOverlappingRectanglesEnergyPropagator::FindConflict(
336 std::vector<RectangleInRange> active_box_ranges) {
337 const auto rectangles_with_too_much_energy =
338 FindRectanglesWithEnergyConflictMC(active_box_ranges, *random_, 1.0, 0.8);
339
340 if (rectangles_with_too_much_energy.conflicts.empty() &&
341 rectangles_with_too_much_energy.candidates.empty()) {
342 return std::nullopt;
343 }
344
345 Conflict best_conflict;
346
347 // Sample 10 rectangles (at least five among the ones for which we already
348 // detected an energy overflow), extract an orthogonal packing subproblem for
349 // each and look for conflict. Sampling avoids making this heuristic too
350 // costly.
351 constexpr int kSampleSize = 10;
352 absl::InlinedVector<Rectangle, kSampleSize> sampled_rectangles;
353 std::sample(rectangles_with_too_much_energy.conflicts.begin(),
354 rectangles_with_too_much_energy.conflicts.end(),
355 std::back_inserter(sampled_rectangles), 5, *random_);
356 std::sample(rectangles_with_too_much_energy.candidates.begin(),
357 rectangles_with_too_much_energy.candidates.end(),
358 std::back_inserter(sampled_rectangles),
359 kSampleSize - sampled_rectangles.size(), *random_);
360 std::sort(sampled_rectangles.begin(), sampled_rectangles.end(),
361 [](const Rectangle& a, const Rectangle& b) {
362 const bool larger = std::make_pair(a.SizeX(), a.SizeY()) >
363 std::make_pair(b.SizeX(), b.SizeY());
364 // Double-check the invariant from
365 // FindRectanglesWithEnergyConflictMC() that given two returned
366 // rectangles there is one that is fully inside the other.
367 if (larger) {
368 // Rectangle b is fully contained inside a
369 DCHECK(a.x_min <= b.x_min && a.x_max >= b.x_max &&
370 a.y_min <= b.y_min && a.y_max >= b.y_max);
371 } else {
372 // Rectangle a is fully contained inside b
373 DCHECK(a.x_min >= b.x_min && a.x_max <= b.x_max &&
374 a.y_min >= b.y_min && a.y_max <= b.y_max);
375 }
376 return larger;
377 });
378 std::vector<IntegerValue> sizes_x, sizes_y;
379 sizes_x.reserve(active_box_ranges.size());
380 sizes_y.reserve(active_box_ranges.size());
381 std::vector<RectangleInRange> filtered_items;
382 filtered_items.reserve(active_box_ranges.size());
383 for (const Rectangle& r : sampled_rectangles) {
384 sizes_x.clear();
385 sizes_y.clear();
386 filtered_items.clear();
387 for (int i = 0; i < active_box_ranges.size(); ++i) {
388 const RectangleInRange& box = active_box_ranges[i];
389 const Rectangle intersection = box.GetMinimumIntersection(r);
390 if (intersection.SizeX() > 0 && intersection.SizeY() > 0) {
391 sizes_x.push_back(intersection.SizeX());
392 sizes_y.push_back(intersection.SizeY());
393 filtered_items.push_back(box);
394 }
395 }
396 // This check the feasibility of a related orthogonal packing problem where
397 // our rectangle is the bounding box, and we need to fit inside it a set of
398 // items corresponding to the minimum intersection of the original items
399 // with this bounding box.
400 const auto opp_result = orthogonal_packing_checker_.TestFeasibility(
401 sizes_x, sizes_y, {r.SizeX(), r.SizeY()},
403 .use_pairwise = true,
404 .use_dff_f0 = true,
405 .use_dff_f2 = true,
406 .brute_force_threshold = 7,
407 .dff2_max_number_of_parameters_to_check = 100});
408 if (opp_result.GetResult() == OrthogonalPackingResult::Status::INFEASIBLE &&
409 (best_conflict.opp_result.GetResult() !=
411 best_conflict.opp_result.GetItemsParticipatingOnConflict().size() >
412 opp_result.GetItemsParticipatingOnConflict().size())) {
413 best_conflict.items_for_opp = filtered_items;
414 best_conflict.opp_result = opp_result;
415 best_conflict.rectangle_with_too_much_energy = r;
416 }
417 // Use the fact that our rectangles are ordered in shrinking order to remove
418 // all items that will never contribute again.
419 filtered_items.swap(active_box_ranges);
420 }
421 if (best_conflict.opp_result.GetResult() ==
423 return best_conflict;
424 } else {
425 return std::nullopt;
426 }
427}
428
429std::vector<RectangleInRange>
430NonOverlappingRectanglesEnergyPropagator::GeneralizeExplanation(
431 const Conflict& conflict) {
432 const Rectangle& rectangle = conflict.rectangle_with_too_much_energy;
433 OrthogonalPackingResult relaxed_result = conflict.opp_result;
434
435 // Use the potential slack to have a stronger reason.
436 int used_slack_count = 0;
437 const auto& items = relaxed_result.GetItemsParticipatingOnConflict();
438 for (int i = 0; i < items.size(); ++i) {
439 if (!relaxed_result.HasSlack()) {
440 break;
441 }
442 const RectangleInRange& range = conflict.items_for_opp[items[i].index];
443 const RectangleInRange item_in_zero_level_range = {
444 .bounding_area =
445 {.x_min = helper_.x_helper().LevelZeroStartMin(range.box_index),
446 .x_max = helper_.x_helper().LevelZeroStartMax(range.box_index) +
447 range.x_size,
448 .y_min = helper_.y_helper().LevelZeroStartMin(range.box_index),
449 .y_max = helper_.y_helper().LevelZeroStartMax(range.box_index) +
450 range.y_size},
451 .x_size = range.x_size,
452 .y_size = range.y_size};
453 // There is no point trying to intersect less the item with the rectangle
454 // than it would on zero-level. So do not waste the slack with it.
455 const Rectangle max_overlap =
456 item_in_zero_level_range.GetMinimumIntersection(rectangle);
457 used_slack_count += relaxed_result.TryUseSlackToReduceItemSize(
458 i, OrthogonalPackingResult::Coord::kCoordX, max_overlap.SizeX());
459 used_slack_count += relaxed_result.TryUseSlackToReduceItemSize(
460 i, OrthogonalPackingResult::Coord::kCoordY, max_overlap.SizeY());
461 }
462 num_conflicts_with_slack_ += (used_slack_count > 0);
463 VLOG_EVERY_N_SEC(2, 3)
464 << "Found a conflict on the OPP sub-problem of rectangle: " << rectangle
465 << " using "
466 << conflict.opp_result.GetItemsParticipatingOnConflict().size() << "/"
467 << conflict.items_for_opp.size() << " items.";
468
469 std::vector<RectangleInRange> ranges_for_explanation;
470 ranges_for_explanation.reserve(conflict.items_for_opp.size());
471 std::vector<OrthogonalPackingResult::Item> sorted_items =
472 relaxed_result.GetItemsParticipatingOnConflict();
473 // TODO(user) understand why sorting high-impact items first improves the
474 // benchmarks
475 std::sort(sorted_items.begin(), sorted_items.end(),
476 [](const OrthogonalPackingResult::Item& a,
477 const OrthogonalPackingResult::Item& b) {
478 return a.size_x * a.size_y > b.size_x * b.size_y;
479 });
480 for (const auto& item : sorted_items) {
481 const RectangleInRange& range = conflict.items_for_opp[item.index];
482 ranges_for_explanation.push_back(
483 RectangleInRange::BiggestWithMinIntersection(rectangle, range,
484 item.size_x, item.size_y));
485 }
486 return ranges_for_explanation;
487}
488
490 GenericLiteralWatcher* watcher) {
491 const int id = watcher->Register(this);
492 helper_.WatchAllBoxes(id);
493 return id;
494}
495
496namespace {
497
498// We want for different propagation to reuse as much as possible the same
499// line. The idea behind this is to compute the 'canonical' line to use
500// when explaining that boxes overlap on the 'y_dim' dimension. We compute
501// the multiple of the biggest power of two that is common to all boxes.
502IntegerValue FindCanonicalValue(IntegerValue lb, IntegerValue ub) {
503 if (lb == ub) return lb;
504 if (lb <= 0 && ub > 0) return IntegerValue(0);
505 if (lb < 0 && ub <= 0) {
506 return -FindCanonicalValue(-ub, -lb);
507 }
508
509 int64_t mask = 0;
510 IntegerValue candidate = ub;
511 for (int o = 0; o < 62; ++o) {
512 mask = 2 * mask + 1;
513 const IntegerValue masked_ub(ub.value() & ~mask);
514 if (masked_ub >= lb) {
515 candidate = masked_ub;
516 } else {
517 break;
518 }
519 }
520 return candidate;
521}
522
523void SplitDisjointBoxes(const SchedulingConstraintHelper& x,
524 absl::Span<const int> boxes,
525 std::vector<absl::Span<const int>>* result) {
526 result->clear();
527 DCHECK(std::is_sorted(boxes.begin(), boxes.end(), [&x](int a, int b) {
528 return x.ShiftedStartMin(a) < x.ShiftedStartMin(b);
529 }));
530 int current_start = 0;
531 std::size_t current_length = 1;
532 IntegerValue current_max_end = x.EndMax(boxes[0]);
533
534 for (int b = 1; b < boxes.size(); ++b) {
535 const int box = boxes[b];
536 if (x.ShiftedStartMin(box) < current_max_end) {
537 // Merge.
538 current_length++;
539 current_max_end = std::max(current_max_end, x.EndMax(box));
540 } else {
541 if (current_length > 1) { // Ignore lists of size 1.
542 result->emplace_back(&boxes[current_start], current_length);
543 }
544 current_start = b;
545 current_length = 1;
546 current_max_end = x.EndMax(box);
547 }
548 }
549
550 // Push last span.
551 if (current_length > 1) {
552 result->emplace_back(&boxes[current_start], current_length);
553 }
554}
555
556} // namespace
557
558// Note that x_ and y_ must be initialized with enough intervals when passed
559// to the disjunctive propagators.
560NonOverlappingRectanglesDisjunctivePropagator::
561 NonOverlappingRectanglesDisjunctivePropagator(
562 NoOverlap2DConstraintHelper* helper, Model* model)
563 : helper_(helper),
564 x_(helper->NumBoxes(), model),
565 watcher_(model->GetOrCreate<GenericLiteralWatcher>()),
566 time_limit_(model->GetOrCreate<TimeLimit>()),
567 overload_checker_(&x_),
568 forward_detectable_precedences_(true, &x_),
569 backward_detectable_precedences_(false, &x_),
570 forward_not_last_(true, &x_),
571 backward_not_last_(false, &x_),
572 forward_edge_finding_(true, &x_),
573 backward_edge_finding_(false, &x_),
574 disjunctive_with_two_items_(&x_) {}
575
578
580 int fast_priority, int slow_priority) {
581 fast_id_ = watcher_->Register(this);
582 watcher_->SetPropagatorPriority(fast_id_, fast_priority);
583 helper_->WatchAllBoxes(fast_id_);
584
585 // This propagator is the one making sure our propagation is complete, so
586 // we do need to make sure it is called again if it modified some bounds.
587 watcher_->NotifyThatPropagatorMayNotReachFixedPointInOnePass(fast_id_);
588
589 const int slow_id = watcher_->Register(this);
590 watcher_->SetPropagatorPriority(slow_id, slow_priority);
591 helper_->WatchAllBoxes(slow_id);
592}
593
594bool NonOverlappingRectanglesDisjunctivePropagator::
595 FindBoxesThatMustOverlapAHorizontalLineAndPropagate(
596 bool fast_propagation, absl::Span<const int> requested_boxes) {
597 // When they are many fixed box that we know do not overlap, we compute
598 // the bounding box of the others, and we can exclude all boxes outside this
599 // region. This can help, especially for some LNS neighborhood.
600 int num_fixed = 0;
601 int num_others = 0;
602 Rectangle other_bounding_box;
603
604 // push_back() can be slow as it might not be inlined, so we manage directly
605 // our "boxes" in boxes_data[0 .. num_boxes], with a memory that is always big
606 // enough.
607 indexed_boxes_.resize(helper_->NumBoxes());
608 int num_boxes = 0;
609 IndexedInterval* boxes_data = indexed_boxes_.data();
610
611 SchedulingConstraintHelper* x = &helper_->x_helper();
612 SchedulingConstraintHelper* y = &helper_->y_helper();
613
614 // Optimization: we only initialize the set if we don't have all task here.
615 absl::flat_hash_set<int> requested_boxes_set;
616 if (requested_boxes.size() != helper_->NumBoxes()) {
617 requested_boxes_set = {requested_boxes.begin(), requested_boxes.end()};
618 }
619
620 // Compute relevant boxes, the one with a mandatory part on y. Because we will
621 // need to sort it this way, we consider them by increasing start max.
622 const auto temp = y->TaskByIncreasingNegatedStartMax();
623 auto fixed_boxes = already_checked_fixed_boxes_.view();
624 for (int i = temp.size(); --i >= 0;) {
625 const int box = temp[i].task_index;
626 if (requested_boxes.size() != helper_->NumBoxes() &&
627 !requested_boxes_set.contains(box)) {
628 continue;
629 }
630
631 // By definition, fixed boxes are always present.
632 // Doing this check optimize a bit the case where we have many fixed boxes.
633 if (!fixed_boxes[box]) {
634 // Ignore absent boxes.
635 if (x->IsAbsent(box) || y->IsAbsent(box)) continue;
636
637 // Ignore boxes where the relevant presence literal is only on the y
638 // dimension, or if both intervals are optionals with different literals.
639 if (x->IsPresent(box) && !y->IsPresent(box)) continue;
640 if (!x->IsPresent(box) && !y->IsPresent(box) &&
641 x->PresenceLiteral(box) != y->PresenceLiteral(box)) {
642 continue;
643 }
644 }
645
646 // Only consider box with a mandatory part on y.
647 const IntegerValue start_max = -temp[i].time;
648 const IntegerValue end_min = y->EndMin(box);
649 if (start_max < end_min) {
650 boxes_data[num_boxes++] = {box, start_max, end_min};
651
652 // Optim: If many rectangle are fixed and known not to overlap, we might
653 // filter them out.
654 if (fixed_boxes[box]) {
655 ++num_fixed;
656 } else {
657 if (helper_->IsFixed(box)) {
658 // We will "check it" below, so it will be checked next time.
659 fixed_boxes.Set(box);
660 }
661
662 const Rectangle r = {x->StartMin(box), x->EndMax(box), start_max,
663 end_min};
664 if (num_others == 0) {
665 other_bounding_box = r;
666 } else {
667 other_bounding_box.GrowToInclude(r);
668 }
669 ++num_others;
670 }
671 }
672 }
673
674 // We remove from boxes_data all the fixed and checked box outside the
675 // other_bounding_box.
676 //
677 // TODO(user): We could be smarter here, if we have just a few non-fixed
678 // boxes, likely their mandatory y-part do not span the whole horizon, so
679 // we could remove any fixed boxes outside these "stripes".
680 if (num_others == 0) return true;
681 if (num_fixed > 0) {
682 int new_size = 0;
683 for (int i = 0; i < num_boxes; ++i) {
684 const IndexedInterval& interval = boxes_data[i];
685 const int box = interval.index;
686 const Rectangle r = {x->StartMin(box), x->EndMax(box), interval.start,
687 interval.end};
688 if (other_bounding_box.IsDisjoint(r)) continue;
689 boxes_data[new_size++] = interval;
690 }
691 num_boxes = new_size;
692 }
693
694 // Less than 2 boxes, no propagation.
695 const auto boxes = absl::MakeSpan(boxes_data, num_boxes);
696 if (boxes.size() < 2) return true;
697
698 // Optim: Abort if all rectangle can be fixed to their mandatory y +
699 // minimum x position without any overlap.
700 //
701 // This is guaranteed to be O(N log N) whereas the algo below is O(N ^ 2).
702 //
703 // TODO(user): We might still propagate the x end in this setting, but the
704 // current code will just abort below in SplitDisjointBoxes() anyway.
705 {
706 rectangles_.clear();
707 rectangles_.reserve(boxes.size());
708 for (const auto [box, y_mandatory_start, y_mandatory_end] : boxes) {
709 // Note that we invert the x/y position here in order to be already
710 // sorted for FindOneIntersectionIfPresent()
711 rectangles_.push_back(
712 {/*x_min=*/y_mandatory_start, /*x_max=*/y_mandatory_end,
713 /*y_min=*/x->StartMin(box), /*y_max=*/x->EndMin(box)});
714 }
715 const auto opt_pair = FindOneIntersectionIfPresent(rectangles_);
716 {
717 const size_t n = rectangles_.size();
718 time_limit_->AdvanceDeterministicTime(
719 static_cast<double>(n) * static_cast<double>(absl::bit_width(n)) *
720 1e-8);
721 }
722 if (opt_pair == std::nullopt) {
723 return true;
724 } else {
725 // TODO(user): Test if we have a conflict here.
726 }
727 }
728
729 order_.assign(x->NumTasks(), 0);
730 {
731 int i = 0;
732 for (const auto [t, _lit, _time] : x->TaskByIncreasingShiftedStartMin()) {
733 order_[t] = i++;
734 }
735 }
736 ConstructOverlappingSets(boxes, &events_overlapping_boxes_, order_);
737
738 // Split lists of boxes into disjoint set of boxes (w.r.t. overlap).
739 boxes_to_propagate_.clear();
740 reduced_overlapping_boxes_.clear();
741 int work_done = boxes.size();
742 for (int i = 0; i < events_overlapping_boxes_.size(); ++i) {
743 work_done += events_overlapping_boxes_[i].size();
744 SplitDisjointBoxes(*x, events_overlapping_boxes_[i], &disjoint_boxes_);
745 for (const absl::Span<const int> sub_boxes : disjoint_boxes_) {
746 // Boxes are sorted in a stable manner in the Split method.
747 // Note that we do not use reduced_overlapping_boxes_ directly so that
748 // the order of iteration is deterministic.
749 const auto& insertion = reduced_overlapping_boxes_.insert(sub_boxes);
750 if (insertion.second) boxes_to_propagate_.push_back(sub_boxes);
751 }
752 }
753
754 // TODO(user): This is a poor dtime, but we want it not to be zero here.
755 time_limit_->AdvanceDeterministicTime(static_cast<double>(work_done) * 1e-8);
756
757 // And finally propagate.
758 //
759 // TODO(user): Sorting of boxes seems influential on the performance.
760 // Test.
761 for (const absl::Span<const int> boxes : boxes_to_propagate_) {
762 // The case of two boxes should be taken care of during "fast"
763 // propagation, so we can skip it here.
764 if (!fast_propagation && boxes.size() <= 2) continue;
765
766 x_.ClearOtherHelper();
767 if (!x_.ResetFromSubset(*x, boxes)) return false;
768
769 // Collect the common overlapping coordinates of all boxes.
770 IntegerValue lb(std::numeric_limits<int64_t>::min());
771 IntegerValue ub(std::numeric_limits<int64_t>::max());
772 for (const int b : boxes) {
773 lb = std::max(lb, y->StartMax(b));
774 ub = std::min(ub, y->EndMin(b) - 1);
775 }
776 CHECK_LE(lb, ub);
777
778 // We want for different propagation to reuse as much as possible the same
779 // line. The idea behind this is to compute the 'canonical' line to use
780 // when explaining that boxes overlap on the 'y_dim' dimension. We compute
781 // the multiple of the biggest power of two that is common to all boxes.
782 //
783 // TODO(user): We should scan the integer trail to find the oldest
784 // non-empty common interval. Then we can pick the canonical value within
785 // it.
786 const IntegerValue line_to_use_for_reason = FindCanonicalValue(lb, ub);
787
788 // Setup x_dim for propagation.
789 x_.SetOtherHelper(y, boxes, line_to_use_for_reason);
790
791 if (fast_propagation) {
792 if (x_.NumTasks() == 2) {
793 // In that case, we can use simpler algorithms.
794 // Note that this case happens frequently (~30% of all calls to this
795 // method according to our tests).
796 RETURN_IF_FALSE(disjunctive_with_two_items_.Propagate());
797 } else {
798 RETURN_IF_FALSE(overload_checker_.Propagate());
799 RETURN_IF_FALSE(forward_detectable_precedences_.Propagate());
800 RETURN_IF_FALSE(backward_detectable_precedences_.Propagate());
801 }
802 } else {
803 DCHECK_GT(x_.NumTasks(), 2);
804 RETURN_IF_FALSE(forward_not_last_.Propagate());
805 RETURN_IF_FALSE(backward_not_last_.Propagate());
806 RETURN_IF_FALSE(backward_edge_finding_.Propagate());
807 RETURN_IF_FALSE(forward_edge_finding_.Propagate());
808 }
809 }
810
811 return true;
812}
813
814// Note that we optimized this function for two main use cases:
815// - smallish problem where we don't have more than 100 boxes.
816// - large problem with many 1000s boxes, but with only a small subset that is
817// not fixed (mainly coming from LNS).
819 if (!helper_->SynchronizeAndSetDirection(true, true, false)) return false;
820
821 // If we are "diving" we maintain the set of fixed boxes for which we know
822 // that they are not overlapping.
823 const bool backtrack_since_last_call = !rev_is_in_dive_;
824 watcher_->SetUntilNextBacktrack(&rev_is_in_dive_);
825 if (backtrack_since_last_call ||
826 last_helper_inprocessing_count_ != helper_->InProcessingCount()) {
827 last_helper_inprocessing_count_ = helper_->InProcessingCount();
828 const int num_tasks = helper_->NumBoxes();
829 already_checked_fixed_boxes_.ClearAndResize(num_tasks);
830 }
831
832 // Note that the code assumes that this was registered twice in fast and slow
833 // mode. So we will not redo some propagation in slow mode that was already
834 // done by the fast mode.
835 const bool fast_propagation = watcher_->GetCurrentId() == fast_id_;
836 for (const auto subset : helper_->connected_components().AsVectorOfSpan()) {
837 if (!FindBoxesThatMustOverlapAHorizontalLineAndPropagate(fast_propagation,
838 subset)) {
839 return false;
840 }
841 }
842 // We can actually swap dimensions to propagate vertically.
843 if (!helper_->SynchronizeAndSetDirection(true, true, true)) return false;
844
845 for (const auto subset : helper_->connected_components().AsVectorOfSpan()) {
846 if (!FindBoxesThatMustOverlapAHorizontalLineAndPropagate(fast_propagation,
847 subset)) {
848 return false;
849 }
850 }
851
852 return true;
853}
854
856 const int id = watcher->Register(this);
857 helper_->WatchAllBoxes(id);
859 return id;
860}
861
863 if (!VLOG_IS_ON(1)) return;
864 std::vector<std::pair<std::string, int64_t>> stats;
865 stats.push_back({"RectanglePairwisePropagator/called", num_calls_});
866 stats.push_back({"RectanglePairwisePropagator/pairwise_conflicts",
867 num_pairwise_conflicts_});
868 stats.push_back({"RectanglePairwisePropagator/pairwise_propagations",
869 num_pairwise_propagations_});
870
871 shared_stats_->AddStats(stats);
872}
873
875 if (!helper_->SynchronizeAndSetDirection()) return false;
876
877 num_calls_++;
878 std::vector<PairwiseRestriction> restrictions;
879
880 for (int component_index = 0;
881 component_index < helper_->connected_components().size();
882 ++component_index) {
883 horizontal_zero_area_boxes_.clear();
884 vertical_zero_area_boxes_.clear();
885 point_zero_area_boxes_.clear();
886 fixed_non_zero_area_boxes_.clear();
887 non_fixed_non_zero_area_boxes_.clear();
888 fixed_non_zero_area_rectangles_.clear();
889 for (int b : helper_->connected_components()[component_index]) {
890 if (!helper_->IsPresent(b)) continue;
891 const auto [x_size_max, y_size_max] = helper_->GetBoxSizesMax(b);
893 if (x_size_max == 0) {
894 if (y_size_max == 0) {
895 box = &point_zero_area_boxes_.emplace_back();
896 } else {
897 box = &vertical_zero_area_boxes_.emplace_back();
898 }
899 } else if (y_size_max == 0) {
900 box = &horizontal_zero_area_boxes_.emplace_back();
901 } else {
902 if (helper_->IsFixed(b)) {
903 box = &fixed_non_zero_area_boxes_.emplace_back();
904 fixed_non_zero_area_rectangles_.push_back(
905 helper_->GetItemRangeForSizeMin(b).bounding_area);
906 } else {
907 box = &non_fixed_non_zero_area_boxes_.emplace_back();
908 }
909 }
910 *box = helper_->GetItemWithVariableSize(b);
911 }
912
913 // We ignore pairs of two fixed boxes. The only thing to propagate between
914 // two fixed boxes is a conflict and it should already have been taken care
915 // of by the MandatoryOverlapPropagator propagator.
916
917 RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
918 non_fixed_non_zero_area_boxes_, fixed_non_zero_area_boxes_,
919 &restrictions));
920
921 RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
922 fixed_non_zero_area_boxes_, non_fixed_non_zero_area_boxes_,
923 &restrictions));
924
925 // Check zero area boxes against non-zero area boxes.
926 for (auto& non_zero_area_boxes :
927 {fixed_non_zero_area_boxes_, non_fixed_non_zero_area_boxes_}) {
928 RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
929 non_zero_area_boxes, horizontal_zero_area_boxes_, &restrictions));
930 RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
931 non_zero_area_boxes, vertical_zero_area_boxes_, &restrictions));
932 RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
933 non_zero_area_boxes, point_zero_area_boxes_, &restrictions));
934 }
935
936 // Check vertical zero area boxes against horizontal zero area boxes.
937 RETURN_IF_FALSE(FindRestrictionsAndPropagateConflict(
938 vertical_zero_area_boxes_, horizontal_zero_area_boxes_, &restrictions));
939 }
940 for (const PairwiseRestriction& restriction : restrictions) {
941 RETURN_IF_FALSE(PropagateTwoBoxes(restriction));
942 }
943 return true;
944}
945
946bool RectanglePairwisePropagator::FindRestrictionsAndPropagateConflict(
947 absl::Span<const ItemWithVariableSize> items,
948 std::vector<PairwiseRestriction>* restrictions) {
949 const int max_pairs =
950 params_->max_pairs_pairwise_reasoning_in_no_overlap_2d();
951 if (items.size() * (items.size() - 1) / 2 > max_pairs) {
952 return true;
953 }
954 AppendPairwiseRestrictions(items, restrictions);
955 for (const PairwiseRestriction& restriction : *restrictions) {
956 if (restriction.type ==
958 RETURN_IF_FALSE(PropagateTwoBoxes(restriction));
959 }
960 }
961 return true;
962}
963
964bool RectanglePairwisePropagator::FindRestrictionsAndPropagateConflict(
965 absl::Span<const ItemWithVariableSize> items1,
966 absl::Span<const ItemWithVariableSize> items2,
967 std::vector<PairwiseRestriction>* restrictions) {
968 const int max_pairs =
969 params_->max_pairs_pairwise_reasoning_in_no_overlap_2d();
970 if (items1.size() * items2.size() > max_pairs) {
971 return true;
972 }
973 AppendPairwiseRestrictions(items1, items2, restrictions);
974 for (const PairwiseRestriction& restriction : *restrictions) {
975 if (restriction.type ==
977 RETURN_IF_FALSE(PropagateTwoBoxes(restriction));
978 }
979 }
980 return true;
981}
982
983bool RectanglePairwisePropagator::PropagateTwoBoxes(
984 const PairwiseRestriction& restriction) {
985 if (restriction.type ==
987 num_pairwise_conflicts_++;
988 } else {
989 num_pairwise_propagations_++;
990 }
991 return helper_->PropagateRelativePosition(
992 restriction.first_index, restriction.second_index, restriction.type);
993}
994
995#undef RETURN_IF_FALSE
996} // namespace sat
997} // namespace operations_research
void SetPropagatorPriority(int id, int priority)
Definition integer.cc:2353
int Register(PropagatorInterface *propagator)
Registers a propagator and returns its unique ids.
Definition integer.cc:2327
IntegerVariable AddIntegerVariable(IntegerValue lower_bound, IntegerValue upper_bound)
Definition integer.cc:838
SchedulingConstraintHelper * GetOrCreateHelper(const std::vector< IntervalVariable > &variables, bool register_as_disjunctive_helper=false)
Definition intervals.cc:219
NoOverlap2DConstraintHelper * GetOrCreate2DHelper(const std::vector< IntervalVariable > &x_variables, const std::vector< IntervalVariable > &y_variables)
Definition intervals.cc:258
void RegisterWith(GenericLiteralWatcher *watcher)
void Register(int fast_priority, int slow_priority)
Definition diffn.cc:579
Propagates using a box energy reasoning.
Definition diffn.h:41
Propagator that compares the boxes pairwise.
Definition diffn.h:152
int RegisterWith(GenericLiteralWatcher *watcher)
Definition diffn.cc:855
constexpr IntegerValue kMaxIntegerValue(std::numeric_limits< IntegerValue::ValueType >::max() - 1)
std::function< void(Model *)> WeightedSumGreaterOrEqual(absl::Span< const IntegerVariable > vars, const VectorInt &coefficients, int64_t lower_bound)
Weighted sum >= constant.
void CreateAndRegisterTryEdgePropagator(NoOverlap2DConstraintHelper *helper, Model *model, GenericLiteralWatcher *watcher, int priority)
std::vector< IntegerVariable > NegationOf(absl::Span< const IntegerVariable > vars)
Returns the vector of the negated variables.
Definition integer.cc:52
std::optional< std::pair< int, int > > FindOneIntersectionIfPresent(absl::Span< const Rectangle > rectangles)
constexpr IntegerValue kMinIntegerValue(-kMaxIntegerValue.value())
void AppendPairwiseRestrictions(absl::Span< const ItemWithVariableSize > items, std::vector< PairwiseRestriction > *result)
void ConstructOverlappingSets(absl::Span< IndexedInterval > intervals, CompactVectorVector< int > *result, absl::Span< const int > order)
void CreateAndRegisterMandatoryOverlapPropagator(NoOverlap2DConstraintHelper *helper, Model *model, GenericLiteralWatcher *watcher, int priority)
FindRectanglesResult FindRectanglesWithEnergyConflictMC(const std::vector< RectangleInRange > &intervals, absl::BitGenRef random, double temperature, double candidate_energy_usage_factor)
std::function< IntegerVariable(Model *)> NewIntegerVariable(int64_t lb, int64_t ub)
Definition integer.h:1491
void AddNonOverlappingRectangles(const std::vector< IntervalVariable > &x, const std::vector< IntervalVariable > &y, Model *model)
Definition diffn.cc:150
void AddCumulativeOverloadChecker(AffineExpression capacity, SchedulingConstraintHelper *helper, SchedulingDemandHelper *demands, Model *model)
In SWIG mode, we don't want anything besides these top-level includes.
int64_t CapSub(int64_t x, int64_t y)
#define RETURN_IF_FALSE(f)
Definition diffn.cc:225
void GrowToInclude(const Rectangle &other)
Definition diffn_util.h:50
bool IsDisjoint(const Rectangle &other) const
Definition diffn_util.cc:57