Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
one_tree_lower_bound.h
Go to the documentation of this file.
1// Copyright 2010-2024 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
14// An implementation of the Held-Karp symmetric Traveling Salesman (TSP) lower
15// bound algorithm, inspired by "Estimating the Held-Karp lower bound for the
16// geometric TSP" by Christine L. Valenzuela and Antonia J. Jones, European
17// Journal of Operational Research, Volume 102, Issue 1, 1 October 1997,
18// Pages 157-175.
19//
20// The idea is to compute minimum 1-trees to evaluate a lower bound to the
21// corresponding TSP. A minimum 1-tree is a minimum spanning tree on all nodes
22// but one, to which are added the two shortest edges from the left-out node to
23// the nodes of the spanning tree. The sum of the cost of the edges of the
24// minimum 1-tree is a lower bound to the cost of the TSP.
25// In order to improve (increase) this lower bound, the idea is to add weights
26// to each nodes, weights which are added to the cost function used when
27// computing the 1-tree. If weight[i] is the weight of node i, the cost function
28// therefore becomes weighed_cost(i,j) = cost(i,j) + weight[i] + weight[j]. One
29// can see that w = weighed_cost(minimum 1-tree) - Sum(2 * weight[i])
30// = cost(minimum 1-tree) + Sum(weight[i] * (degree[i] - 2))
31// is a valid lower bound to the TSP:
32// 1) let T be the set of 1-trees on the nodes;
33// 2) let U be the set of tours on the nodes; U is a subset of T (tours are
34// 1-trees with all degrees equal to 2), therefore:
35// min(t in T) Cost(t) <= min(t in U) Cost(t)
36// and
37// min(t in T) WeighedCost(t) <= min(t in U) WeighedCost(t)
38// 3) weighed_cost(i,j) = cost(i,j) + weight[i] + weight[j], therefore:
39// for all t in T, WeighedCost(t) = Cost(t) + Sum(weight[i] * degree[i])
40// and
41// for all i in U, WeighedCost(t) = Cost(t) + Sum(weight[i] * 2)
42// 4) let t* in U s.t. WeighedCost(t*) = min(t in U) WeighedCost(t), therefore:
43// min(t in T) (Cost(t) + Sum(weight[i] * degree[i]))
44// <= Cost(t*) + Sum(weight[i] * 2)
45// and
46// min(t in T) (Cost(t) + Sum(weight[i] * (degree[i] - 2))) <= Cost(t*)
47// and
48// cost(minimum 1-tree) + Sum(weight[i] * (degree[i] - 2)) <= Cost(t*)
49// and
50// w <= Cost(t*)
51// 5) because t* is also the tour minimizing Cost(t) with t in U (weights do not
52// affect the optimality of a tour), Cost(t*) is the cost of the optimal
53// solution to the TSP and w is a lower bound to this cost.
54//
55// The best lower bound is the one for which weights maximize w. Intuitively as
56// degrees get closer to 2 the minimum 1-trees gets closer to a tour.
57//
58// At each iteration m, weights are therefore updated as follows:
59// weight(m+1)[i] = weight(m)[i] + step(m) * (degree(m)[i] - 2)
60// where degree(m)[i] is the degree of node i in the 1-tree at iteration i,
61// step(m) is a subgradient optimization step.
62//
63// This implementation uses two variants of Held-Karp's initial subgradient
64// optimization iterative estimation approach described in "The
65// traveling-salesman problem and minimum spanning trees: Part I and II", by
66// Michael Held and Richard M. Karp, Operations Research Vol. 18,
67// No. 6 (Nov. - Dec., 1970), pp. 1138-1162 and Mathematical Programming (1971).
68//
69// The first variant comes from Volgenant, T., and Jonker, R. (1982), "A branch
70// and bound algorithm for the symmetric traveling salesman problem based on the
71// 1-tree relaxation", European Journal of Operational Research. 9:83-89.".
72// It suggests using
73// step(m) = (1.0 * (m - 1) * (2 * M - 5) / (2 * (M - 1))) * step1
74// - (m - 2) * step1
75// + (0.5 * (m - 1) * (m - 2) / ((M - 1) * (M - 2))) * step1
76// where M is the maximum number of iterations and step1 is initially set to
77// L / (2 * number of nodes), where L is the un-weighed cost of the 1-tree;
78// step1 is updated each time a better w is found. The intuition is to have a
79// positive decreasing step which is equal to 0 after M iterations; Volgenant
80// and Jonker suggest that:
81// step(m) - 2 * step(m-1) + t(m-2) = constant,
82// step(M) = 0
83// and
84// step(1) - step(2) = 3 * (step(M-1) - step(M)).
85// The step(m) formula above derives from this recursive formulation.
86// This is the default algorithm used in this implementation.
87//
88// The second variant comes from Held, M., Wolfe, P., and Crowder, H. P. (1974),
89// "Validation of subgradient optimization", Mathematical Programming 6:62-88.
90// It derives from the original Held-Karp formulation:
91// step(m) = lambda(m) * (wlb - w(m)) / Sum((degree[i] - 2)^2),
92// where wlb is a lower bound to max(w(m)) and lambda(m) in [0, 2].
93// Help-Karp prove that
94// if w(m') > w(m) and 0 < step < 2 * (w(m') - w(m))/norm(degree(m) - 2)^2,
95// then weight(m+1) is closer to w' than w from which they derive the above
96// formula.
97// Held-Wolfe-Crowder show that using an overestimate UB is as effective as
98// using the underestimate wlb while UB is easier to compute. The resulting
99// formula is:
100// step(m) = lambda(m) * (UB - w(m)) / Sum((degree[i] - 2)^2),
101// where UB is an upper bound to the TSP (here computed with the Christofides
102// algorithm), and lambda(m) in [0, 2] initially set to 2. Held-Wolfe-Crowder
103// suggest running the algorithm for M = 2 * number of nodes iterations, then
104// dividing lambda and M by 2 until M is small enough (less than 2 in this
105// implementation).
106//
107// To speed up the computation, minimum spanning trees are actually computed on
108// a graph limited to the nearest neighbors of each node. Valenzuela-Jones 1997
109// experiments have shown that this does not harm the lower bound computation
110// significantly. At the end of the algorithm a last iteration is run on the
111// complete graph to ensure the bound is correct (the cost of a minimum 1-tree
112// on a partial graph is an upper bound to the one on a complete graph).
113//
114// Usage:
115// std::function<int64_t(int,int)> cost_function =...;
116// const double lower_bound =
117// ComputeOneTreeLowerBound(number_of_nodes, cost_function);
118// where number_of_nodes is the number of nodes in the TSP and cost_function
119// is a function returning the cost between two nodes.
120
121#ifndef OR_TOOLS_GRAPH_ONE_TREE_LOWER_BOUND_H_
122#define OR_TOOLS_GRAPH_ONE_TREE_LOWER_BOUND_H_
123
124#include <cmath>
125#include <cstdint>
126#include <limits>
127#include <set>
128#include <utility>
129#include <vector>
130
131#include "absl/types/span.h"
132#include "ortools/base/logging.h"
134#include "ortools/graph/graph.h"
136
137namespace operations_research {
138
139// Implementation of algorithms computing Held-Karp bounds. They have to provide
140// the following methods:
141// - bool Next(): returns false when the algorithm must stop;
142// - double GetStep(): returns the current step computed by the algorithm;
143// - void OnOneTree(CostType one_tree_cost,
144// double w,
145// const std::vector<int>& degrees):
146// called each time a new minimum 1-tree is computed;
147// - one_tree_cost: the un-weighed cost of the 1-tree,
148// - w the current value of w,
149// - degrees: the degree of nodes in the 1-tree.
150// - OnNewWMax(CostType one_tree_cost): called when a better value of w is
151// found, one_tree_cost being the un-weighed cost of the corresponding
152// minimum 1-tree.
153
154// Implementation of the Volgenant Jonker algorithm (see the comments at the
155// head of the file for explanations).
156template <typename CostType>
157class VolgenantJonkerEvaluator {
158 public:
159 VolgenantJonkerEvaluator(int number_of_nodes, int max_iterations)
160 : step1_initialized_(false),
161 step1_(0),
162 iteration_(0),
163 max_iterations_(max_iterations > 0 ? max_iterations
164 : MaxIterations(number_of_nodes)),
165 number_of_nodes_(number_of_nodes) {}
166
167 bool Next() { return iteration_++ < max_iterations_; }
168
169 double GetStep() const {
170 return (1.0 * (iteration_ - 1) * (2 * max_iterations_ - 5) /
171 (2 * (max_iterations_ - 1))) *
172 step1_ -
173 (iteration_ - 2) * step1_ +
174 (0.5 * (iteration_ - 1) * (iteration_ - 2) /
175 ((max_iterations_ - 1) * (max_iterations_ - 2))) *
176 step1_;
177 }
178
179 void OnOneTree(CostType one_tree_cost, double w,
180 absl::Span<const int> degrees) {
181 if (!step1_initialized_) {
182 step1_initialized_ = true;
183 UpdateStep(one_tree_cost);
184 }
185 }
186
187 void OnNewWMax(CostType one_tree_cost) { UpdateStep(one_tree_cost); }
188
189 private:
190 // Automatic computation of the number of iterations based on empirical
191 // results given in Valenzuela-Jones 1997.
192 static int MaxIterations(int number_of_nodes) {
193 return static_cast<int>(28 * std::pow(number_of_nodes, 0.62));
194 }
195
196 void UpdateStep(CostType one_tree_cost) {
197 step1_ = one_tree_cost / (2 * number_of_nodes_);
198 }
199
200 bool step1_initialized_;
201 double step1_;
202 int iteration_;
203 const int max_iterations_;
204 const int number_of_nodes_;
205};
206
207// Implementation of the Held-Wolfe-Crowder algorithm (see the comments at the
208// head of the file for explanations).
209template <typename CostType, typename CostFunction>
210class HeldWolfeCrowderEvaluator {
211 public:
212 HeldWolfeCrowderEvaluator(int number_of_nodes, const CostFunction& cost)
213 : iteration_(0),
214 number_of_iterations_(2 * number_of_nodes),
215 upper_bound_(0),
216 lambda_(2.0),
217 step_(0) {
218 // TODO(user): Improve upper bound with some local search; tighter upper
219 // bounds lead to faster convergence.
220 ChristofidesPathSolver<CostType, int64_t, int, CostFunction> solver(
221 number_of_nodes, cost);
222 upper_bound_ = solver.TravelingSalesmanCost();
223 }
224
225 bool Next() {
226 const int min_iterations = 2;
227 if (iteration_ >= number_of_iterations_) {
228 number_of_iterations_ /= 2;
229 if (number_of_iterations_ < min_iterations) return false;
230 iteration_ = 0;
231 lambda_ /= 2;
232 } else {
233 ++iteration_;
234 }
235 return true;
236 }
237
238 double GetStep() const { return step_; }
239
240 void OnOneTree(CostType one_tree_cost, double w,
241 absl::Span<const int> degrees) {
242 double norm = 0;
243 for (int degree : degrees) {
244 const double delta = degree - 2;
245 norm += delta * delta;
246 }
247 step_ = lambda_ * (upper_bound_ - w) / norm;
248 }
249
250 void OnNewWMax(CostType one_tree_cost) {}
251
252 private:
253 int iteration_;
254 int number_of_iterations_;
255 CostType upper_bound_;
256 double lambda_;
257 double step_;
258};
259
260// Computes the nearest neighbors of each node for the given cost function.
261// The ith element of the returned vector contains the indices of the nearest
262// nodes to node i. Note that these indices contain the number_of_neighbors
263// nearest neighbors as well as all the nodes for which i is a nearest
264// neighbor.
265template <typename CostFunction>
266std::set<std::pair<int, int>> NearestNeighbors(int number_of_nodes,
267 int number_of_neighbors,
268 const CostFunction& cost) {
269 using CostType = decltype(cost(0, 0));
270 std::set<std::pair<int, int>> nearest;
271 for (int i = 0; i < number_of_nodes; ++i) {
272 std::vector<std::pair<CostType, int>> neighbors;
273 neighbors.reserve(number_of_nodes - 1);
274 for (int j = 0; j < number_of_nodes; ++j) {
275 if (i != j) {
276 neighbors.emplace_back(cost(i, j), j);
277 }
278 }
279 int size = neighbors.size();
280 if (number_of_neighbors < size) {
281 std::nth_element(neighbors.begin(),
282 neighbors.begin() + number_of_neighbors - 1,
283 neighbors.end());
284 size = number_of_neighbors;
285 }
286 for (int j = 0; j < size; ++j) {
287 nearest.insert({i, neighbors[j].second});
288 nearest.insert({neighbors[j].second, i});
289 }
290 }
291 return nearest;
292}
293
294// Let G be the complete graph on nodes in [0, number_of_nodes - 1]. Adds arcs
295// from the minimum spanning tree of G to the arcs set argument.
296template <typename CostFunction>
297void AddArcsFromMinimumSpanningTree(int number_of_nodes,
298 const CostFunction& cost,
299 std::set<std::pair<int, int>>* arcs) {
300 util::CompleteGraph<int, int> graph(number_of_nodes);
301 const std::vector<int> mst =
303 return cost(graph.Tail(arc), graph.Head(arc));
304 });
305 for (int arc : mst) {
306 arcs->insert({graph.Tail(arc), graph.Head(arc)});
307 arcs->insert({graph.Head(arc), graph.Tail(arc)});
308 }
309}
310
311// Returns the index of the node in graph which minimizes cost(node, source)
312// with the constraint that accept(node) is true.
313template <typename CostFunction, typename GraphType, typename AcceptFunction>
314int GetNodeMinimizingEdgeCostToSource(const GraphType& graph, int source,
315 const CostFunction& cost,
316 AcceptFunction accept) {
317 int best_node = -1;
318 double best_edge_cost = 0;
319 for (const auto node : graph.AllNodes()) {
320 if (accept(node)) {
321 const double edge_cost = cost(node, source);
322 if (best_node == -1 || edge_cost < best_edge_cost) {
323 best_node = node;
324 best_edge_cost = edge_cost;
325 }
326 }
327 }
328 return best_node;
329}
330
331// Computes a 1-tree for the given graph, cost function and node weights.
332// Returns the degree of each node in the 1-tree and the un-weighed cost of the
333// 1-tree.
334template <typename CostFunction, typename GraphType, typename CostType>
335std::vector<int> ComputeOneTree(const GraphType& graph,
336 const CostFunction& cost,
337 absl::Span<const double> weights,
338 absl::Span<const int> sorted_arcs,
339 CostType* one_tree_cost) {
340 const auto weighed_cost = [&cost, weights](int from, int to) {
341 return cost(from, to) + weights[from] + weights[to];
342 };
343 // Compute MST on graph.
344 std::vector<int> mst;
345 if (!sorted_arcs.empty()) {
347 sorted_arcs);
348 } else {
350 graph, [&weighed_cost, &graph](int arc) {
351 return weighed_cost(graph.Tail(arc), graph.Head(arc));
352 });
353 }
354 std::vector<int> degrees(graph.num_nodes() + 1, 0);
355 *one_tree_cost = 0;
356 for (int arc : mst) {
357 degrees[graph.Head(arc)]++;
358 degrees[graph.Tail(arc)]++;
359 *one_tree_cost += cost(graph.Tail(arc), graph.Head(arc));
360 }
361 // Add 2 cheapest edges from the nodes in the graph to the extra node not in
362 // the graph.
363 const int extra_node = graph.num_nodes();
364 const auto update_one_tree = [extra_node, one_tree_cost, &degrees,
365 &cost](int node) {
366 *one_tree_cost += cost(node, extra_node);
367 degrees.back()++;
368 degrees[node]++;
369 };
370 const int node = GetNodeMinimizingEdgeCostToSource(
371 graph, extra_node, weighed_cost,
372 [extra_node](int n) { return n != extra_node; });
373 update_one_tree(node);
374 update_one_tree(GetNodeMinimizingEdgeCostToSource(
375 graph, extra_node, weighed_cost,
376 [extra_node, node](int n) { return n != extra_node && n != node; }));
377 return degrees;
378}
379
380// Computes the lower bound of a TSP using a given subgradient algorithm.
381template <typename CostFunction, typename Algorithm>
382double ComputeOneTreeLowerBoundWithAlgorithm(int number_of_nodes,
383 int nearest_neighbors,
384 const CostFunction& cost,
385 Algorithm* algorithm) {
386 if (number_of_nodes < 2) return 0;
387 if (number_of_nodes == 2) return cost(0, 1) + cost(1, 0);
388 using CostType = decltype(cost(0, 0));
389 auto nearest = NearestNeighbors(number_of_nodes - 1, nearest_neighbors, cost);
390 // Ensure nearest arcs result in a connected graph by adding arcs from the
391 // minimum spanning tree; this will add arcs which are likely to be "good"
392 // 1-tree arcs.
393 AddArcsFromMinimumSpanningTree(number_of_nodes - 1, cost, &nearest);
394 util::ListGraph<int, int> graph(number_of_nodes - 1, nearest.size());
395 for (const auto& arc : nearest) {
396 graph.AddArc(arc.first, arc.second);
397 }
398 std::vector<double> weights(number_of_nodes, 0);
399 std::vector<double> best_weights(number_of_nodes, 0);
400 double max_w = -std::numeric_limits<double>::infinity();
401 double w = 0;
402 // Iteratively compute lower bound using a partial graph.
403 while (algorithm->Next()) {
404 CostType one_tree_cost = 0;
405 const std::vector<int> degrees =
406 ComputeOneTree(graph, cost, weights, {}, &one_tree_cost);
407 algorithm->OnOneTree(one_tree_cost, w, degrees);
408 w = one_tree_cost;
409 for (int j = 0; j < number_of_nodes; ++j) {
410 w += weights[j] * (degrees[j] - 2);
411 }
412 if (w > max_w) {
413 max_w = w;
414 best_weights = weights;
415 algorithm->OnNewWMax(one_tree_cost);
416 }
417 const double step = algorithm->GetStep();
418 for (int j = 0; j < number_of_nodes; ++j) {
419 weights[j] += step * (degrees[j] - 2);
420 }
421 }
422 // Compute lower bound using the complete graph on the best weights. This is
423 // necessary as the MSTs computed on nearest neighbors is not guaranteed to
424 // lead to a lower bound.
425 util::CompleteGraph<int, int> complete_graph(number_of_nodes - 1);
426 CostType one_tree_cost = 0;
427 // TODO(user): We are not caching here since this would take O(n^2) memory;
428 // however the Kruskal algorithm will expand all arcs also consuming O(n^2)
429 // memory; investigate alternatives to expanding all arcs (Prim's algorithm).
430 const std::vector<int> degrees =
431 ComputeOneTree(complete_graph, cost, best_weights, {}, &one_tree_cost);
432 w = one_tree_cost;
433 for (int j = 0; j < number_of_nodes; ++j) {
434 w += best_weights[j] * (degrees[j] - 2);
435 }
436 return w;
437}
438
439// Parameters to configure the computation of the TSP lower bound.
440struct TravelingSalesmanLowerBoundParameters {
441 enum Algorithm {
442 VolgenantJonker,
443 HeldWolfeCrowder,
444 };
445 // Subgradient algorithm to use to compute the TSP lower bound.
446 Algorithm algorithm = VolgenantJonker;
447 // Number of iterations to use in the Volgenant-Jonker algorithm. Overrides
448 // automatic iteration computation if positive.
449 int volgenant_jonker_iterations = 0;
450 // Number of nearest neighbors to consider in the miminum spanning trees.
451 int nearest_neighbors = 40;
452};
453
454// Computes the lower bound of a TSP using given parameters.
455template <typename CostFunction>
456double ComputeOneTreeLowerBoundWithParameters(
457 int number_of_nodes, const CostFunction& cost,
458 const TravelingSalesmanLowerBoundParameters& parameters) {
459 using CostType = decltype(cost(0, 0));
460 switch (parameters.algorithm) {
461 case TravelingSalesmanLowerBoundParameters::VolgenantJonker: {
462 VolgenantJonkerEvaluator<CostType> algorithm(
463 number_of_nodes, parameters.volgenant_jonker_iterations);
464 return ComputeOneTreeLowerBoundWithAlgorithm(
465 number_of_nodes, parameters.nearest_neighbors, cost, &algorithm);
466 break;
467 }
468 case TravelingSalesmanLowerBoundParameters::HeldWolfeCrowder: {
469 HeldWolfeCrowderEvaluator<CostType, CostFunction> algorithm(
470 number_of_nodes, cost);
471 return ComputeOneTreeLowerBoundWithAlgorithm(
472 number_of_nodes, parameters.nearest_neighbors, cost, &algorithm);
473 }
474 default:
475 LOG(ERROR) << "Unsupported algorithm: " << parameters.algorithm;
476 return 0;
477 }
478}
479
480// Computes the lower bound of a TSP using default parameters (Volgenant-Jonker
481// algorithm, 200 iterations and 40 nearest neighbors) which have turned out to
482// give good results on the TSPLIB.
483template <typename CostFunction>
484double ComputeOneTreeLowerBound(int number_of_nodes, const CostFunction& cost) {
485 TravelingSalesmanLowerBoundParameters parameters;
486 return ComputeOneTreeLowerBoundWithParameters(number_of_nodes, cost,
487 parameters);
488}
489
490} // namespace operations_research
491
492#endif // OR_TOOLS_GRAPH_ONE_TREE_LOWER_BOUND_H_
IntegerValue size
SatParameters parameters
GraphType graph
int arc
In SWIG mode, we don't want anything besides these top-level includes.
std::vector< typename Graph::ArcIndex > BuildPrimMinimumSpanningTree(const Graph &graph, const ArcValue &arc_value)
std::vector< typename Graph::ArcIndex > BuildKruskalMinimumSpanningTreeFromSortedArcs(const Graph &graph, absl::Span< const typename Graph::ArcIndex > sorted_arcs)
void OnOneTree(CostType one_tree_cost, double w, absl::Span< const int > degrees)
trees with all degrees equal w the current value of w
void OnNewWMax(CostType one_tree_cost)
bool Next()
double GetStep() const
trees with all degrees equal to
trees with all degrees equal w the current value of int max_iterations
trees with all degrees equal w the current value of degrees
int64_t delta
Definition resource.cc:1709