Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
sparse_submatrix.cc
Go to the documentation of this file.
1// Copyright 2010-2024 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
15
16#include <algorithm>
17#include <cstdint>
18#include <iterator>
19#include <optional>
20#include <utility>
21#include <vector>
22
23#include "absl/container/flat_hash_map.h"
24#include "absl/types/span.h"
28#include "ortools/math_opt/sparse_containers.pb.h"
29
31namespace {
32
33// A semi-open range [start, end). If end is nullopt, all indices >= start are
34// included.
35struct IndexRange {
36 int64_t start;
37 std::optional<int64_t> end;
38
39 // Returns true if the input value is in the [start, end) range.
40 bool Contains(const int64_t id) const {
41 return id >= start && (!end.has_value() || id < *end);
42 }
43};
44
45} // namespace
46
48 const SparseDoubleMatrixProto& matrix, const int64_t start_row_id,
49 const std::optional<int64_t> end_row_id, const int64_t start_col_id,
50 const std::optional<int64_t> end_col_id) {
51 const int matrix_size = matrix.row_ids_size();
52 CHECK_EQ(matrix_size, matrix.column_ids_size());
53 CHECK_EQ(matrix_size, matrix.coefficients_size());
54 const IndexRange row_range = {.start = start_row_id, .end = end_row_id};
55 const IndexRange col_range = {.start = start_col_id, .end = end_col_id};
56
57 SparseSubmatrixRowsView filtered_rows;
58
59 // row_start, next_row_start and row_end are indices into the matrix data.
60 for (int row_start = 0, next_row_start; row_start < matrix_size;
61 // next_row_start is set from row_end once found at the start of the loop
62 // below.
63 row_start = next_row_start) {
64 // Find the end of the current row such that all index in [start, end) are
65 // for the same row.
66 const int64_t row_id = matrix.row_ids(row_start);
67 int row_end = row_start + 1;
68 while (row_end < matrix_size && matrix.row_ids(row_end) == row_id) {
69 ++row_end;
70 }
71
72 // Prepare the next iteration.
73 next_row_start = row_end;
74
75 // Ignore rows not in the expected range.
76 if (!row_range.Contains(row_id)) {
77 continue;
78 }
79
80 // Finds the first column or the row in the col_range.
81 int row_cols_start = row_start;
82 while (row_cols_start < row_end &&
83 !col_range.Contains(matrix.column_ids(row_cols_start))) {
84 ++row_cols_start;
85 }
86
87 // Finds the first column greater of equal to row_cols_start that is not in
88 // the col_range.
89 int row_cols_end = row_cols_start;
90 while (row_cols_end < row_end &&
91 col_range.Contains(matrix.column_ids(row_cols_end))) {
92 ++row_cols_end;
93 }
94 const int row_cols_len = row_cols_end - row_cols_start;
95
96 if (row_cols_len != 0) {
97 filtered_rows.emplace_back(
98 row_id, MakeView(absl::MakeConstSpan(matrix.column_ids())
99 .subspan(row_cols_start, row_cols_len),
100 absl::MakeConstSpan(matrix.coefficients())
101 .subspan(row_cols_start, row_cols_len)));
102 }
103 }
104
105 return filtered_rows;
106}
107
108std::vector<std::pair<int64_t, SparseVector<double>>> TransposeSparseSubmatrix(
109 const SparseSubmatrixRowsView& submatrix_by_rows) {
110 // Extract the columns by iterating on the filtered views of the rows (the
111 // matrix is row major).
112 absl::flat_hash_map<int64_t, SparseVector<double>> filtered_columns;
113 for (const auto& [row_id, column_values] : submatrix_by_rows) {
114 for (const auto [column_id, value] : column_values) {
115 SparseVector<double>& row_values = filtered_columns[column_id];
116 row_values.ids.push_back(row_id);
117 row_values.values.push_back(value);
118 }
119 }
120
121 // The output should be sorted by column id.
122 std::vector<std::pair<int64_t, SparseVector<double>>> sorted_filtered_columns(
123 std::make_move_iterator(filtered_columns.begin()),
124 std::make_move_iterator(filtered_columns.end()));
125 std::sort(sorted_filtered_columns.begin(), sorted_filtered_columns.end(),
126 [](const std::pair<int64_t, SparseVector<double>>& lhs,
127 const std::pair<int64_t, SparseVector<double>>& rhs) {
128 return lhs.first < rhs.first;
129 });
130
131 return sorted_filtered_columns;
132}
133
134} // namespace operations_research::math_opt
int64_t value
An object oriented wrapper for quadratic constraints in ModelStorage.
Definition gurobi_isv.cc:28
SparseVectorView< T > MakeView(absl::Span< const int64_t > ids, const Collection &values)
std::vector< std::pair< int64_t, SparseVector< double > > > TransposeSparseSubmatrix(const SparseSubmatrixRowsView &submatrix_by_rows)
std::vector< std::pair< int64_t, SparseVectorView< double > > > SparseSubmatrixRowsView
SparseSubmatrixRowsView SparseSubmatrixByRows(const SparseDoubleMatrixProto &matrix, const int64_t start_row_id, const std::optional< int64_t > end_row_id, const int64_t start_col_id, const std::optional< int64_t > end_col_id)
std::optional< int64_t > end
int64_t start
std::vector< int64_t > ids
Should be sorted (in increasing order) with all elements distinct.
std::vector< T > values
Must have equal length to ids.