51#ifndef ORTOOLS_CONSTRAINT_SOLVER_CONSTRAINT_SOLVERI_H_
52#define ORTOOLS_CONSTRAINT_SOLVER_CONSTRAINT_SOLVERI_H_
65#include "absl/algorithm/container.h"
66#include "absl/container/flat_hash_map.h"
67#include "absl/container/flat_hash_set.h"
68#include "absl/log/check.h"
69#include "absl/strings/str_cat.h"
70#include "absl/strings/str_format.h"
71#include "absl/time/time.h"
72#include "absl/types/span.h"
150 enum { CHUNK_SIZE = 16 };
153 const Chunk*
const next;
154 explicit Chunk(
const Chunk* next) : next(next) {}
162 : chunk_(l->chunks_), value_(l->
Last()) {}
163 bool ok()
const {
return (value_ !=
nullptr); }
167 if (value_ == chunk_->data + CHUNK_SIZE) {
168 chunk_ = chunk_->next;
169 value_ = chunk_ ? chunk_->data :
nullptr;
180 void Push(Solver*
const s, T val) {
181 if (pos_.Value() == 0) {
182 Chunk*
const chunk = s->UnsafeRevAlloc(
new Chunk(chunks_));
183 s->SaveAndSetValue(
reinterpret_cast<void**
>(&chunks_),
184 reinterpret_cast<void*
>(chunk));
185 pos_.SetValue(s, CHUNK_SIZE - 1);
189 chunks_->data[pos_.
Value()] = val;
194 if (chunks_ ==
nullptr ||
LastValue() != val) {
200 const T*
Last()
const {
201 return chunks_ ? &chunks_->data[pos_.
Value()] :
nullptr;
204 T*
MutableLast() {
return chunks_ ? &chunks_->data[pos_.Value()] :
nullptr; }
209 return chunks_->data[pos_.Value()];
215 chunks_->data[pos_.Value()] = v;
225inline uint64_t
Hash1(uint64_t value) {
226 value = (~value) + (value << 21);
227 value ^= value >> 24;
228 value += (value << 3) + (value << 8);
229 value ^= value >> 14;
230 value += (value << 2) + (value << 4);
231 value ^= value >> 28;
232 value += (value << 31);
236inline uint64_t
Hash1(uint32_t value) {
238 a = (a + 0x7ed55d16) + (a << 12);
239 a = (a ^ 0xc761c23c) ^ (a >> 19);
240 a = (a + 0x165667b1) + (a << 5);
241 a = (a + 0xd3a2646c) ^ (a << 9);
242 a = (a + 0xfd7046c5) + (a << 3);
243 a = (a ^ 0xb55a4f09) ^ (a >> 16);
247inline uint64_t
Hash1(int64_t value) {
248 return Hash1(
static_cast<uint64_t
>(value));
251inline uint64_t
Hash1(
int value) {
return Hash1(
static_cast<uint32_t
>(value)); }
253inline uint64_t
Hash1(
void*
const ptr) {
254#if defined(__x86_64__) || defined(_M_X64) || defined(__powerpc64__) || \
255 defined(__aarch64__) || (defined(_MIPS_SZPTR) && (_MIPS_SZPTR == 64))
256 return Hash1(
reinterpret_cast<uint64_t
>(ptr));
258 return Hash1(
reinterpret_cast<uint32_t
>(ptr));
263uint64_t
Hash1(
const std::vector<T*>& ptrs) {
264 if (ptrs.empty())
return 0;
265 if (ptrs.size() == 1)
return Hash1(ptrs[0]);
266 uint64_t hash =
Hash1(ptrs[0]);
267 for (
int i = 1; i < ptrs.size(); ++i) {
268 hash = hash * i +
Hash1(ptrs[i]);
273inline uint64_t
Hash1(
const std::vector<int64_t>& ptrs) {
274 if (ptrs.empty())
return 0;
275 if (ptrs.size() == 1)
return Hash1(ptrs[0]);
276 uint64_t hash =
Hash1(ptrs[0]);
277 for (
int i = 1; i < ptrs.size(); ++i) {
278 hash = hash * i +
Hash1(ptrs[i]);
285template <
class K,
class V>
290 array_(solver->UnsafeRevAllocArray(new Cell*[initial_size])),
293 memset(array_, 0,
sizeof(*array_) * size_.Value());
302 uint64_t code =
Hash1(key) % size_.Value();
303 Cell* tmp = array_[code];
305 if (tmp->key() == key) {
317 uint64_t code =
Hash1(key) % size_.Value();
318 Cell* tmp = array_[code];
320 if (tmp->key() == key) {
325 return default_value;
329 void Insert(
const K& key,
const V& value) {
330 const int position =
Hash1(key) % size_.Value();
332 solver_->UnsafeRevAlloc(
new Cell(key, value, array_[position]));
333 solver_->SaveAndSetValue(
reinterpret_cast<void**
>(&array_[position]),
334 reinterpret_cast<void*
>(cell));
335 num_items_.Incr(solver_);
336 if (num_items_.Value() > 2 * size_.Value()) {
344 Cell(
const K& key,
const V& value, Cell*
const next)
345 : key_(key), value_(value), next_(next) {}
347 void SetRevNext(Solver*
const solver, Cell*
const next) {
348 solver->SaveAndSetValue(
reinterpret_cast<void**
>(&next_),
349 reinterpret_cast<void*
>(next));
352 Cell* next()
const {
return next_; }
354 const K& key()
const {
return key_; }
356 const V& value()
const {
return value_; }
365 Cell**
const old_cell_array = array_;
366 const int old_size = size_.Value();
367 size_.SetValue(solver_, size_.Value() * 2);
368 solver_->SaveAndSetValue(
369 reinterpret_cast<void**
>(&array_),
370 reinterpret_cast<void*
>(
371 solver_->UnsafeRevAllocArray(
new Cell*[size_.Value()])));
372 memset(array_, 0, size_.Value() *
sizeof(*array_));
373 for (
int i = 0;
i < old_size; ++
i) {
374 Cell* tmp = old_cell_array[
i];
375 while (tmp !=
nullptr) {
376 Cell*
const to_reinsert = tmp;
378 const uint64_t new_position =
Hash1(to_reinsert->key()) % size_.Value();
379 to_reinsert->SetRevNext(solver_, array_[new_position]);
380 solver_->SaveAndSetValue(
381 reinterpret_cast<void**
>(&array_[new_position]),
382 reinterpret_cast<void*
>(to_reinsert));
387 Solver*
const solver_;
389 NumericalRev<int> size_;
390 NumericalRev<int> num_items_;
442 bool IsSet(int64_t index)
const;
461 const int64_t length_;
462 std::unique_ptr<uint64_t[]> bits_;
463 std::unique_ptr<uint64_t[]> stamps_;
477 bool IsSet(int64_t row, int64_t column)
const {
479 DCHECK_LT(row, rows_);
480 DCHECK_GE(column, 0);
481 DCHECK_LT(column, columns_);
498 const int64_t columns_;
509class CallMethod0 :
public Demon {
511 CallMethod0(T*
const ct,
void (T::*method)(),
const std::string& name)
512 : constraint_(ct), method_(method), name_(name) {}
516 void Run(
Solver*
const)
override { (constraint_->*method_)(); }
519 return "CallMethod_" + name_ +
"(" + constraint_->DebugString() +
")";
523 T*
const constraint_;
524 void (T::*
const method_)();
525 const std::string name_;
530 const std::string& name) {
536 return absl::StrCat(param);
542 return param->DebugString();
546template <
class T,
class P>
549 CallMethod1(T*
const ct,
void (T::*method)(P),
const std::string& name,
551 : constraint_(ct), method_(method), name_(name), param1_(param1) {}
555 void Run(
Solver*
const)
override { (constraint_->*method_)(param1_); }
558 return absl::StrCat(
"CallMethod_", name_,
"(", constraint_->DebugString(),
563 T*
const constraint_;
564 void (T::*
const method_)(P);
565 const std::string name_;
569template <
class T,
class P>
571 const std::string& name, P param1) {
576template <
class T,
class P,
class Q>
579 CallMethod2(T*
const ct,
void (T::*method)(P, Q),
const std::string& name,
589 void Run(Solver*
const)
override {
590 (constraint_->*method_)(param1_, param2_);
594 return absl::StrCat(
"CallMethod_", name_,
"(", constraint_->DebugString(),
600 T*
const constraint_;
601 void (T::*
const method_)(P, Q);
602 const std::string name_;
607template <
class T,
class P,
class Q>
609 void (T::*method)(P, Q),
const std::string& name,
610 P param1, Q param2) {
615template <
class T,
class P,
class Q,
class R>
616class CallMethod3 :
public Demon {
618 CallMethod3(T*
const ct,
void (T::*method)(P, Q, R),
const std::string& name,
619 P param1, Q param2, R param3)
629 void Run(Solver*
const)
override {
630 (constraint_->*method_)(param1_, param2_, param3_);
634 return absl::StrCat(absl::StrCat(
"CallMethod_", name_),
635 absl::StrCat(
"(", constraint_->DebugString()),
642 T*
const constraint_;
643 void (T::*
const method_)(P, Q, R);
644 const std::string name_;
650template <
class T,
class P,
class Q,
class R>
652 void (T::*method)(P, Q, R),
const std::string& name,
653 P param1, Q param2, R param3) {
666class DelayedCallMethod0 :
public Demon {
669 : constraint_(ct), method_(method), name_(name) {}
673 void Run(
Solver*
const)
override { (constraint_->*method_)(); }
680 return "DelayedCallMethod_" + name_ +
"(" + constraint_->DebugString() +
685 T*
const constraint_;
686 void (T::*
const method_)();
687 const std::string name_;
693 const std::string& name) {
698template <
class T,
class P>
699class DelayedCallMethod1 :
public Demon {
703 : constraint_(ct), method_(method), name_(name), param1_(param1) {}
707 void Run(
Solver*
const)
override { (constraint_->*method_)(param1_); }
714 return absl::StrCat(
"DelayedCallMethod_", name_,
"(",
715 constraint_->DebugString(),
", ",
720 T*
const constraint_;
721 void (T::*
const method_)(P);
722 const std::string name_;
726template <
class T,
class P>
728 void (T::*method)(P),
729 const std::string& name, P param1) {
730 return s->RevAlloc(
new DelayedCallMethod1<T, P>(ct, method, name, param1));
734template <
class T,
class P,
class Q>
735class DelayedCallMethod2 :
public Demon {
738 const std::string& name, P param1, Q param2)
747 void Run(Solver*
const)
override {
748 (constraint_->*method_)(param1_, param2_);
756 return absl::StrCat(absl::StrCat(
"DelayedCallMethod_", name_),
757 absl::StrCat(
"(", constraint_->DebugString()),
763 T*
const constraint_;
764 void (T::*
const method_)(P, Q);
765 const std::string name_;
770template <
class T,
class P,
class Q>
772 void (T::*method)(P, Q),
773 const std::string& name, P param1,
785class LightIntFunctionElementCt :
public Constraint {
788 IntVar*
const index, F values,
789 std::function<
bool()> deep_serialize)
793 values_(
std::move(values)),
794 deep_serialize_(
std::move(deep_serialize)) {}
797 void Post()
override {
799 solver(),
this, &LightIntFunctionElementCt::IndexBound,
"IndexBound");
800 index_->WhenBound(demon);
804 if (index_->
Bound()) {
810 return absl::StrFormat(
"LightIntFunctionElementCt(%s, %s)",
821 if (deep_serialize_ ==
nullptr || deep_serialize_()) {
829 void IndexBound() { var_->
SetValue(values_(index_->
Min())); }
832 IntVar*
const index_;
834 std::function<bool()> deep_serialize_;
843 IntVar*
const index1, IntVar*
const index2,
844 F values, std::function<
bool()> deep_serialize)
849 values_(
std::move(values)),
850 deep_serialize_(
std::move(deep_serialize)) {}
852 void Post()
override {
854 solver(),
this, &LightIntIntFunctionElementCt::IndexBound,
856 index1_->WhenBound(demon);
857 index2_->WhenBound(demon);
862 return "LightIntIntFunctionElementCt";
874 const int64_t index1_min = index1_->Min();
875 const int64_t index1_max = index1_->Max();
878 if (deep_serialize_ ==
nullptr || deep_serialize_()) {
879 for (
int i = index1_min; i <= index1_max; ++i) {
881 [
this, i](int64_t j) {
return values_(i, j); }, index2_->Min(),
896 IntVar*
const index1_;
897 IntVar*
const index2_;
899 std::function<bool()> deep_serialize_;
908 IntVar*
const index1, IntVar*
const index2,
915 values_(
std::move(values)) {}
917 void Post()
override {
919 solver(),
this, &LightIntIntIntFunctionElementCt::IndexBound,
921 index1_->WhenBound(demon);
922 index2_->WhenBound(demon);
923 index3_->WhenBound(demon);
928 return "LightIntIntFunctionElementCt";
952 IntVar*
const index1_;
953 IntVar*
const index2_;
954 IntVar*
const index3_;
981 virtual bool MakeNextNeighbor(Assignment* delta, Assignment* deltadelta) = 0;
983 virtual void Start(
const Assignment* assignment) = 0;
984 virtual void Reset() {}
997 max_inversible_index_ = candidate_values_.size();
998 candidate_value_to_index_.resize(max_value + 1, -1);
999 committed_value_to_index_.resize(max_value + 1, -1);
1005 DCHECK_LT(index, candidate_values_.size());
1006 return candidate_values_[index];
1009 return committed_values_[index];
1012 return checkpoint_values_[index];
1015 candidate_values_[index] = value;
1016 if (index < max_inversible_index_) {
1017 candidate_value_to_index_[value] = index;
1023 return candidate_is_active_[index];
1027 candidate_is_active_.
Set(index);
1029 candidate_is_active_.
Clear(index);
1035 for (
const int64_t index : changes_.PositionsSetAtLeastOnce()) {
1036 const int64_t value = candidate_values_[index];
1037 committed_values_[index] = value;
1038 if (index < max_inversible_index_) {
1039 committed_value_to_index_[value] = index;
1041 committed_is_active_.CopyBucket(candidate_is_active_, index);
1047 void CheckPoint() { checkpoint_values_ = committed_values_; }
1049 void Revert(
bool only_incremental) {
1050 incremental_changes_.ResetAllToFalse();
1051 if (only_incremental)
return;
1053 for (
const int64_t index : changes_.PositionsSetAtLeastOnce()) {
1054 const int64_t committed_value = committed_values_[index];
1055 candidate_values_[index] = committed_value;
1056 if (index < max_inversible_index_) {
1057 candidate_value_to_index_[committed_value] = index;
1059 candidate_is_active_.
CopyBucket(committed_is_active_, index);
1065 return changes_.PositionsSetAtLeastOnce();
1068 return incremental_changes_.PositionsSetAtLeastOnce();
1072 candidate_values_.resize(size);
1073 committed_values_.resize(size);
1074 checkpoint_values_.resize(size);
1075 candidate_is_active_.Resize(size);
1076 committed_is_active_.Resize(size);
1077 changes_.ClearAndResize(size);
1078 incremental_changes_.ClearAndResize(size);
1082 return candidate_value_to_index_[value];
1085 return committed_value_to_index_[value];
1089 void MarkChange(int64_t index) {
1090 incremental_changes_.Set(index);
1091 changes_.Set(index);
1094 std::vector<int64_t> candidate_values_;
1095 std::vector<int64_t> committed_values_;
1096 std::vector<int64_t> checkpoint_values_;
1104 int64_t max_inversible_index_ = -1;
1105 std::vector<int64_t> candidate_value_to_index_;
1106 std::vector<int64_t> committed_value_to_index_;
1114class IntVarLocalSearchOperator :
public LocalSearchOperator {
1120 bool keep_inverse_values =
false) {
1122 if (keep_inverse_values) {
1123 int64_t max_value = -1;
1124 for (
const IntVar*
const var : vars) {
1125 max_value = std::max(max_value, var->Max());
1127 state_.SetCurrentDomainInjectiveAndKeepInverseValues(max_value);
1132 bool HoldsDelta()
const override {
return true; }
1135 void Start(
const Assignment* assignment)
override {
1136 state_.CheckPoint();
1139 CHECK_LE(size, assignment->Size())
1140 <<
"Assignment contains fewer variables than operator";
1142 for (
int i = 0; i < size; ++i) {
1144 if (element->
Var() != vars_[i]) {
1145 CHECK(container.
Contains(vars_[i]))
1146 <<
"Assignment does not contain operator variable " << vars_[i];
1147 element = &(container.
Element(vars_[i]));
1157 int Size()
const {
return vars_.size(); }
1160 int64_t
Value(int64_t index)
const {
1161 DCHECK_LT(index, vars_.size());
1162 return state_.CandidateValue(index);
1169 return state_.CheckPointValue(index);
1171 void SetValue(int64_t index, int64_t value) {
1175 return state_.CandidateIsActive(index);
1182 for (
const int64_t index : state_.IncrementalIndicesChanged()) {
1184 const int64_t value =
Value(index);
1193 const int64_t value =
Value(index);
1194 const bool activated =
Activated(index);
1205 candidate_has_changes_ = change_was_incremental &&
IsIncremental();
1207 if (!candidate_has_changes_) {
1208 for (
const int64_t index : state_.CandidateIndicesChanged()) {
1209 assignment_indices_[index] = -1;
1212 state_.Revert(candidate_has_changes_);
1215 void AddVars(
const std::vector<IntVar*>& vars) {
1216 if (!vars.empty()) {
1217 vars_.insert(vars_.end(), vars.begin(), vars.end());
1218 const int64_t size =
Size();
1219 assignment_indices_.resize(size, -1);
1248 return state_.CandidateInverseValue(index);
1255 std::vector<int>* assignment_indices, int64_t index,
1260 if (assignment_indices !=
nullptr) {
1261 if ((*assignment_indices)[index] == -1) {
1262 (*assignment_indices)[index] = container->
Size();
1263 element = assignment->
FastAdd(var);
1265 element = container->
MutableElement((*assignment_indices)[index]);
1268 element = assignment->
FastAdd(var);
1279 std::vector<IntVar*> vars_;
1280 mutable std::vector<int> assignment_indices_;
1281 bool candidate_has_changes_ =
false;
1283 LocalSearchOperatorState state_;
1315 explicit BaseLns(
const std::vector<IntVar*>& vars);
1330 std::vector<int> fragment_;
1339 explicit ChangeValue(
const std::vector<IntVar*>& vars);
1341 virtual int64_t
ModifyValue(int64_t index, int64_t value) = 0;
1358 : use_sibling_(use_sibling) {}
1360 template <
class PathOperator>
1364 const int64_t base_node = path_operator.
BaseNode(base_index_reference);
1365 const int alternative_index =
1369 alternative_index >= 0
1370 ? absl::Span<const int64_t>(
1371 path_operator.alternative_sets_[alternative_index])
1374 bool Next() {
return ++index_ < alternative_set_.size(); }
1376 return (index_ >= alternative_set_.size()) ? -1 : alternative_set_[index_];
1380 const bool use_sibling_;
1382 absl::Span<const int64_t> alternative_set_;
1389 template <
class PathOperator>
1390 void Reset(
const PathOperator& path_operator,
int base_index_reference) {
1391 using Span = absl::Span<const int>;
1393 const int64_t base_node = path_operator.BaseNode(base_index_reference);
1394 const int64_t start_node = path_operator.StartNode(base_index_reference);
1395 const auto& get_incoming_neighbors =
1396 path_operator.iteration_parameters_.get_incoming_neighbors;
1397 incoming_neighbors_ =
1398 path_operator.IsPathStart(base_node) || !get_incoming_neighbors
1400 : Span(get_incoming_neighbors(base_node, start_node));
1401 const auto& get_outgoing_neighbors =
1402 path_operator.iteration_parameters_.get_outgoing_neighbors;
1403 outgoing_neighbors_ =
1404 path_operator.IsPathEnd(base_node) || !get_outgoing_neighbors
1406 : Span(get_outgoing_neighbors(base_node, start_node));
1409 return ++index_ < incoming_neighbors_.size() + outgoing_neighbors_.size();
1412 if (index_ < incoming_neighbors_.size()) {
1413 return incoming_neighbors_[index_];
1415 const int index = index_ - incoming_neighbors_.size();
1416 return (index >= outgoing_neighbors_.size()) ? -1
1417 : outgoing_neighbors_[index];
1420 return index_ < incoming_neighbors_.size();
1423 return index_ >= incoming_neighbors_.size();
1428 absl::Span<const int> incoming_neighbors_;
1429 absl::Span<const int> outgoing_neighbors_;
1432template <
class PathOperator>
1436 : path_operator_(*path_operator),
1437 base_index_reference_(base_index_reference) {}
1439 DCHECK(!alternatives_.empty());
1441 return alternatives_[0].get();
1444 DCHECK(!alternatives_.empty());
1446 return alternatives_[1].get();
1451 return neighbors_.get();
1454 if (path_operator_.ConsiderAlternatives(base_index_reference_)) {
1455 alternatives_.push_back(std::make_unique<AlternativeNodeIterator>(
1457 alternatives_.push_back(std::make_unique<AlternativeNodeIterator>(
1461 neighbors_ = std::make_unique<NodeNeighborIterator>();
1464 void Reset(
bool update_end_nodes =
false) {
1466 for (
auto& alternative_iterator : alternatives_) {
1467 alternative_iterator->Reset(path_operator_, base_index_reference_);
1470 neighbors_->Reset(path_operator_, base_index_reference_);
1471 if (update_end_nodes) neighbor_end_node_ = neighbors_->GetValue();
1476 for (
auto& alternative_iterator : alternatives_) {
1477 if (alternative_iterator->Next())
return true;
1478 alternative_iterator->Reset(path_operator_, base_index_reference_);
1481 if (neighbors_->Next())
return true;
1482 neighbors_->Reset(path_operator_, base_index_reference_);
1489 if (!neighbors_)
return true;
1490 return neighbor_end_node_ == neighbors_->GetValue();
1494 const PathOperator& path_operator_;
1495 int base_index_reference_ = -1;
1497 std::vector<std::unique_ptr<AlternativeNodeIterator>> alternatives_;
1499 std::unique_ptr<NodeNeighborIterator> neighbors_;
1500 int neighbor_end_node_ = -1;
1501 bool finished_ =
false;
1517template <
bool ignore_path_vars>
1521 struct IterationParameters {
1542 std::function<const std::vector<int>&(
1545 std::function<const std::vector<int>&(
1551 const std::vector<IntVar*>& path_vars,
1563 just_started_(false),
1565 next_base_to_increment_(iteration_parameters.number_of_base_nodes),
1566 iteration_parameters_(
std::move(iteration_parameters)),
1567 optimal_paths_enabled_(false),
1569 alternative_index_(next_vars.size(), -1) {
1570 DCHECK_GT(iteration_parameters_.number_of_base_nodes, 0);
1571 for (
int i = 0; i < iteration_parameters_.number_of_base_nodes; ++i) {
1574 if constexpr (!ignore_path_vars) {
1577 path_basis_.push_back(0);
1578 for (
int i = 1; i < iteration_parameters_.number_of_base_nodes; ++i) {
1581 if ((path_basis_.size() > 2) ||
1582 (!next_vars.empty() && !next_vars.back()
1585 .skip_locally_optimal_paths())) {
1586 iteration_parameters_.skip_locally_optimal_paths =
false;
1590 const std::vector<IntVar*>& next_vars,
1591 const std::vector<IntVar*>& path_vars,
int number_of_base_nodes,
1592 bool skip_locally_optimal_paths,
bool accept_path_end_base,
1593 std::function<
int(int64_t)> start_empty_path_class,
1594 std::function<
const std::vector<int>&(
int,
int)> get_incoming_neighbors,
1595 std::function<
const std::vector<int>&(
int,
int)> get_outgoing_neighbors)
1597 {number_of_base_nodes, skip_locally_optimal_paths,
1598 accept_path_end_base, std::move(start_empty_path_class),
1599 std::move(get_incoming_neighbors),
1600 std::move(get_outgoing_neighbors)}) {}
1604 first_start_ =
true;
1607 void Reset()
override {
1608 active_paths_.Clear();
1614 if constexpr (ignore_path_vars)
return true;
1630 int64_t
Prev(int64_t node)
const {
1638 int64_t
Path(int64_t node)
const {
1639 if constexpr (ignore_path_vars)
return 0LL;
1649 while (IncrementPosition()) {
1671 int64_t
BaseNode(
int i)
const {
return base_nodes_[i]; }
1674 return GetNodeWithDefault(base_node_iterators_[i].GetAlternativeIterator(),
1679 return GetNodeWithDefault(
1680 base_node_iterators_[i].GetSiblingAlternativeIterator(),
BaseNode(i));
1683 int64_t
StartNode(
int i)
const {
return path_starts_[base_paths_[i]]; }
1685 int64_t
EndNode(
int i)
const {
return path_ends_[base_paths_[i]]; }
1687 const std::vector<int64_t>&
path_starts()
const {
return path_starts_; }
1722 next_base_to_increment_ = base_index;
1728 int64_t
OldNext(int64_t node)
const {
1733 int64_t
PrevNext(int64_t node)
const {
1738 int64_t
OldPrev(int64_t node)
const {
1743 int64_t
OldPath(int64_t node)
const {
1744 if constexpr (ignore_path_vars)
return 0LL;
1749 return node_path_starts_[node];
1756 bool MoveChain(int64_t before_chain, int64_t chain_end, int64_t destination) {
1757 if (destination == before_chain || destination == chain_end)
return false;
1760 const int64_t destination_path =
Path(destination);
1761 const int64_t after_chain =
Next(chain_end);
1762 SetNext(chain_end,
Next(destination), destination_path);
1763 if constexpr (!ignore_path_vars) {
1764 int current = destination;
1765 int next =
Next(before_chain);
1766 while (current != chain_end) {
1772 SetNext(destination,
Next(before_chain), destination_path);
1774 SetNext(before_chain, after_chain,
Path(before_chain));
1780 bool ReverseChain(int64_t before_chain, int64_t after_chain,
1781 int64_t* chain_last) {
1783 int64_t path =
Path(before_chain);
1784 int64_t current =
Next(before_chain);
1785 if (current == after_chain) {
1788 int64_t current_next =
Next(current);
1789 SetNext(current, after_chain, path);
1790 while (current_next != after_chain) {
1791 const int64_t next =
Next(current_next);
1792 SetNext(current_next, current, path);
1793 current = current_next;
1794 current_next = next;
1796 SetNext(before_chain, current, path);
1797 *chain_last = current;
1804 bool SwapNodes(int64_t node1, int64_t node2) {
1809 if (node1 == node2)
return false;
1810 const int64_t prev_node1 =
Prev(node1);
1816 bool MakeActive(int64_t node, int64_t destination) {
1817 if (
IsPathEnd(destination))
return false;
1818 const int64_t destination_path =
Path(destination);
1819 SetNext(node,
Next(destination), destination_path);
1820 SetNext(destination, node, destination_path);
1826 const int64_t kNoPath = -1;
1829 const int64_t after_chain =
Next(chain_end);
1830 int64_t current =
Next(before_chain);
1831 while (current != after_chain) {
1832 const int64_t next =
Next(current);
1833 SetNext(current, current, kNoPath);
1844 if (active == inactive)
return false;
1845 const int64_t prev =
Prev(active);
1851 absl::Span<const int64_t> inactive_chain) {
1852 if (active_chain.empty())
return false;
1853 if (active_chain == inactive_chain)
return false;
1854 const int before_active_chain =
Prev(active_chain.front());
1858 for (
auto it = inactive_chain.crbegin(); it != inactive_chain.crend();
1860 if (!
MakeActive(*it, before_active_chain))
return false;
1866 void SetNext(int64_t from, int64_t
to, int64_t path) {
1869 if constexpr (!ignore_path_vars) {
1884 return !
IsPathEnd(node) && inactives_[node];
1899 const int alternative = alternative_sets_.size();
1900 for (int64_t node : alternative_set) {
1901 DCHECK_EQ(-1, alternative_index_[node]);
1902 alternative_index_[node] = alternative;
1904 alternative_sets_.push_back(alternative_set);
1905 sibling_alternative_.push_back(-1);
1911 template <
typename PairType>
1913 const std::vector<PairType>& pair_alternative_sets) {
1914 for (
const auto& [alternative_set, sibling_alternative_set] :
1915 pair_alternative_sets) {
1922 int64_t GetActiveInAlternativeSet(int alternative_index) const {
1923 return alternative_index >= 0
1924 ? active_in_alternative_set_[alternative_index]
1928 int64_t GetActiveAlternativeNode(
int node)
const {
1929 return GetActiveInAlternativeSet(alternative_index_[node]);
1932 int GetSiblingAlternativeIndex(
int node)
const {
1934 return alternative >= 0 ? sibling_alternative_[alternative] : -1;
1937 int GetAlternativeIndex(
int node)
const {
1938 return (node >= alternative_index_.size()) ? -1 : alternative_index_[node];
1942 int64_t GetActiveAlternativeSibling(
int node)
const {
1951 int64_t exclude)
const {
1952 if (before_chain == chain_end || before_chain == exclude)
return false;
1953 int64_t current = before_chain;
1955 while (current != chain_end) {
1958 current =
Next(current);
1960 if (current == exclude)
return false;
1965 bool HasNeighbors()
const {
1966 return iteration_parameters_.get_incoming_neighbors !=
nullptr ||
1967 iteration_parameters_.get_outgoing_neighbors !=
nullptr;
1977 Neighbor GetNeighborForBaseNode(int64_t base_index)
const {
1978 auto* iterator = base_node_iterators_[base_index].GetNeighborIterator();
1979 return {.neighbor = iterator->GetValue(),
1980 .outgoing = iterator->IsOutgoingNeighbor()};
1986 template <
class NodeIterator>
1987 static int GetNodeWithDefault(
const NodeIterator* node_iterator,
1988 int default_value) {
1989 const int node = node_iterator->GetValue();
1990 return node >= 0 ? node : default_value;
1993 void OnStart()
override {
1994 optimal_paths_enabled_ =
false;
1995 if (!iterators_initialized_) {
1996 iterators_initialized_ =
true;
1997 for (
int i = 0; i < iteration_parameters_.number_of_base_nodes; ++i) {
1998 base_node_iterators_[i].Initialize();
2001 InitializeBaseNodes();
2002 InitializeAlternatives();
2003 OnNodeInitialization();
2007 bool OnSamePath(int64_t node1, int64_t node2)
const {
2008 if (IsInactive(node1) != IsInactive(node2)) {
2011 for (
int node = node1; !IsPathEnd(node); node = OldNext(node)) {
2012 if (node == node2) {
2016 for (
int node = node2; !IsPathEnd(node); node = OldNext(node)) {
2017 if (node == node1) {
2024 bool CheckEnds()
const {
2025 for (
int i = iteration_parameters_.number_of_base_nodes - 1; i >= 0; --i) {
2026 if (base_nodes_[i] != end_nodes_[i] ||
2027 !base_node_iterators_[i].HasReachedEnd()) {
2033 bool IncrementPosition() {
2034 const int base_node_size = iteration_parameters_.number_of_base_nodes;
2036 if (just_started_) {
2037 just_started_ =
false;
2040 const int number_of_paths = path_starts_.size();
2046 int last_restarted = base_node_size;
2047 for (
int i = base_node_size - 1;
i >= 0; --
i) {
2048 if (base_nodes_[i] < number_of_nexts_ && i <= next_base_to_increment_) {
2049 if (base_node_iterators_[i].Increment())
break;
2050 base_nodes_[
i] = OldNext(base_nodes_[i]);
2051 base_node_iterators_[
i].Reset();
2052 if (iteration_parameters_.accept_path_end_base ||
2053 !IsPathEnd(base_nodes_[i])) {
2057 base_nodes_[
i] = StartNode(i);
2058 base_node_iterators_[
i].Reset();
2061 next_base_to_increment_ = base_node_size;
2071 for (
int i = last_restarted;
i < base_node_size; ++
i) {
2072 base_nodes_[
i] = GetBaseNodeRestartPosition(i);
2073 base_node_iterators_[
i].Reset();
2075 if (last_restarted > 0) {
2081 if (optimal_paths_enabled_ &&
2082 iteration_parameters_.skip_locally_optimal_paths) {
2083 if (path_basis_.size() > 1) {
2084 for (
int i = 1;
i < path_basis_.size(); ++
i) {
2085 active_paths_.DeactivatePathPair(StartNode(path_basis_[i - 1]),
2086 StartNode(path_basis_[i]));
2089 active_paths_.DeactivatePathPair(StartNode(path_basis_[0]),
2090 StartNode(path_basis_[0]));
2093 std::vector<int> current_starts(base_node_size);
2094 for (
int i = 0;
i < base_node_size; ++
i) {
2095 current_starts[
i] = StartNode(i);
2099 optimal_paths_enabled_ =
true;
2101 for (
int i = base_node_size - 1;
i >= 0; --
i) {
2102 const int next_path_index = base_paths_[
i] + 1;
2103 if (next_path_index < number_of_paths) {
2104 base_paths_[
i] = next_path_index;
2105 base_nodes_[
i] = path_starts_[next_path_index];
2106 base_node_iterators_[
i].Reset();
2107 if (i == 0 || !OnSamePathAsPreviousBase(i)) {
2112 base_nodes_[
i] = path_starts_[0];
2113 base_node_iterators_[
i].Reset();
2116 if (!iteration_parameters_.skip_locally_optimal_paths)
return CheckEnds();
2119 if (path_basis_.size() > 1) {
2120 for (
int j = 1; j < path_basis_.size(); ++j) {
2121 if (active_paths_.IsPathPairActive(StartNode(path_basis_[j - 1]),
2122 StartNode(path_basis_[j]))) {
2127 if (active_paths_.IsPathPairActive(StartNode(path_basis_[0]),
2128 StartNode(path_basis_[0]))) {
2134 if (!CheckEnds())
return false;
2136 for (
int i = 0;
i < base_node_size; ++
i) {
2137 if (StartNode(i) != current_starts[i]) {
2142 if (stop)
return false;
2147 void InitializePathStarts() {
2151 std::vector<bool> has_prevs(number_of_nexts_,
false);
2152 for (
int i = 0;
i < number_of_nexts_; ++
i) {
2153 const int next = OldNext(i);
2154 if (next < number_of_nexts_) {
2155 has_prevs[next] =
true;
2157 max_next = std::max(max_next, next);
2160 if (iteration_parameters_.skip_locally_optimal_paths) {
2161 active_paths_.Initialize(
2162 [&has_prevs](
int node) {
return !has_prevs[node]; });
2163 for (
int i = 0;
i < number_of_nexts_; ++
i) {
2164 if (!has_prevs[i]) {
2166 while (!IsPathEnd(current)) {
2167 if ((OldNext(current) != PrevNext(current))) {
2168 active_paths_.ActivatePath(i);
2171 current = OldNext(current);
2178 std::vector<bool> empty_found(number_of_nexts_,
false);
2179 std::vector<int64_t> new_path_starts;
2180 for (
int i = 0;
i < number_of_nexts_; ++
i) {
2181 if (!has_prevs[i]) {
2182 if (IsPathEnd(OldNext(i))) {
2183 if (iteration_parameters_.start_empty_path_class !=
nullptr) {
2184 if (empty_found[iteration_parameters_.start_empty_path_class(i)])
2186 empty_found[iteration_parameters_.start_empty_path_class(i)] =
true;
2189 new_path_starts.push_back(i);
2192 if (!first_start_) {
2197 std::vector<int> node_paths(max_next + 1, -1);
2198 for (
int i = 0;
i < path_starts_.size(); ++
i) {
2199 int node = path_starts_[
i];
2200 while (!IsPathEnd(node)) {
2201 node_paths[node] =
i;
2202 node = OldNext(node);
2204 node_paths[node] =
i;
2206 for (
int j = 0; j < iteration_parameters_.number_of_base_nodes; ++j) {
2207 if (IsInactive(base_nodes_[j]) || node_paths[base_nodes_[j]] == -1) {
2210 base_nodes_[j] = GetBaseNodeRestartPosition(j);
2211 base_paths_[j] = node_paths[base_nodes_[j]];
2213 base_paths_[j] = node_paths[base_nodes_[j]];
2216 base_node_iterators_[j].Reset();
2222 absl::flat_hash_set<int> found_bases;
2223 for (
int i = 0;
i < path_starts_.size(); ++
i) {
2224 int index = new_index;
2226 while (index < new_path_starts.size() &&
2227 new_path_starts[index] < path_starts_[i]) {
2230 const bool found = (index < new_path_starts.size() &&
2231 new_path_starts[index] == path_starts_[i]);
2235 for (
int j = 0; j < iteration_parameters_.number_of_base_nodes; ++j) {
2236 if (base_paths_[j] == i && !found_bases.contains(j)) {
2237 found_bases.insert(j);
2238 base_paths_[j] = new_index;
2242 base_nodes_[j] = new_path_starts[new_index];
2248 path_starts_.swap(new_path_starts);
2252 path_ends_.reserve(path_starts_.size());
2253 int64_t max_node_index = number_of_nexts_ - 1;
2254 for (
const int start_node : path_starts_) {
2255 int64_t node = start_node;
2256 while (!IsPathEnd(node)) node = OldNext(node);
2257 path_ends_.push_back(node);
2258 max_node_index = std::max(max_node_index, node);
2260 node_path_starts_.assign(max_node_index + 1, -1);
2261 node_path_ends_.assign(max_node_index + 1, -1);
2262 for (
int i = 0;
i < path_starts_.size(); ++
i) {
2263 const int64_t start_node = path_starts_[
i];
2264 const int64_t end_node = path_ends_[
i];
2265 int64_t node = start_node;
2266 while (!IsPathEnd(node)) {
2267 node_path_starts_[node] = start_node;
2268 node_path_ends_[node] = end_node;
2269 node = OldNext(node);
2271 node_path_starts_[node] = start_node;
2272 node_path_ends_[node] = end_node;
2275 void InitializeInactives() {
2277 for (
int i = 0;
i < number_of_nexts_; ++
i) {
2278 inactives_.push_back(OldNext(i) == i);
2281 void InitializeBaseNodes() {
2283 InitializeInactives();
2284 InitializePathStarts();
2285 if (first_start_ || InitPosition()) {
2288 for (
int i = 0;
i < iteration_parameters_.number_of_base_nodes; ++
i) {
2290 base_nodes_[
i] = path_starts_[0];
2292 first_start_ =
false;
2294 for (
int i = 0;
i < iteration_parameters_.number_of_base_nodes; ++
i) {
2296 int64_t base_node = base_nodes_[
i];
2297 if (RestartAtPathStartOnSynchronize() || IsInactive(base_node)) {
2298 base_node = path_starts_[base_paths_[
i]];
2299 base_nodes_[
i] = base_node;
2301 end_nodes_[
i] = base_node;
2305 for (
int i = 1;
i < iteration_parameters_.number_of_base_nodes; ++
i) {
2306 if (OnSamePathAsPreviousBase(i) &&
2307 !OnSamePath(base_nodes_[i - 1], base_nodes_[i])) {
2308 const int64_t base_node = base_nodes_[
i - 1];
2309 base_nodes_[
i] = base_node;
2310 end_nodes_[
i] = base_node;
2311 base_paths_[
i] = base_paths_[
i - 1];
2314 for (
int i = 0;
i < iteration_parameters_.number_of_base_nodes; ++
i) {
2315 base_node_iterators_[
i].Reset(
true);
2317 just_started_ =
true;
2319 void InitializeAlternatives() {
2320 active_in_alternative_set_.resize(alternative_sets_.size(), -1);
2321 for (
int i = 0;
i < alternative_sets_.size(); ++
i) {
2322 const int64_t current_active = active_in_alternative_set_[
i];
2323 if (current_active >= 0 && !IsInactive(current_active))
continue;
2324 for (int64_t index : alternative_sets_[i]) {
2325 if (!IsInactive(index)) {
2326 active_in_alternative_set_[
i] = index;
2335 explicit ActivePaths(
int num_nodes) : start_to_path_(num_nodes, -1) {}
2336 void Clear() { to_reset_ =
true; }
2337 template <
typename T>
2338 void Initialize(T is_start) {
2339 if (is_path_pair_active_.empty()) {
2341 absl::c_fill(start_to_path_, -1);
2342 for (
int i = 0;
i < start_to_path_.size(); ++
i) {
2344 start_to_path_[
i] = num_paths_;
2350 void DeactivatePathPair(
int start1,
int start2) {
2351 if (to_reset_) Reset();
2352 is_path_pair_active_[start_to_path_[start1] * num_paths_ +
2353 start_to_path_[start2]] =
false;
2355 void ActivatePath(
int start) {
2356 if (to_reset_) Reset();
2357 const int p1 = start_to_path_[start];
2358 const int p1_block = num_paths_ * p1;
2359 for (
int p2 = 0; p2 < num_paths_; ++p2) {
2360 is_path_pair_active_[p1_block + p2] =
true;
2362 for (
int p2_block = 0; p2_block < is_path_pair_active_.size();
2363 p2_block += num_paths_) {
2364 is_path_pair_active_[p2_block + p1] =
true;
2367 bool IsPathPairActive(
int start1,
int start2)
const {
2368 if (to_reset_)
return true;
2369 return is_path_pair_active_[start_to_path_[start1] * num_paths_ +
2370 start_to_path_[start2]];
2375 if (!to_reset_)
return;
2376 is_path_pair_active_.assign(num_paths_ * num_paths_,
true);
2380 bool to_reset_ =
true;
2382 std::vector<int64_t> start_to_path_;
2383 std::vector<bool> is_path_pair_active_;
2386 std::unique_ptr<int[]> base_nodes_;
2387 std::unique_ptr<int[]> end_nodes_;
2388 std::unique_ptr<int[]> base_paths_;
2389 std::vector<int> node_path_starts_;
2390 std::vector<int> node_path_ends_;
2391 bool iterators_initialized_ =
false;
2393 std::vector<BaseNodeIterators<PathOperator>> base_node_iterators_;
2395 std::vector<int64_t> path_starts_;
2396 std::vector<int64_t> path_ends_;
2397 std::vector<bool> inactives_;
2400 int next_base_to_increment_;
2401 IterationParameters iteration_parameters_;
2402 bool optimal_paths_enabled_;
2403 std::vector<int> path_basis_;
2404 ActivePaths active_paths_;
2407 std::vector<std::vector<int64_t>> alternative_sets_;
2409 std::vector<int> alternative_index_;
2410 std::vector<int64_t> active_in_alternative_set_;
2411 std::vector<int> sibling_alternative_;
2431 Solver* solver,
const std::vector<IntVar*>& vars,
2432 const std::vector<IntVar*>& secondary_vars,
2433 std::function<
int(int64_t)> start_empty_path_class,
2434 std::function<
const std::vector<int>&(
int,
int)> get_incoming_neighbors =
2436 std::function<
const std::vector<int>&(
int,
int)> get_outgoing_neighbors =
2455 Solver* solver,
const std::vector<IntVar*>& vars,
2456 const std::vector<IntVar*>& secondary_vars,
2457 std::function<
int(int64_t)> start_empty_path_class,
2458 std::function<
const std::vector<int>&(
int,
int)> get_incoming_neighbors =
2460 std::function<
const std::vector<int>&(
int,
int)> get_outgoing_neighbors =
2462 int64_t chain_length = 1LL,
bool single_path =
false,
2463 const std::string& name =
"Relocate");
2476 Solver* solver,
const std::vector<IntVar*>& vars,
2477 const std::vector<IntVar*>& secondary_vars,
2478 std::function<
int(int64_t)> start_empty_path_class,
2479 std::function<
const std::vector<int>&(
int,
int)> get_incoming_neighbors =
2481 std::function<
const std::vector<int>&(
int,
int)> get_outgoing_neighbors =
2497 Solver* solver,
const std::vector<IntVar*>& vars,
2498 const std::vector<IntVar*>& secondary_vars,
2499 std::function<
int(int64_t)> start_empty_path_class,
2500 std::function<
const std::vector<int>&(
int,
int)> get_incoming_neighbors =
2502 std::function<
const std::vector<int>&(
int,
int)> get_outgoing_neighbors =
2515 Solver* solver,
const std::vector<IntVar*>& vars,
2516 const std::vector<IntVar*>& secondary_vars,
2517 std::function<
int(int64_t)> start_empty_path_class,
2518 std::function<
const std::vector<int>&(
int,
int)> get_incoming_neighbors =
2520 std::function<
const std::vector<int>&(
int,
int)> get_outgoing_neighbors =
2533 Solver* solver,
const std::vector<IntVar*>& vars,
2534 const std::vector<IntVar*>& secondary_vars,
2535 std::function<
int(int64_t)> start_empty_path_class);
2553 Solver* solver,
const std::vector<IntVar*>& vars,
2554 const std::vector<IntVar*>& secondary_vars,
2555 std::function<
int(int64_t)> start_empty_path_class);
2574 Solver* solver,
const std::vector<IntVar*>& vars,
2575 const std::vector<IntVar*>& secondary_vars,
2576 std::function<
int(int64_t)> start_empty_path_class);
2585 Solver* solver,
const std::vector<IntVar*>& vars,
2586 const std::vector<IntVar*>& secondary_vars,
2587 std::function<
int(int64_t)> start_empty_path_class);
2598 Solver* solver,
const std::vector<IntVar*>& vars,
2599 const std::vector<IntVar*>& secondary_vars,
2600 std::function<
int(int64_t)> start_empty_path_class);
2611 Solver* solver,
const std::vector<IntVar*>& vars,
2612 const std::vector<IntVar*>& secondary_vars,
2613 std::function<
int(int64_t)> start_empty_path_class);
2625 Solver* solver,
const std::vector<IntVar*>& vars,
2626 const std::vector<IntVar*>& secondary_vars,
2627 std::function<
int(int64_t)> start_empty_path_class);
2638 Solver* solver,
const std::vector<IntVar*>& vars,
2639 const std::vector<IntVar*>& secondary_vars,
2640 std::function<
int(int64_t)> start_empty_path_class);
2645 Solver* solver,
const std::vector<IntVar*>& vars,
2646 const std::vector<IntVar*>& secondary_vars,
2647 std::function<
int(int64_t)> start_empty_path_class,
int max_chain_size);
2663 Solver* solver,
const std::vector<IntVar*>& vars,
2664 const std::vector<IntVar*>& secondary_vars,
2665 std::function<
int(int64_t)> start_empty_path_class);
2677 const std::vector<IntVar*>& vars,
2678 const std::vector<IntVar*>& secondary_vars,
2691 const std::vector<IntVar*>& vars,
2692 const std::vector<IntVar*>& secondary_vars,
2699 Solver* solver,
const std::vector<IntVar*>& vars,
2700 const std::vector<IntVar*>& secondary_vars,
2710 const std::vector<IntVar*>& vars,
2711 const std::vector<IntVar*>& secondary_vars,
2712 int number_of_chunks,
int chunk_size,
2713 bool unactive_fragments);
2742 DCHECK(!graph_was_built_);
2743 num_nodes_ = std::max(num_nodes_, std::max(tail.value(), head.value()) + 1);
2744 const ArcId arc_id(arcs_.size());
2745 arcs_.push_back({.tail = tail, .head = head, .arc_id = arc_id});
2758 bool HasDirectedCycle()
const;
2764 bool operator<(
const Arc& other)
const {
2765 return std::tie(tail, arc_id) < std::tie(other.tail, other.arc_id);
2769 std::vector<Arc> arcs_;
2775 bool graph_was_built_ =
false;
2779 std::vector<NodeId> nodes_to_visit_;
2781 std::vector<ArcId> sorted_arcs_;
2795class LocalSearchState {
2801 VariableDomainId AddVariableDomain(int64_t relaxed_min, int64_t relaxed_max);
2803 bool RelaxVariableDomain(VariableDomainId domain_id);
2804 bool TightenVariableDomainMin(VariableDomainId domain_id, int64_t value);
2805 bool TightenVariableDomainMax(VariableDomainId domain_id, int64_t value);
2806 int64_t VariableDomainMin(VariableDomainId domain_id)
const;
2826 return state_domains_are_all_nonempty_ && num_committed_empty_domains_ == 0;
2829 void AddWeightedSumConstraint(
2830 const std::vector<VariableDomainId>& input_domain_ids,
2831 const std::vector<int64_t>& input_weights, int64_t input_offset,
2835 void CompileConstraints();
2841 struct VariableDomain {
2845 bool IntersectionIsEmpty(
const VariableDomain& d1,
2846 const VariableDomain& d2)
const {
2847 return d1.max < d2.min || d2.max < d1.min;
2851 struct TrailedVariableDomain {
2852 VariableDomain committed_domain;
2853 VariableDomainId domain_id;
2855 std::vector<TrailedVariableDomain> trailed_domains_;
2856 util_intops::StrongVector<VariableDomainId, bool> domain_is_trailed_;
2858 bool state_domains_are_all_nonempty_ =
true;
2859 bool state_has_relaxed_domains_ =
false;
2862 int num_committed_empty_domains_ = 0;
2863 int trailed_num_committed_empty_domains_ = 0;
2868 void TrailConstraint(Constraint* constraint) {
2869 trailed_constraints_.push_back(constraint);
2871 std::vector<Constraint*> trailed_constraints_;
2875 class DependencyGraph {
2877 DependencyGraph() {}
2886 ConstraintId constraint_id;
2889 void AddDomainsConstraintDependencies(
2890 const std::vector<VariableDomainId>& domain_ids,
2891 ConstraintId constraint_id);
2893 void AddConstraintDomainDependency(ConstraintId constraint_id,
2894 VariableDomainId domain_id);
2897 void BuildDependencyDAG(
int num_domains);
2901 const std::vector<Dependency>& ComputeSortedDependencies(
2905 using ArcId = SubDagComputer::ArcId;
2906 using NodeId = SubDagComputer::NodeId;
2913 NodeId GetOrCreateNodeOfConstraintId(ConstraintId
constraint_id);
2924 int num_dag_nodes_ = 1;
2926 std::vector<Dependency> sorted_dependencies_;
2928 DependencyGraph dependency_graph_;
2934 Constraint* constraint;
2940 std::vector<Trigger> triggers_;
2948 virtual ~Constraint() =
default;
2949 virtual LocalSearchState::VariableDomain Propagate(
int input_index) = 0;
2951 virtual void Commit() = 0;
2952 virtual void Revert() = 0;
2956 class WeightedSum final :
public Constraint {
2959 const std::vector<VariableDomainId>& input_domain_ids,
2960 const std::vector<int64_t>& input_weights, int64_t input_offset,
2962 ~WeightedSum()
override =
default;
2963 LocalSearchState::VariableDomain Propagate(
int input_index)
override;
2964 void Commit()
override;
2965 void Revert()
override;
2971 struct WeightedVariable {
2974 int64_t committed_min;
2975 int64_t committed_max;
2977 VariableDomainId domain;
2980 committed_min = min;
2981 committed_max = max;
2985 min = committed_min;
2986 max = committed_max;
2990 std::vector<WeightedVariable> inputs_;
2991 std::vector<WeightedVariable*> trailed_inputs_;
2995 int64_t num_neg_inf;
2999 int64_t num_pos_inf;
3003 Invariants invariants_;
3004 Invariants committed_invariants_;
3007 LocalSearchState*
const state_;
3008 bool constraint_is_trailed_ =
false;
3011 util_intops::StrongVector<ConstraintId, std::unique_ptr<Constraint>>
3020class LocalSearchState::Variable {
3023 int64_t Min()
const {
3025 return state_->VariableDomainMin(domain_id_);
3027 int64_t Max()
const {
3029 return state_->VariableDomainMax(domain_id_);
3033 bool SetMin(int64_t new_min)
const {
3035 return state_->TightenVariableDomainMin(domain_id_, new_min) &&
3036 state_->PropagateTighten(domain_id_);
3040 bool SetMax(int64_t new_max)
const {
3041 if (!
Exists())
return true;
3042 return state_->TightenVariableDomainMax(domain_id_, new_max) &&
3043 state_->PropagateTighten(domain_id_);
3046 if (state_ ==
nullptr)
return;
3047 if (state_->RelaxVariableDomain(domain_id_)) {
3048 state_->PropagateRelax(domain_id_);
3051 bool Exists()
const {
return state_ !=
nullptr; }
3058 : state_(state), domain_id_(domain_id) {}
3099 int64_t objective_min, int64_t objective_max) = 0;
3107 virtual void Synchronize(
const Assignment* assignment,
3113 virtual void Reset() {}
3116 virtual int64_t GetSynchronizedObjectiveValue()
const {
return 0LL; }
3129 enum FilterEventType { kAccept, kRelax };
3130 struct FilterEvent {
3132 FilterEventType event_type;
3136 std::string DebugString()
const override {
3137 return "LocalSearchFilterManager";
3153 const Assignment* deltadelta, int64_t objective_min,
3154 int64_t objective_max);
3158 int64_t GetAcceptedObjectiveValue()
const {
return accepted_value_; }
3163 void FindIncrementalEventEnd();
3165 std::vector<FilterEvent> events_;
3166 int last_event_called_ = -1;
3171 int incremental_events_end_ = 0;
3172 int64_t synchronized_value_;
3173 int64_t accepted_value_;
3185 bool FindIndex(
IntVar*
const var, int64_t* index)
const {
3186 DCHECK(index !=
nullptr);
3187 const int var_index = var->
index();
3188 *index = (var_index < var_index_to_index_.size())
3189 ? var_index_to_index_[var_index]
3191 return *index != kUnassigned;
3195 void AddVars(
const std::vector<IntVar*>& vars);
3196 int Size()
const {
return vars_.size(); }
3198 int64_t Value(
int index)
const {
3199 DCHECK(IsVarSynced(index));
3200 return values_[index];
3202 bool IsVarSynced(
int index)
const {
return var_synced_[index]; }
3205 virtual void OnSynchronize(
const Assignment*) {}
3206 void SynchronizeOnAssignment(
const Assignment* assignment);
3209 std::vector<IntVar*> vars_;
3210 std::vector<int64_t> values_;
3211 std::vector<bool> var_synced_;
3212 std::vector<int> var_index_to_index_;
3213 static const int kUnassigned;
3220 std::string
DebugString()
const override {
return "PropagationMonitor"; }
3223 virtual void BeginConstraintInitialPropagation(
Constraint* constraint) = 0;
3224 virtual void EndConstraintInitialPropagation(
Constraint* constraint) = 0;
3225 virtual void BeginNestedConstraintInitialPropagation(
Constraint* parent,
3227 virtual void EndNestedConstraintInitialPropagation(
Constraint* parent,
3234 virtual void PushContext(
const std::string& context) = 0;
3249 const std::vector<int64_t>& values) = 0;
3254 int64_t new_max) = 0;
3258 int64_t new_max) = 0;
3262 int64_t new_max) = 0;
3270 const std::vector<int>& rank_first,
3271 const std::vector<int>& rank_last,
3272 const std::vector<int>& unperformed) = 0;
3282 std::string
DebugString()
const override {
return "LocalSearchMonitor"; }
3285 virtual void BeginOperatorStart() = 0;
3286 virtual void EndOperatorStart() = 0;
3293 bool neighbor_found) = 0;
3296 bool neighbor_found) = 0;
3308 static const int kUnboundBooleanVarValue;
3311 :
IntVar(s, name), value_(kUnboundBooleanVarValue) {}
3315 int64_t Min()
const override {
return (value_ == 1); }
3316 void SetMin(int64_t m)
override;
3317 int64_t Max()
const override {
return (value_ != 0); }
3319 void SetRange(int64_t mi, int64_t ma)
override;
3321 int64_t Value()
const override {
3330 uint64_t Size()
const override;
3331 bool Contains(int64_t v)
const override;
3337 IntVar* IsEqual(int64_t constant)
override;
3338 IntVar* IsDifferent(int64_t constant)
override;
3339 IntVar* IsGreaterOrEqual(int64_t constant)
override;
3343 std::string
BaseName()
const override {
return "BooleanVar"; }
3345 int RawValue()
const {
return value_; }
3361 : symmetry_manager_(nullptr), index_in_symmetry_manager_(-1) {}
3364 void AddIntegerVariableEqualValueClause(
IntVar* var, int64_t value);
3365 void AddIntegerVariableGreaterOrEqualValueClause(
IntVar* var, int64_t value);
3366 void AddIntegerVariableLessOrEqualValueClause(
IntVar* var, int64_t value);
3371 CHECK(symmetry_manager_ ==
nullptr);
3372 CHECK_EQ(-1, index_in_symmetry_manager_);
3373 symmetry_manager_ = manager;
3374 index_in_symmetry_manager_ = index;
3376 SymmetryManager* symmetry_manager()
const {
return symmetry_manager_; }
3377 int index_in_symmetry_manager()
const {
return index_in_symmetry_manager_; }
3379 SymmetryManager* symmetry_manager_;
3381 int index_in_symmetry_manager_;
3388 SearchLog(
Solver* solver, std::vector<IntVar*> vars, std::string vars_name,
3389 std::vector<double> scaling_factors, std::vector<double> offsets,
3390 std::function<std::string()> display_callback,
3391 bool display_on_new_solutions_only,
int period);
3393 void EnterSearch()
override;
3394 void ExitSearch()
override;
3395 bool AtSolution()
override;
3396 void BeginFail()
override;
3397 void NoMoreSolutions()
override;
3409 virtual void OutputLine(
const std::string& line);
3415 std::unique_ptr<WallTimer> timer_;
3416 const std::vector<IntVar*> vars_;
3417 const std::string vars_name_;
3418 const std::vector<double> scaling_factors_;
3419 const std::vector<double> offsets_;
3420 std::function<std::string()> display_callback_;
3421 const bool display_on_new_solutions_only_;
3423 absl::Duration tick_;
3424 std::vector<int64_t> objective_min_;
3425 std::vector<int64_t> objective_max_;
3426 std::vector<int64_t> last_objective_value_;
3427 absl::Duration last_objective_timestamp_;
3428 int min_right_depth_;
3430 int sliding_min_depth_;
3431 int sliding_max_depth_;
3432 int neighbors_offset_ = 0;
3441 enum VoidConstraintType {
3442 VOID_FALSE_CONSTRAINT = 0,
3443 VOID_TRUE_CONSTRAINT,
3444 VOID_CONSTRAINT_MAX,
3447 enum VarConstantConstraintType {
3448 VAR_CONSTANT_EQUALITY = 0,
3449 VAR_CONSTANT_GREATER_OR_EQUAL,
3450 VAR_CONSTANT_LESS_OR_EQUAL,
3559 IntVar* var, int64_t value1, int64_t value2,
3614 IntVar* var, int64_t value1, int64_t value2,
3618 IntExpr* expression,
IntVar* var, int64_t value1, int64_t value2,
3624 IntVar* var,
const std::vector<int64_t>& values,
3628 IntExpr* expression,
IntVar* var,
const std::vector<int64_t>& values,
3637 const std::vector<IntVar*>& vars,
3643 const std::vector<IntVar*>& vars,
const std::vector<int64_t>& values,
3647 IntExpr* expression,
const std::vector<IntVar*>& var,
3648 const std::vector<int64_t>& values,
3654 const std::vector<IntVar*>& vars, int64_t value,
3658 IntExpr* expression,
const std::vector<IntVar*>& var, int64_t value,
3672 const std::string& TypeName()
const;
3673 void SetTypeName(
const std::string& type_name);
3676 void SetIntegerArgument(
const std::string& arg_name, int64_t value);
3677 void SetIntegerArrayArgument(
const std::string& arg_name,
3678 const std::vector<int64_t>& values);
3679 void SetIntegerMatrixArgument(
const std::string& arg_name,
3683 const std::vector<IntVar*>& vars);
3686 const std::vector<IntervalVar*>& vars);
3689 const std::vector<SequenceVar*>& vars);
3700 const std::string& arg_name)
const;
3702 const std::string& arg_name)
const;
3705 const std::string& arg_name)
const;
3707 const std::string& arg_name)
const;
3710 std::string type_name_;
3711 absl::flat_hash_map<std::string, int64_t> integer_argument_;
3712 absl::flat_hash_map<std::string, std::vector<int64_t>>
3713 integer_array_argument_;
3714 absl::flat_hash_map<std::string, IntTupleSet> matrix_argument_;
3715 absl::flat_hash_map<std::string, IntExpr*> integer_expression_argument_;
3716 absl::flat_hash_map<std::string, IntervalVar*> interval_argument_;
3717 absl::flat_hash_map<std::string, SequenceVar*> sequence_argument_;
3718 absl::flat_hash_map<std::string, std::vector<IntVar*>>
3719 integer_variable_array_argument_;
3720 absl::flat_hash_map<std::string, std::vector<IntervalVar*>>
3721 interval_array_argument_;
3722 absl::flat_hash_map<std::string, std::vector<SequenceVar*>>
3723 sequence_array_argument_;
3734 void BeginVisitModel(
const std::string& solver_name)
override;
3735 void EndVisitModel(
const std::string& solver_name)
override;
3736 void BeginVisitConstraint(
const std::string& type_name,
3738 void EndVisitConstraint(
const std::string& type_name,
3741 const IntExpr* expr)
override;
3743 const IntExpr* expr)
override;
3746 const std::string& operation, int64_t value,
3747 IntVar* delegate)
override;
3749 const std::string& operation, int64_t value,
3754 int64_t value)
override;
3756 const std::vector<int64_t>& values)
override;
3763 const std::string& arg_name,
3764 const std::vector<IntVar*>& arguments)
override;
3769 const std::string& arg_name,
3770 const std::vector<IntervalVar*>& arguments)
override;
3775 const std::string& arg_name,
3776 const std::vector<SequenceVar*>& arguments)
override;
3784 std::vector<ArgumentHolder*> holders_;
3791 : index_min_(index_min),
3792 index_max_(index_max),
3793 values_(new T[index_max - index_min + 1]) {
3794 DCHECK_LE(index_min, index_max);
3797 ~ArrayWithOffset()
override {}
3799 virtual T Evaluate(int64_t index)
const {
3800 DCHECK_GE(index, index_min_);
3801 DCHECK_LE(index, index_max_);
3802 return values_[index - index_min_];
3805 void SetValue(int64_t index, T value) {
3806 DCHECK_GE(index, index_min_);
3807 DCHECK_LE(index, index_max_);
3808 values_[index - index_min_] = value;
3811 std::string
DebugString()
const override {
return "ArrayWithOffset"; }
3814 const int64_t index_min_;
3815 const int64_t index_max_;
3816 std::unique_ptr<T[]> values_;
3824template <
class T,
class C>
3828 : block_size_(block_size), block_offset_(0) {
3829 CHECK_GT(block_size, 0);
3833 for (
int i = 0; i < elements_.size(); ++i) {
3834 delete[] elements_[i];
3838 T
At(int64_t index)
const {
3839 const int64_t block_index = ComputeBlockIndex(index);
3840 const int64_t relative_index = block_index - block_offset_;
3841 if (relative_index < 0 || relative_index >= elements_.size()) {
3844 const T* block = elements_[relative_index];
3845 return block !=
nullptr ? block[index - block_index * block_size_] : T();
3848 void RevInsert(
Solver*
const solver, int64_t index, T value) {
3849 const int64_t block_index = ComputeBlockIndex(index);
3850 T*
const block = GetOrCreateBlock(block_index);
3851 const int64_t residual = index - block_index * block_size_;
3853 reinterpret_cast<C
>(value));
3857 T* NewBlock()
const {
3858 T*
const result =
new T[block_size_];
3859 for (
int i = 0; i < block_size_; ++i) {
3865 T* GetOrCreateBlock(
int block_index) {
3866 if (elements_.size() == 0) {
3867 block_offset_ = block_index;
3868 GrowUp(block_index);
3869 }
else if (block_index < block_offset_) {
3870 GrowDown(block_index);
3871 }
else if (block_index - block_offset_ >= elements_.size()) {
3872 GrowUp(block_index);
3874 T* block = elements_[block_index - block_offset_];
3875 if (block ==
nullptr) {
3877 elements_[block_index - block_offset_] = block;
3882 int64_t ComputeBlockIndex(int64_t value)
const {
3883 return value >= 0 ? value / block_size_
3884 : (value - block_size_ + 1) / block_size_;
3887 void GrowUp(int64_t block_index) {
3888 elements_.resize(block_index - block_offset_ + 1);
3891 void GrowDown(int64_t block_index) {
3892 const int64_t delta = block_offset_ - block_index;
3893 block_offset_ = block_index;
3894 DCHECK_GT(delta, 0);
3895 elements_.insert(elements_.begin(), delta,
nullptr);
3898 const int64_t block_size_;
3899 std::vector<T*> elements_;
3910 static constexpr int kNoInserted = -1;
3913 explicit RevIntSet(
int capacity)
3914 : elements_(new
T[capacity]),
3916 capacity_(capacity),
3917 position_(new int[capacity]),
3918 delete_position_(
true) {
3919 for (
int i = 0;
i < capacity; ++
i) {
3925 RevIntSet(
int capacity,
int* shared_positions,
int shared_positions_size)
3926 : elements_(new T[capacity]),
3928 capacity_(capacity),
3929 position_(shared_positions),
3930 delete_position_(false) {
3931 for (
int i = 0; i < shared_positions_size; ++i) {
3937 if (delete_position_) {
3942 int Size()
const {
return num_elements_.Value(); }
3944 int Capacity()
const {
return capacity_; }
3946 T Element(
int i)
const {
3948 DCHECK_LT(i, num_elements_.Value());
3949 return elements_[i];
3952 T RemovedElement(
int i)
const {
3954 DCHECK_LT(i + num_elements_.Value(), capacity_);
3955 return elements_[i + num_elements_.Value()];
3959 const int position = num_elements_.Value();
3960 DCHECK_LT(position, capacity_);
3961 DCHECK(NotAlreadyInserted(elt));
3962 elements_[position] = elt;
3963 position_[elt] = position;
3964 num_elements_.Incr(solver);
3967 void Remove(
Solver*
const solver,
const T& value_index) {
3968 num_elements_.Decr(solver);
3969 SwapTo(value_index, num_elements_.Value());
3972 void Restore(
Solver*
const solver,
const T& value_index) {
3973 SwapTo(value_index, num_elements_.Value());
3974 num_elements_.Incr(solver);
3977 void Clear(Solver*
const solver) { num_elements_.SetValue(solver, 0); }
3982 const_iterator
end()
const {
return elements_.get() + num_elements_.Value(); }
3986 bool NotAlreadyInserted(
const T& elt) {
3987 for (
int i = 0; i < num_elements_.Value(); ++i) {
3988 if (elt == elements_[i]) {
3995 void SwapTo(T value_index,
int next_position) {
3996 const int current_position = position_[value_index];
3997 if (current_position != next_position) {
3998 const T next_value_index = elements_[next_position];
3999 elements_[current_position] = next_value_index;
4000 elements_[next_position] = value_index;
4001 position_[value_index] = next_position;
4002 position_[next_value_index] = current_position;
4007 std::unique_ptr<T[]> elements_;
4011 const int capacity_;
4015 const bool delete_position_;
4020class RevPartialSequence {
4022 explicit RevPartialSequence(
const std::vector<int>& items)
4025 last_ranked_(items.size() - 1),
4026 size_(items.size()),
4027 position_(new int[size_]) {
4028 for (
int i = 0; i < size_; ++i) {
4029 elements_[i] = items[i];
4037 last_ranked_(size - 1),
4039 position_(new int[size_]) {
4040 for (
int i = 0; i < size_; ++i) {
4048 int NumFirstRanked()
const {
return first_ranked_.Value(); }
4050 int NumLastRanked()
const {
return size_ - 1 - last_ranked_.Value(); }
4052 int Size()
const {
return size_; }
4055 const int& operator[](
int index)
const {
4056 DCHECK_GE(index, 0);
4057 DCHECK_LT(index, size_);
4058 return elements_[index];
4063 DCHECK_LE(first_ranked_.Value(), last_ranked_.Value());
4064 SwapTo(elt, first_ranked_.Value());
4065 first_ranked_.Incr(solver);
4069 DCHECK_LE(first_ranked_.Value(), last_ranked_.Value());
4070 SwapTo(elt, last_ranked_.Value());
4071 last_ranked_.Decr(solver);
4075 const int position = position_[elt];
4076 return (position < first_ranked_.Value() ||
4077 position > last_ranked_.Value());
4081 std::string result =
"[";
4082 for (
int i = 0; i < first_ranked_.Value(); ++i) {
4083 absl::StrAppend(&result, elements_[i]);
4084 if (i != first_ranked_.Value() - 1) {
4089 for (
int i = first_ranked_.Value(); i <= last_ranked_.Value(); ++i) {
4090 absl::StrAppend(&result, elements_[i]);
4091 if (i != last_ranked_.Value()) {
4096 for (
int i = last_ranked_.Value() + 1; i < size_; ++i) {
4097 absl::StrAppend(&result, elements_[i]);
4098 if (i != size_ - 1) {
4107 void SwapTo(
int elt,
int next_position) {
4108 const int current_position = position_[elt];
4109 if (current_position != next_position) {
4110 const int next_elt = elements_[next_position];
4111 elements_[current_position] = next_elt;
4112 elements_[next_position] = elt;
4113 position_[elt] = next_position;
4114 position_[next_elt] = current_position;
4119 std::vector<int> elements_;
4121 NumericalRev<int> first_ranked_;
4123 NumericalRev<int> last_ranked_;
4127 std::unique_ptr<int[]> position_;
4134class UnsortedNullableRevBitset {
4137 explicit UnsortedNullableRevBitset(
int bit_size);
4139 ~UnsortedNullableRevBitset() {}
4143 void Init(Solver* solver,
const std::vector<uint64_t>& mask);
4158 bool Empty()
const {
return active_words_.Size() == 0; }
4167 bool Intersects(
const std::vector<uint64_t>& mask,
int* support_index);
4172 int64_t word_size()
const {
return word_size_; }
4174 const RevIntSet<int>& active_words()
const {
return active_words_; }
4177 void CleanUpActives(Solver* solver);
4179 const int64_t bit_size_;
4180 const int64_t word_size_;
4181 RevArray<uint64_t> bits_;
4183 std::vector<int> to_remove_;
4188 for (
int i = 0; i < values.size(); ++i) {
4189 if (values[i] != value) {
4198 for (
int i = 0; i < values.size(); ++i) {
4199 if (values[i] != 0 && values[i] != 1) {
4207bool AreAllOnes(
const std::vector<T>& values) {
4212bool AreAllNull(
const std::vector<T>& values) {
4213 return IsArrayConstant(values, T(0));
4218 for (
const T& current_value : values) {
4219 if (current_value < value) {
4227bool AreAllLessOrEqual(
const std::vector<T>& values,
const T& value) {
4228 for (
const T& current_value : values) {
4229 if (current_value > value) {
4242bool AreAllNegative(
const std::vector<T>& values) {
4243 return AreAllLessOrEqual(values, T(0));
4252bool AreAllStrictlyNegative(
const std::vector<T>& values) {
4253 return AreAllLessOrEqual(values, T(-1));
4257bool IsIncreasingContiguous(
const std::vector<T>& values) {
4258 for (
int i = 0; i < values.size() - 1; ++i) {
4259 if (values[i + 1] != values[i] + 1) {
4267bool IsIncreasing(
const std::vector<T>& values) {
4268 for (
int i = 0; i < values.size() - 1; ++i) {
4269 if (values[i + 1] < values[i]) {
4277bool IsArrayInRange(
const std::vector<IntVar*>& vars, T range_min,
4279 for (
int i = 0; i < vars.size(); ++i) {
4280 if (vars[i]->Min() < range_min || vars[i]->Max() > range_max) {
4287inline bool AreAllBound(
const std::vector<IntVar*>& vars) {
4288 for (
int i = 0;
i < vars.size(); ++
i) {
4289 if (!vars[i]->Bound()) {
4304 const std::vector<T>& values) {
4305 for (
int i = 0; i < vars.size(); ++i) {
4306 if (values[i] != 0 && !vars[i]->Bound()) {
4314inline bool AreAllBoundTo(
const std::vector<IntVar*>& vars, int64_t value) {
4315 for (
int i = 0; i < vars.size(); ++i) {
4316 if (!vars[i]->Bound() || vars[i]->Min() != value) {
4323inline int64_t
MaxVarArray(
const std::vector<IntVar*>& vars) {
4324 DCHECK(!vars.empty());
4326 for (
int i = 0; i < vars.size(); ++i) {
4328 result = std::max<int64_t>(result, vars[i]->Max());
4333inline int64_t
MinVarArray(
const std::vector<IntVar*>& vars) {
4334 DCHECK(!vars.empty());
4336 for (
int i = 0; i < vars.size(); ++i) {
4338 result = std::min<int64_t>(result, vars[i]->Min());
4343inline void FillValues(
const std::vector<IntVar*>& vars,
4344 std::vector<int64_t>*
const values) {
4346 values->resize(vars.size());
4347 for (
int i = 0; i < vars.size(); ++i) {
4348 (*values)[i] = vars[i]->Value();
4354 return (e < 0 || e % v == 0) ? e / v : e / v + 1;
4357inline int64_t PosIntDivDown(int64_t e, int64_t v) {
4359 return (e >= 0 || e % v == 0) ? e / v : e / v - 1;
int64_t MemoryUsage(int unused)
AlternativeNodeIterator(bool use_sibling)
void Reset(const PathOperator &path_operator, int base_index_reference)
~AlternativeNodeIterator()
Argument Holder: useful when visiting a model.
const IntTupleSet & FindIntegerMatrixArgumentOrDie(const std::string &arg_name) const
void SetIntegerVariableArrayArgument(const std::string &arg_name, const std::vector< IntVar * > &vars)
void SetIntervalArgument(const std::string &arg_name, IntervalVar *var)
void SetIntervalArrayArgument(const std::string &arg_name, const std::vector< IntervalVar * > &vars)
IntExpr * FindIntegerExpressionArgumentOrDie(const std::string &arg_name) const
bool HasIntegerExpressionArgument(const std::string &arg_name) const
Checks if arguments exist.
const std::vector< IntVar * > & FindIntegerVariableArrayArgumentOrDie(const std::string &arg_name) const
void SetSequenceArgument(const std::string &arg_name, SequenceVar *var)
bool HasIntegerVariableArrayArgument(const std::string &arg_name) const
const std::vector< int64_t > & FindIntegerArrayArgumentOrDie(const std::string &arg_name) const
int64_t FindIntegerArgumentOrDie(const std::string &arg_name) const
void SetIntegerExpressionArgument(const std::string &arg_name, IntExpr *expr)
void SetSequenceArrayArgument(const std::string &arg_name, const std::vector< SequenceVar * > &vars)
int64_t FindIntegerArgumentWithDefault(const std::string &arg_name, int64_t def) const
Getters.
std::string DebugString() const override
const E & Element(const V *const var) const
E * MutableElement(const V *const var)
bool Contains(const V *const var) const
IntContainer * MutableIntVarContainer()
IntVarElement * FastAdd(IntVar *var)
Adds without checking if variable has been previously added.
AssignmentContainer< IntVar, IntVarElement > IntContainer
virtual IntVar * CastToVar()
IntVar * Var() override
Creates a variable from the expression.
BaseIntExpr(Solver *const s)
Here's a sample relaxing one variable at a time:
void AppendToFragment(int index)
bool HasFragments() const override
virtual void InitFragments()
BaseLns(const std::vector< IntVar * > &vars)
bool MakeOneNeighbor() override
This method should not be overridden. Override NextFragment() instead.
virtual bool NextFragment()=0
BaseNodeIterators(const PathOperator *path_operator, int base_index_reference)
AlternativeNodeIterator * GetAlternativeIterator() const
NodeNeighborIterator * GetNeighborIterator() const
void Reset(bool update_end_nodes=false)
AlternativeNodeIterator * GetSiblingAlternativeIterator() const
bool HasReachedEnd() const
virtual std::string DebugString() const
void CopyBucket(const Bitset64< IndexType > &other, IndexType i)
IntVarIterator * MakeDomainIterator(bool reversible) const override
IntVarIterator * MakeHoleIterator(bool reversible) const override
void RemoveValue(int64_t v) override
This method removes the value 'v' from the domain of the variable.
SimpleRevFIFO< Demon * > delayed_bound_demons_
void SetMax(int64_t m) override
void SetRange(int64_t mi, int64_t ma) override
This method sets both the min and the max of the expression.
void RemoveInterval(int64_t l, int64_t u) override
virtual void RestoreValue()=0
void WhenDomain(Demon *d) override
SimpleRevFIFO< Demon * > bound_demons_
static const int kUnboundBooleanVarValue
void WhenBound(Demon *d) override
bool Bound() const override
Returns true if the min and the max of the expression are equal.
int VarType() const override
IntVar * IsLessOrEqual(int64_t constant) override
std::string BaseName() const override
Returns a base name for automatic naming.
void WhenRange(Demon *d) override
Attach a demon that will watch the min or the max of the expression.
Demon proxy to a method on the constraint with no arguments.
std::string DebugString() const override
CallMethod0(T *const ct, void(T::*method)(), const std::string &name)
Demon proxy to a method on the constraint with one argument.
CallMethod1(T *const ct, void(T::*method)(P), const std::string &name, P param1)
std::string DebugString() const override
Demon proxy to a method on the constraint with two arguments.
std::string DebugString() const override
CallMethod2(T *const ct, void(T::*method)(P, Q), const std::string &name, P param1, Q param2)
Demon proxy to a method on the constraint with three arguments.
CallMethod3(T *const ct, void(T::*method)(P, Q, R), const std::string &name, P param1, Q param2, R param3)
std::string DebugString() const override
virtual int64_t ModifyValue(int64_t index, int64_t value)=0
bool MakeOneNeighbor() override
This method should not be overridden. Override ModifyValue() instead.
ChangeValue(const std::vector< IntVar * > &vars)
Constraint(Solver *const solver)
Low-priority demon proxy to a method on the constraint with no arguments.
~DelayedCallMethod0() override
DelayedCallMethod0(T *const ct, void(T::*method)(), const std::string &name)
std::string DebugString() const override
Solver::DemonPriority priority() const override
~DelayedCallMethod1() override
DelayedCallMethod1(T *const ct, void(T::*method)(P), const std::string &name, P param1)
Solver::DemonPriority priority() const override
std::string DebugString() const override
Low-priority demon proxy to a method on the constraint with two arguments.
std::string DebugString() const override
Solver::DemonPriority priority() const override
DelayedCallMethod2(T *const ct, void(T::*method)(P, Q), const std::string &name, P param1, Q param2)
~DelayedCallMethod2() override
virtual void SetValue(int64_t v)
This method sets the value of the expression.
virtual bool Bound() const
Returns true if the min and the max of the expression are equal.
virtual int64_t Min() const =0
IntVar * Var(int index) const
int64_t OldInverseValue(int64_t index) const
void AddToAssignment(IntVar *var, int64_t value, bool active, std::vector< int > *assignment_indices, int64_t index, Assignment *assignment) const
virtual bool SkipUnchanged(int) const
virtual bool IsIncremental() const
bool Activated(int64_t index) const
void SetValue(int64_t index, int64_t value)
void Start(const Assignment *assignment) override
void RevertChanges(bool change_was_incremental)
bool MakeNextNeighbor(Assignment *delta, Assignment *deltadelta) override
void AddVars(const std::vector< IntVar * > &vars)
void Deactivate(int64_t index)
IntVar * Var(int64_t index) const
Returns the variable of given index.
int64_t Value(int64_t index) const
int64_t InverseValue(int64_t index) const
bool ApplyChanges(Assignment *delta, Assignment *deltadelta) const
int64_t PrevValue(int64_t index) const
bool HoldsDelta() const override
IntVarLocalSearchOperator(const std::vector< IntVar * > &vars, bool keep_inverse_values=false)
void Activate(int64_t index)
int64_t OldValue(int64_t index) const
virtual bool MakeOneNeighbor()
MakeNextNeighbor() in a subclass of IntVarLocalSearchOperator.
~IntVarLocalSearchOperator() override
int index() const
Returns the index of the variable.
LightIntFunctionElementCt(Solver *const solver, IntVar *const var, IntVar *const index, F values, std::function< bool()> deep_serialize)
~LightIntFunctionElementCt() override
void InitialPropagate() override
void Accept(ModelVisitor *const visitor) const override
Accepts the given visitor.
std::string DebugString() const override
~LightIntIntFunctionElementCt() override
void Accept(ModelVisitor *const visitor) const override
Accepts the given visitor.
void InitialPropagate() override
LightIntIntFunctionElementCt(Solver *const solver, IntVar *const var, IntVar *const index1, IntVar *const index2, F values, std::function< bool()> deep_serialize)
std::string DebugString() const override
LightIntIntIntFunctionElementCt(Solver *const solver, IntVar *const var, IntVar *const index1, IntVar *const index2, IntVar *const index3, F values)
std::string DebugString() const override
void Accept(ModelVisitor *const visitor) const override
Accepts the given visitor.
~LightIntIntIntFunctionElementCt() override
void InitialPropagate() override
LocalSearchFilterManager(std::vector< FilterEvent > filter_events)
int64_t GetSynchronizedObjectiveValue() const
void Synchronize(const Assignment *assignment, const Assignment *delta)
Synchronizes all filters to assignment.
bool Accept(LocalSearchMonitor *monitor, const Assignment *delta, const Assignment *deltadelta, int64_t objective_min, int64_t objective_max)
virtual bool IsIncremental() const
virtual void Reset()
Sets the filter to empty solution.
virtual void Revert()
Cancels the changes made by the last Relax()/Accept() calls.
virtual bool Accept(const Assignment *delta, const Assignment *deltadelta, int64_t objective_min, int64_t objective_max)=0
virtual int64_t GetAcceptedObjectiveValue() const
Objective value from the last time Accept() was called and returned true.
virtual void Synchronize(const Assignment *assignment, const Assignment *delta)=0
virtual bool IsActive() const =0
virtual void EndAcceptNeighbor(const LocalSearchOperator *op, bool neighbor_found)=0
virtual void BeginAcceptNeighbor(const LocalSearchOperator *op)=0
virtual void BeginFilterNeighbor(const LocalSearchOperator *op)=0
void Install() override
Install itself on the solver.
virtual void BeginFiltering(const LocalSearchFilter *filter)=0
virtual void EndFilterNeighbor(const LocalSearchOperator *op, bool neighbor_found)=0
virtual void EndFiltering(const LocalSearchFilter *filter, bool reject)=0
int64_t CheckPointValue(int64_t index) const
void SetCandidateActive(int64_t index, bool active)
void SetCurrentDomainInjectiveAndKeepInverseValues(int max_value)
void Revert(bool only_incremental)
int64_t CandidateValue(int64_t index) const
LocalSearchOperatorState()
void SetCandidateValue(int64_t index, int64_t value)
const std::vector< int64_t > & IncrementalIndicesChanged() const
const std::vector< int64_t > & CandidateIndicesChanged() const
int64_t CommittedInverseValue(int64_t value) const
int64_t CommittedValue(int64_t index) const
bool CandidateIsActive(int64_t index) const
int64_t CandidateInverseValue(int64_t value) const
The base class for all local search operators.
virtual bool HoldsDelta() const
virtual bool MakeNextNeighbor(Assignment *delta, Assignment *deltadelta)=0
virtual const LocalSearchOperator * Self() const
virtual void EnterSearch()
virtual bool HasFragments() const
~LocalSearchOperator() override
virtual void Start(const Assignment *assignment)=0
bool SetMin(int64_t new_min) const
bool SetMax(int64_t new_max) const
friend class LocalSearchState
bool StateIsFeasible() const
void ChangeRelaxedVariableDomain(VariableDomainId domain_id, int64_t min, int64_t max)
void PropagateRelax(VariableDomainId domain_id)
static Variable DummyVariable()
Variable MakeVariable(VariableDomainId domain_id)
Variable MakeVariableWithRelaxedDomain(int64_t min, int64_t max)
int64_t VariableDomainMax(VariableDomainId domain_id) const
bool PropagateTighten(VariableDomainId domain_id)
virtual void InsertVarArrayConstantArrayExpression(IntExpr *expression, const std::vector< IntVar * > &var, const std::vector< int64_t > &values, VarArrayConstantArrayExpressionType type)=0
VarArrayConstantExpressionType
@ VAR_ARRAY_CONSTANT_INDEX
@ VAR_ARRAY_CONSTANT_EXPRESSION_MAX
VarArrayConstantArrayExpressionType
@ VAR_ARRAY_CONSTANT_ARRAY_EXPRESSION_MAX
@ VAR_ARRAY_CONSTANT_ARRAY_SCAL_PROD
virtual void InsertVarConstantConstraint(Constraint *ct, IntVar *var, int64_t value, VarConstantConstraintType type)=0
virtual IntExpr * FindExprExprExpression(IntExpr *var1, IntExpr *var2, ExprExprExpressionType type) const =0
Expr Expr Expressions.
virtual Constraint * FindExprExprConstraint(IntExpr *expr1, IntExpr *expr2, ExprExprConstraintType type) const =0
Expr Expr Constraints.
virtual Constraint * FindVoidConstraint(VoidConstraintType type) const =0
Void constraints.
virtual IntExpr * FindVarArrayConstantArrayExpression(const std::vector< IntVar * > &vars, const std::vector< int64_t > &values, VarArrayConstantArrayExpressionType type) const =0
Var Array Constant Array Expressions.
virtual IntExpr * FindVarArrayExpression(const std::vector< IntVar * > &vars, VarArrayExpressionType type) const =0
Var Array Expressions.
virtual IntExpr * FindExprExpression(IntExpr *expr, ExprExpressionType type) const =0
Expr Expressions.
VarConstantConstraintType
@ VAR_CONSTANT_NON_EQUALITY
@ VAR_CONSTANT_CONSTRAINT_MAX
virtual void InsertExprExprConstraint(Constraint *ct, IntExpr *expr1, IntExpr *expr2, ExprExprConstraintType type)=0
ExprConstantExpressionType
@ EXPR_CONSTANT_IS_NOT_EQUAL
@ EXPR_CONSTANT_IS_GREATER_OR_EQUAL
@ EXPR_CONSTANT_IS_LESS_OR_EQUAL
@ EXPR_CONSTANT_DIFFERENCE
@ EXPR_CONSTANT_EXPRESSION_MAX
virtual void InsertExprExpression(IntExpr *expression, IntExpr *expr, ExprExpressionType type)=0
VarConstantArrayExpressionType
@ VAR_CONSTANT_ARRAY_EXPRESSION_MAX
@ VAR_CONSTANT_ARRAY_ELEMENT
virtual void InsertVoidConstraint(Constraint *ct, VoidConstraintType type)=0
virtual void InsertExprExprExpression(IntExpr *expression, IntExpr *var1, IntExpr *var2, ExprExprExpressionType type)=0
virtual void InsertVarConstantArrayExpression(IntExpr *expression, IntVar *var, const std::vector< int64_t > &values, VarConstantArrayExpressionType type)=0
@ EXPR_EXPR_EXPRESSION_MAX
@ EXPR_EXPR_IS_LESS_OR_EQUAL
virtual IntExpr * FindVarArrayConstantExpression(const std::vector< IntVar * > &vars, int64_t value, VarArrayConstantExpressionType type) const =0
Var Array Constant Expressions.
virtual void InsertExprConstantExpression(IntExpr *expression, IntExpr *var, int64_t value, ExprConstantExpressionType type)=0
VarConstantConstantExpressionType
@ VAR_CONSTANT_CONSTANT_EXPRESSION_MAX
@ VAR_CONSTANT_CONSTANT_SEMI_CONTINUOUS
virtual void InsertVarConstantConstantConstraint(Constraint *ct, IntVar *var, int64_t value1, int64_t value2, VarConstantConstantConstraintType type)=0
virtual void InsertVarArrayConstantExpression(IntExpr *expression, const std::vector< IntVar * > &var, int64_t value, VarArrayConstantExpressionType type)=0
virtual void InsertVarConstantConstantExpression(IntExpr *expression, IntVar *var, int64_t value1, int64_t value2, VarConstantConstantExpressionType type)=0
ExprExprConstantExpressionType
@ EXPR_EXPR_CONSTANT_CONDITIONAL
@ EXPR_EXPR_CONSTANT_EXPRESSION_MAX
virtual Constraint * FindVarConstantConstraint(IntVar *var, int64_t value, VarConstantConstraintType type) const =0
Var Constant Constraints.
virtual IntExpr * FindVarConstantArrayExpression(IntVar *var, const std::vector< int64_t > &values, VarConstantArrayExpressionType type) const =0
Var Constant Array Expressions.
@ VAR_ARRAY_EXPRESSION_MAX
@ EXPR_EXPR_GREATER_OR_EQUAL
@ EXPR_EXPR_LESS_OR_EQUAL
@ EXPR_EXPR_CONSTRAINT_MAX
ModelCache(Solver *solver)
virtual IntExpr * FindExprConstantExpression(IntExpr *expr, int64_t value, ExprConstantExpressionType type) const =0
Expr Constant Expressions.
virtual void InsertExprExprConstantExpression(IntExpr *expression, IntExpr *var1, IntExpr *var2, int64_t constant, ExprExprConstantExpressionType type)=0
virtual IntExpr * FindExprExprConstantExpression(IntExpr *var1, IntExpr *var2, int64_t constant, ExprExprConstantExpressionType type) const =0
Expr Expr Constant Expressions.
virtual IntExpr * FindVarConstantConstantExpression(IntVar *var, int64_t value1, int64_t value2, VarConstantConstantExpressionType type) const =0
Var Constant Constant Expressions.
virtual Constraint * FindVarConstantConstantConstraint(IntVar *var, int64_t value1, int64_t value2, VarConstantConstantConstraintType type) const =0
Var Constant Constant Constraints.
virtual void InsertVarArrayExpression(IntExpr *expression, const std::vector< IntVar * > &vars, VarArrayExpressionType type)=0
VarConstantConstantConstraintType
@ VAR_CONSTANT_CONSTANT_CONSTRAINT_MAX
@ VAR_CONSTANT_CONSTANT_BETWEEN
void VisitIntervalArgument(const std::string &arg_name, IntervalVar *argument) override
Visit interval argument.
void VisitIntervalArrayArgument(const std::string &arg_name, const std::vector< IntervalVar * > &arguments) override
void VisitIntervalVariable(const IntervalVar *variable, const std::string &operation, int64_t value, IntervalVar *delegate) override
void VisitIntegerArgument(const std::string &arg_name, int64_t value) override
Integer arguments.
void VisitIntegerArrayArgument(const std::string &arg_name, const std::vector< int64_t > &values) override
void VisitSequenceVariable(const SequenceVar *variable) override
void BeginVisitIntegerExpression(const std::string &type_name, const IntExpr *expr) override
void VisitSequenceArgument(const std::string &arg_name, SequenceVar *argument) override
Visit sequence argument.
void VisitSequenceArrayArgument(const std::string &arg_name, const std::vector< SequenceVar * > &arguments) override
void VisitIntegerVariable(const IntVar *variable, IntExpr *delegate) override
void VisitIntegerVariableArrayArgument(const std::string &arg_name, const std::vector< IntVar * > &arguments) override
void PushArgumentHolder()
ArgumentHolder * Top() const
void VisitIntegerMatrixArgument(const std::string &arg_name, const IntTupleSet &values) override
void EndVisitIntegerExpression(const std::string &type_name, const IntExpr *expr) override
void VisitIntegerExpressionArgument(const std::string &arg_name, IntExpr *argument) override
Variables.
virtual void VisitIntegerArgument(const std::string &arg_name, int64_t value)
Visit integer arguments.
static const char kMinArgument[]
static const char kTargetArgument[]
static const char kMaxArgument[]
virtual void VisitIntegerExpressionArgument(const std::string &arg_name, IntExpr *argument)
Visit integer expression argument.
static const char kIndexArgument[]
static const char kLightElementEqual[]
virtual void BeginVisitConstraint(const std::string &type_name, const Constraint *constraint)
static const char kIndex2Argument[]
void VisitInt64ToInt64Extension(const Solver::IndexEvaluator1 &eval, int64_t index_min, int64_t index_max)
static const char kIndex3Argument[]
virtual void EndVisitConstraint(const std::string &type_name, const Constraint *constraint)
bool IsIncomingNeighbor() const
bool IsOutgoingNeighbor() const
void Reset(const PathOperator &path_operator, int base_index_reference)
Subclass of Rev<T> which adds numerical operations.
void Decr(Solver *const s)
bool HasNeighbors() const
int number_of_nexts() const
Number of next variables.
bool SkipUnchanged(int index) const override
bool MakeChainInactive(int64_t before_chain, int64_t chain_end)
int64_t Prev(int64_t node) const
Returns the node before node in the current delta.
bool SwapActiveAndInactive(int64_t active, int64_t inactive)
Replaces active by inactive in the current path, making active inactive.
int PathClassFromStartNode(int64_t start_node) const
int64_t Path(int64_t node) const
void AddPairAlternativeSets(const std::vector< PairType > &pair_alternative_sets)
bool MakeActive(int64_t node, int64_t destination)
Insert the inactive node after destination.
int64_t OldNext(int64_t node) const
virtual void ResetIncrementalism()
virtual bool ConsiderAlternatives(int64_t) const
bool SwapNodes(int64_t node1, int64_t node2)
Swaps the nodes node1 and node2.
int64_t BaseSiblingAlternativeNode(int i) const
Returns the alternative node for the sibling of the ith base node.
void SetNext(int64_t from, int64_t to, int64_t path)
Sets 'to' to be the node after 'from' on the given path.
const int number_of_nexts_
virtual bool OnSamePathAsPreviousBase(int64_t)
it's currently way more complicated to implement.
virtual int64_t GetBaseNodeRestartPosition(int base_index)
int CurrentNodePathStart(int64_t node) const
int GetSiblingAlternativeIndex(int node) const
Returns the index of the alternative set of the sibling of node.
int64_t OldPath(int64_t node) const
int GetAlternativeIndex(int node) const
Returns the index of the alternative set of the node.
int64_t PrevNext(int64_t node) const
virtual bool InitPosition() const
int64_t OldPrev(int64_t node) const
virtual void OnNodeInitialization()
int AddAlternativeSet(const std::vector< int64_t > &alternative_set)
bool IsPathStart(int64_t node) const
Returns true if node is the first node on the path.
bool MoveChain(int64_t before_chain, int64_t chain_end, int64_t destination)
bool IsPathEnd(int64_t node) const
bool SwapActiveAndInactiveChains(absl::Span< const int64_t > active_chain, absl::Span< const int64_t > inactive_chain)
virtual bool MakeNeighbor()=0
int64_t EndNode(int i) const
Returns the end node of the ith base node.
int64_t GetActiveInAlternativeSet(int alternative_index) const
Returns the active node in the given alternative set.
PathOperator(const std::vector< IntVar * > &next_vars, const std::vector< IntVar * > &path_vars, IterationParameters iteration_parameters)
Builds an instance of PathOperator from next and path variables.
virtual bool RestartAtPathStartOnSynchronize()
bool IsInactive(int64_t node) const
Returns true if node is inactive.
const std::vector< int64_t > & path_starts() const
Returns the vector of path start nodes.
bool CheckChainValidity(int64_t before_chain, int64_t chain_end, int64_t exclude) const
bool ReverseChain(int64_t before_chain, int64_t after_chain, int64_t *chain_last)
int PathClass(int i) const
Returns the class of the path of the ith base node.
void EnterSearch() override
virtual void SetNextBaseToIncrement(int64_t base_index)
int64_t BaseAlternativeNode(int i) const
Returns the alternative node for the ith base node.
bool MakeOneNeighbor() override
This method should not be overridden. Override MakeNeighbor() instead.
int64_t StartNode(int i) const
Returns the start node of the ith base node.
int64_t BaseNode(int i) const
Returns the ith base node of the operator.
int CurrentNodePathEnd(int64_t node) const
std::string DebugString() const override
virtual void SetValues(IntVar *var, const std::vector< int64_t > &values)=0
virtual void SetDurationMax(IntervalVar *var, int64_t new_max)=0
virtual void SetStartMax(IntervalVar *var, int64_t new_max)=0
virtual void SetStartMin(IntervalVar *var, int64_t new_min)=0
IntervalVar modifiers.
virtual void PopContext()=0
virtual void RankSequence(SequenceVar *var, const std::vector< int > &rank_first, const std::vector< int > &rank_last, const std::vector< int > &unperformed)=0
virtual void RankNotFirst(SequenceVar *var, int index)=0
std::string DebugString() const override
virtual void RankNotLast(SequenceVar *var, int index)=0
virtual void PushContext(const std::string &context)=0
virtual void SetPerformed(IntervalVar *var, bool value)=0
virtual void SetEndMax(IntervalVar *var, int64_t new_max)=0
virtual void RemoveValue(IntVar *var, int64_t value)=0
virtual void EndDemonRun(Demon *demon)=0
virtual void SetDurationMin(IntervalVar *var, int64_t new_min)=0
virtual void RegisterDemon(Demon *demon)=0
virtual void SetMin(IntExpr *expr, int64_t new_min)=0
IntExpr modifiers.
virtual void SetEndMin(IntervalVar *var, int64_t new_min)=0
virtual void RankFirst(SequenceVar *var, int index)=0
SequenceVar modifiers.
virtual void SetMax(IntExpr *expr, int64_t new_max)=0
virtual void RankLast(SequenceVar *var, int index)=0
virtual void SetDurationRange(IntervalVar *var, int64_t new_min, int64_t new_max)=0
virtual void StartProcessingIntegerVariable(IntVar *var)=0
virtual void EndProcessingIntegerVariable(IntVar *var)=0
void Install() override
Install itself on the solver.
virtual void RemoveInterval(IntVar *var, int64_t imin, int64_t imax)=0
virtual void SetRange(IntExpr *expr, int64_t new_min, int64_t new_max)=0
virtual void BeginDemonRun(Demon *demon)=0
virtual void RemoveValues(IntVar *var, const std::vector< int64_t > &values)=0
virtual void SetStartRange(IntervalVar *var, int64_t new_min, int64_t new_max)=0
virtual void SetValue(IntVar *var, int64_t value)=0
virtual void SetEndRange(IntervalVar *var, int64_t new_min, int64_t new_max)=0
Matrix version of the RevBitSet class.
bool IsSet(int64_t row, int64_t column) const
Returns whether the 'column' bit in the 'row' row is set.
void ClearAll(Solver *solver)
Cleans all bits.
int64_t GetFirstBit(int row, int start) const
void SetToZero(Solver *solver, int64_t row, int64_t column)
Erases the 'column' bit in the 'row' row.
void SetToOne(Solver *solver, int64_t row, int64_t column)
Sets the 'column' bit in the 'row' row.
int64_t Cardinality() const
Returns the number of bits set to one.
void ClearAll(Solver *solver)
Cleans all bits.
void SetToZero(Solver *solver, int64_t index)
Erases the 'index' bit.
bool IsCardinalityOne() const
Does it contains only one bit set?
void SetToOne(Solver *solver, int64_t index)
Sets the 'index' bit.
friend class RevBitMatrix
bool IsSet(int64_t index) const
Returns whether the 'index' bit is set.
int64_t GetFirstBit(int start) const
bool IsCardinalityZero() const
Is bitset null?
T At(int64_t index) const
void Insert(const K &key, const V &value)
Inserts (key, value) in the multi-map.
bool ContainsKey(const K &key) const
Returns true if the multi-map contains at least one instance of 'key'.
RevImmutableMultiMap(Solver *const solver, int initial_size)
const V & FindWithDefault(const K &key, const V &default_value) const
RevIntSet(int capacity)
Capacity is the fixed size of the set (it cannot grow).
const T * const_iterator
Iterators on the indices.
void Insert(Solver *const solver, const T &elt)
static constexpr int kNoInserted
const_iterator begin() const
bool IsRanked(int elt) const
void RankLast(Solver *const solver, int elt)
std::string DebugString() const
RevPartialSequence(const std::vector< int > &items)
void RankFirst(Solver *const solver, int elt)
A reversible switch that can switch once from false to true.
void Switch(Solver *const solver)
virtual void OutputLine(const std::string &line)
void AcceptUncheckedNeighbor() override
After accepting an unchecked neighbor during local search.
void EndInitialPropagation() override
After the initial propagation.
void BeginInitialPropagation() override
Before the initial propagation.
void RefuteDecision(Decision *decision) override
Before refuting the decision.
std::string DebugString() const override
void ApplyDecision(Decision *decision) override
Before applying the decision.
A search monitor is a simple set of callbacks to monitor all search events.
SearchMonitor(Solver *const s)
Iterator(const SimpleRevFIFO< T > *l)
void SetLastValue(const T &v)
Sets the last value in the FIFO.
const T * Last() const
Returns the last item of the FIFO.
void Push(Solver *const s, T val)
void PushIfNotTop(Solver *const s, T val)
Pushes the var on top if is not a duplicate of the current top object.
const T & LastValue() const
Returns the last value in the FIFO.
void SetToZero(Solver *solver, int64_t pos)
Erases the 'pos' bit.
SmallRevBitSet(int64_t size)
void SetToOne(Solver *solver, int64_t pos)
Sets the 'pos' bit.
bool IsCardinalityZero() const
Is bitset null?
int64_t Cardinality() const
Returns the number of bits set to one.
int64_t GetFirstOne() const
bool IsCardinalityOne() const
Does it contains only one bit set?
std::function< int64_t(int64_t, int64_t, int64_t)> IndexEvaluator3
void SaveAndSetValue(T *adr, T val)
All-in-one SaveAndSetValue.
const std::vector< ArcId > & ComputeSortedSubDagArcs(NodeId node)
void BuildGraph(int num_nodes)
friend class SymmetryManager
bool Intersects(const std::vector< uint64_t > &mask, int *support_index)
bool RevSubtract(Solver *solver, const std::vector< uint64_t > &mask)
int64_t bit_size() const
Returns the number of bits given in the constructor of the bitset.
int ActiveWordSize() const
bool RevAnd(Solver *solver, const std::vector< uint64_t > &mask)
absl::Status Exists(absl::string_view path, Options options)
For infeasible and unbounded see Not checked if options check_solutions_if_inf_or_unbounded and the If options first_solution_only is false
dual_gradient T(y - `dual_solution`) class DiagonalTrustRegionProblemFromQp
LocalSearchOperator * MakeExtendedSwapActive(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
--— ExtendedSwapActive --—
std::string ParameterDebugString(P param)
bool IsArrayConstant(const std::vector< T > &values, const T &value)
LocalSearchOperator * RelocateAndMakeInactive(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
--— RelocateAndMakeInactive --—
LocalSearchOperator * MakeTSPOpt(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, Solver::IndexEvaluator3 evaluator, int chain_length)
--— TSP-based operators --—
LocalSearchOperator * MakeCross(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class, std::function< const std::vector< int > &(int, int)> get_incoming_neighbors=nullptr, std::function< const std::vector< int > &(int, int)> get_outgoing_neighbors=nullptr)
--— Cross --—
SubDagComputer::ArcId ArcId
Demon * MakeConstraintDemon3(Solver *const s, T *const ct, void(T::*method)(P, Q, R), const std::string &name, P param1, Q param2, R param3)
LocalSearchOperator * MakeSwapActive(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
--— SwapActive --—
LocalSearchOperator * ExchangeAndMakeActive(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
bool AreAllGreaterOrEqual(const std::vector< T > &values, const T &value)
bool AreAllStrictlyPositive(const std::vector< T > &values)
bool IsArrayBoolean(const std::vector< T > &values)
LocalSearchOperator * MakeExchange(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class, std::function< const std::vector< int > &(int, int)> get_incoming_neighbors=nullptr, std::function< const std::vector< int > &(int, int)> get_outgoing_neighbors=nullptr)
--— Exchange --—
LocalSearchOperator * MakeActiveAndRelocate(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
--— MakeActiveAndRelocate --—
bool AreAllBoundOrNull(const std::vector< IntVar * > &vars, const std::vector< T > &values)
int64_t MaxVarArray(const std::vector< IntVar * > &vars)
LocalSearchOperator * MakeTSPLns(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, Solver::IndexEvaluator3 evaluator, int tsp_size)
Demon * MakeConstraintDemon2(Solver *const s, T *const ct, void(T::*method)(P, Q), const std::string &name, P param1, Q param2)
Demon * MakeDelayedConstraintDemon0(Solver *const s, T *const ct, void(T::*method)(), const std::string &name)
Demon * MakeDelayedConstraintDemon2(Solver *const s, T *const ct, void(T::*method)(P, Q), const std::string &name, P param1, Q param2)
ClosedInterval::Iterator end(ClosedInterval interval)
LocalSearchOperator * MakeRelocate(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class, std::function< const std::vector< int > &(int, int)> get_incoming_neighbors=nullptr, std::function< const std::vector< int > &(int, int)> get_outgoing_neighbors=nullptr, int64_t chain_length=1LL, bool single_path=false, const std::string &name="Relocate")
--— Relocate --—
bool AreAllBoundTo(const std::vector< IntVar * > &vars, int64_t value)
Returns true if all variables are assigned to 'value'.
LocalSearchOperator * RelocateAndMakeActive(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
-— RelocateAndMakeActive --—
void FillValues(const std::vector< IntVar * > &vars, std::vector< int64_t > *const values)
bool AreAllBooleans(const std::vector< IntVar * > &vars)
LocalSearchOperator * MakePathLns(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, int number_of_chunks, int chunk_size, bool unactive_fragments)
--— Path-based Large Neighborhood Search --—
int64_t MinVarArray(const std::vector< IntVar * > &vars)
LocalSearchOperator * MakeInactive(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
--— MakeInactive --—
LocalSearchOperator * MakeTwoOpt(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class, std::function< const std::vector< int > &(int, int)> get_incoming_neighbors=nullptr, std::function< const std::vector< int > &(int, int)> get_outgoing_neighbors=nullptr)
--— 2Opt --—
Demon * MakeConstraintDemon0(Solver *const s, T *const ct, void(T::*method)(), const std::string &name)
std::vector< int64_t > ToInt64Vector(const std::vector< int > &input)
bool AreAllPositive(const std::vector< T > &values)
LocalSearchOperator * ExchangePathStartEndsAndMakeActive(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class)
Demon * MakeDelayedConstraintDemon1(Solver *const s, T *const ct, void(T::*method)(P), const std::string &name, P param1)
LocalSearchOperator * MakeSwapActiveChain(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, std::function< int(int64_t)> start_empty_path_class, int max_chain_size)
--— SwapActiveChain --—
LocalSearchOperator * MakeLinKernighan(Solver *solver, const std::vector< IntVar * > &vars, const std::vector< IntVar * > &secondary_vars, const Solver::IndexEvaluator3 &evaluator, bool topt)
--— Lin-Kernighan --—
LocalSearchState::VariableDomainId VariableDomainId
bool IsArrayInRange(const std::vector< IntVar * > &vars, T range_min, T range_max)
Demon * MakeConstraintDemon1(Solver *const s, T *const ct, void(T::*method)(P), const std::string &name, P param1)
bool AreAllOnes(const std::vector< T > &values)
bool AreAllBound(const std::vector< IntVar * > &vars)
uint64_t Hash1(uint64_t value)
Hash functions.
int64_t PosIntDivUp(int64_t e, int64_t v)
SubDagComputer::NodeId NodeId
trees with all degrees equal to
static int input(yyscan_t yyscanner)
#define DEFINE_STRONG_INT_TYPE(type_name, value_type)
ConstraintId constraint_id
VariableDomainId domain_id
Set of parameters used to configure how the neighborhood is traversed.
bool accept_path_end_base
True if path ends should be considered when iterating over neighbors.
std::function< int(int64_t)> start_empty_path_class
std::function< const std::vector< int > &(int, int)> get_outgoing_neighbors
bool skip_locally_optimal_paths
int number_of_base_nodes
Number of nodes needed to define a neighbor.
std::function< const std::vector< int > &(int, int)> get_incoming_neighbors
static const int64_t kint64max
static const int64_t kint64min