Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
com.google.ortools.sat.SymmetryProtoOrBuilder Interface Reference
Inheritance diagram for com.google.ortools.sat.SymmetryProtoOrBuilder:
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder

Public Member Functions

java.util.List< com.google.ortools.sat.SparsePermutationProtogetPermutationsList ()
 
com.google.ortools.sat.SparsePermutationProto getPermutations (int index)
 
int getPermutationsCount ()
 
java.util.List<? extends com.google.ortools.sat.SparsePermutationProtoOrBuildergetPermutationsOrBuilderList ()
 
com.google.ortools.sat.SparsePermutationProtoOrBuilder getPermutationsOrBuilder (int index)
 
java.util.List< com.google.ortools.sat.DenseMatrixProtogetOrbitopesList ()
 
com.google.ortools.sat.DenseMatrixProto getOrbitopes (int index)
 
int getOrbitopesCount ()
 
java.util.List<? extends com.google.ortools.sat.DenseMatrixProtoOrBuildergetOrbitopesOrBuilderList ()
 
com.google.ortools.sat.DenseMatrixProtoOrBuilder getOrbitopesOrBuilder (int index)
 

Detailed Description

Definition at line 7 of file SymmetryProtoOrBuilder.java.

Member Function Documentation

◆ getOrbitopes()

com.google.ortools.sat.DenseMatrixProto com.google.ortools.sat.SymmetryProtoOrBuilder.getOrbitopes ( int index)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getOrbitopesCount()

int com.google.ortools.sat.SymmetryProtoOrBuilder.getOrbitopesCount ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getOrbitopesList()

java.util.List< com.google.ortools.sat.DenseMatrixProto > com.google.ortools.sat.SymmetryProtoOrBuilder.getOrbitopesList ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getOrbitopesOrBuilder()

com.google.ortools.sat.DenseMatrixProtoOrBuilder com.google.ortools.sat.SymmetryProtoOrBuilder.getOrbitopesOrBuilder ( int index)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getOrbitopesOrBuilderList()

java.util.List<? extends com.google.ortools.sat.DenseMatrixProtoOrBuilder > com.google.ortools.sat.SymmetryProtoOrBuilder.getOrbitopesOrBuilderList ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getPermutations()

com.google.ortools.sat.SparsePermutationProto com.google.ortools.sat.SymmetryProtoOrBuilder.getPermutations ( int index)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getPermutationsCount()

int com.google.ortools.sat.SymmetryProtoOrBuilder.getPermutationsCount ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getPermutationsList()

java.util.List< com.google.ortools.sat.SparsePermutationProto > com.google.ortools.sat.SymmetryProtoOrBuilder.getPermutationsList ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getPermutationsOrBuilder()

com.google.ortools.sat.SparsePermutationProtoOrBuilder com.google.ortools.sat.SymmetryProtoOrBuilder.getPermutationsOrBuilder ( int index)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.

◆ getPermutationsOrBuilderList()

java.util.List<? extends com.google.ortools.sat.SparsePermutationProtoOrBuilder > com.google.ortools.sat.SymmetryProtoOrBuilder.getPermutationsOrBuilderList ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implemented in com.google.ortools.sat.SymmetryProto.Builder, and com.google.ortools.sat.SymmetryProto.


The documentation for this interface was generated from the following file: