Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
com.google.ortools.sat.SymmetryProto.Builder Class Reference
Inheritance diagram for com.google.ortools.sat.SymmetryProto.Builder:
com.google.ortools.sat.SymmetryProtoOrBuilder

Public Member Functions

Builder clear ()
 
com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()
 
com.google.ortools.sat.SymmetryProto getDefaultInstanceForType ()
 
com.google.ortools.sat.SymmetryProto build ()
 
com.google.ortools.sat.SymmetryProto buildPartial ()
 
Builder mergeFrom (com.google.protobuf.Message other)
 
Builder mergeFrom (com.google.ortools.sat.SymmetryProto other)
 
final boolean isInitialized ()
 
Builder mergeFrom (com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException
 
java.util.List< com.google.ortools.sat.SparsePermutationProtogetPermutationsList ()
 
int getPermutationsCount ()
 
com.google.ortools.sat.SparsePermutationProto getPermutations (int index)
 
Builder setPermutations (int index, com.google.ortools.sat.SparsePermutationProto value)
 
Builder setPermutations (int index, com.google.ortools.sat.SparsePermutationProto.Builder builderForValue)
 
Builder addPermutations (com.google.ortools.sat.SparsePermutationProto value)
 
Builder addPermutations (int index, com.google.ortools.sat.SparsePermutationProto value)
 
Builder addPermutations (com.google.ortools.sat.SparsePermutationProto.Builder builderForValue)
 
Builder addPermutations (int index, com.google.ortools.sat.SparsePermutationProto.Builder builderForValue)
 
Builder addAllPermutations (java.lang.Iterable<? extends com.google.ortools.sat.SparsePermutationProto > values)
 
Builder clearPermutations ()
 
Builder removePermutations (int index)
 
com.google.ortools.sat.SparsePermutationProto.Builder getPermutationsBuilder (int index)
 
com.google.ortools.sat.SparsePermutationProtoOrBuilder getPermutationsOrBuilder (int index)
 
java.util.List<? extends com.google.ortools.sat.SparsePermutationProtoOrBuildergetPermutationsOrBuilderList ()
 
com.google.ortools.sat.SparsePermutationProto.Builder addPermutationsBuilder ()
 
com.google.ortools.sat.SparsePermutationProto.Builder addPermutationsBuilder (int index)
 
java.util.List< com.google.ortools.sat.SparsePermutationProto.BuildergetPermutationsBuilderList ()
 
java.util.List< com.google.ortools.sat.DenseMatrixProtogetOrbitopesList ()
 
int getOrbitopesCount ()
 
com.google.ortools.sat.DenseMatrixProto getOrbitopes (int index)
 
Builder setOrbitopes (int index, com.google.ortools.sat.DenseMatrixProto value)
 
Builder setOrbitopes (int index, com.google.ortools.sat.DenseMatrixProto.Builder builderForValue)
 
Builder addOrbitopes (com.google.ortools.sat.DenseMatrixProto value)
 
Builder addOrbitopes (int index, com.google.ortools.sat.DenseMatrixProto value)
 
Builder addOrbitopes (com.google.ortools.sat.DenseMatrixProto.Builder builderForValue)
 
Builder addOrbitopes (int index, com.google.ortools.sat.DenseMatrixProto.Builder builderForValue)
 
Builder addAllOrbitopes (java.lang.Iterable<? extends com.google.ortools.sat.DenseMatrixProto > values)
 
Builder clearOrbitopes ()
 
Builder removeOrbitopes (int index)
 
com.google.ortools.sat.DenseMatrixProto.Builder getOrbitopesBuilder (int index)
 
com.google.ortools.sat.DenseMatrixProtoOrBuilder getOrbitopesOrBuilder (int index)
 
java.util.List<? extends com.google.ortools.sat.DenseMatrixProtoOrBuildergetOrbitopesOrBuilderList ()
 
com.google.ortools.sat.DenseMatrixProto.Builder addOrbitopesBuilder ()
 
com.google.ortools.sat.DenseMatrixProto.Builder addOrbitopesBuilder (int index)
 
java.util.List< com.google.ortools.sat.DenseMatrixProto.BuildergetOrbitopesBuilderList ()
 

Static Public Member Functions

static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
 

Protected Member Functions

com.google.protobuf.GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable ()
 

Detailed Description

EXPERIMENTAL. For now, this is meant to be used by the solver and not filled
by clients.

Hold symmetry information about the set of feasible solutions. If we permute
the variable values of any feasible solution using one of the permutation
described here, we should always get another feasible solution.

We usually also enforce that the objective of the new solution is the same.

The group of permutations encoded here is usually computed from the encoding
of the model, so it is not meant to be a complete representation of the
feasible solution symmetries, just a valid subgroup.

Protobuf type operations_research.sat.SymmetryProto

Definition at line 424 of file SymmetryProto.java.

Member Function Documentation

◆ addAllOrbitopes()

Builder com.google.ortools.sat.SymmetryProto.Builder.addAllOrbitopes ( java.lang.Iterable<? extends com.google.ortools.sat.DenseMatrixProto > values)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1264 of file SymmetryProto.java.

◆ addAllPermutations()

Builder com.google.ortools.sat.SymmetryProto.Builder.addAllPermutations ( java.lang.Iterable<? extends com.google.ortools.sat.SparsePermutationProto > values)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 856 of file SymmetryProto.java.

◆ addOrbitopes() [1/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes ( com.google.ortools.sat.DenseMatrixProto value)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1155 of file SymmetryProto.java.

◆ addOrbitopes() [2/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes ( com.google.ortools.sat.DenseMatrixProto.Builder builderForValue)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1212 of file SymmetryProto.java.

◆ addOrbitopes() [3/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes ( int index,
com.google.ortools.sat.DenseMatrixProto value )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1183 of file SymmetryProto.java.

◆ addOrbitopes() [4/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes ( int index,
com.google.ortools.sat.DenseMatrixProto.Builder builderForValue )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1238 of file SymmetryProto.java.

◆ addOrbitopesBuilder() [1/2]

com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1405 of file SymmetryProto.java.

◆ addOrbitopesBuilder() [2/2]

com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder ( int index)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1424 of file SymmetryProto.java.

◆ addPermutations() [1/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations ( com.google.ortools.sat.SparsePermutationProto value)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 771 of file SymmetryProto.java.

◆ addPermutations() [2/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations ( com.google.ortools.sat.SparsePermutationProto.Builder builderForValue)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 816 of file SymmetryProto.java.

◆ addPermutations() [3/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations ( int index,
com.google.ortools.sat.SparsePermutationProto value )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 793 of file SymmetryProto.java.

◆ addPermutations() [4/4]

Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations ( int index,
com.google.ortools.sat.SparsePermutationProto.Builder builderForValue )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 836 of file SymmetryProto.java.

◆ addPermutationsBuilder() [1/2]

com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 961 of file SymmetryProto.java.

◆ addPermutationsBuilder() [2/2]

com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder ( int index)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 974 of file SymmetryProto.java.

◆ build()

com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.build ( )

Definition at line 484 of file SymmetryProto.java.

◆ buildPartial()

com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.buildPartial ( )

Definition at line 493 of file SymmetryProto.java.

◆ clear()

Builder com.google.ortools.sat.SymmetryProto.Builder.clear ( )

Definition at line 452 of file SymmetryProto.java.

◆ clearOrbitopes()

Builder com.google.ortools.sat.SymmetryProto.Builder.clearOrbitopes ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1291 of file SymmetryProto.java.

◆ clearPermutations()

Builder com.google.ortools.sat.SymmetryProto.Builder.clearPermutations ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 877 of file SymmetryProto.java.

◆ getDefaultInstanceForType()

com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.getDefaultInstanceForType ( )

Definition at line 479 of file SymmetryProto.java.

◆ getDescriptor()

static final com.google.protobuf.Descriptors.Descriptor com.google.ortools.sat.SymmetryProto.Builder.getDescriptor ( )
static

Definition at line 429 of file SymmetryProto.java.

◆ getDescriptorForType()

com.google.protobuf.Descriptors.Descriptor com.google.ortools.sat.SymmetryProto.Builder.getDescriptorForType ( )

Definition at line 474 of file SymmetryProto.java.

◆ getOrbitopes()

com.google.ortools.sat.DenseMatrixProto com.google.ortools.sat.SymmetryProto.Builder.getOrbitopes ( int index)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 1078 of file SymmetryProto.java.

◆ getOrbitopesBuilder()

com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilder ( int index)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1341 of file SymmetryProto.java.

◆ getOrbitopesBuilderList()

java.util.List< com.google.ortools.sat.DenseMatrixProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilderList ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1445 of file SymmetryProto.java.

◆ getOrbitopesCount()

int com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesCount ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 1056 of file SymmetryProto.java.

◆ getOrbitopesList()

java.util.List< com.google.ortools.sat.DenseMatrixProto > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesList ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 1034 of file SymmetryProto.java.

◆ getOrbitopesOrBuilder()

com.google.ortools.sat.DenseMatrixProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilder ( int index)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 1360 of file SymmetryProto.java.

◆ getOrbitopesOrBuilderList()

java.util.List<? extends com.google.ortools.sat.DenseMatrixProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilderList ( )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 1383 of file SymmetryProto.java.

◆ getPermutations()

com.google.ortools.sat.SparsePermutationProto com.google.ortools.sat.SymmetryProto.Builder.getPermutations ( int index)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 712 of file SymmetryProto.java.

◆ getPermutationsBuilder()

com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilder ( int index)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 915 of file SymmetryProto.java.

◆ getPermutationsBuilderList()

java.util.List< com.google.ortools.sat.SparsePermutationProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilderList ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 989 of file SymmetryProto.java.

◆ getPermutationsCount()

int com.google.ortools.sat.SymmetryProto.Builder.getPermutationsCount ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 696 of file SymmetryProto.java.

◆ getPermutationsList()

java.util.List< com.google.ortools.sat.SparsePermutationProto > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsList ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 680 of file SymmetryProto.java.

◆ getPermutationsOrBuilder()

com.google.ortools.sat.SparsePermutationProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilder ( int index)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 928 of file SymmetryProto.java.

◆ getPermutationsOrBuilderList()

java.util.List<? extends com.google.ortools.sat.SparsePermutationProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilderList ( )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Implements com.google.ortools.sat.SymmetryProtoOrBuilder.

Definition at line 945 of file SymmetryProto.java.

◆ internalGetFieldAccessorTable()

com.google.protobuf.GeneratedMessage.FieldAccessorTable com.google.ortools.sat.SymmetryProto.Builder.internalGetFieldAccessorTable ( )
protected

Definition at line 435 of file SymmetryProto.java.

◆ isInitialized()

final boolean com.google.ortools.sat.SymmetryProto.Builder.isInitialized ( )

Definition at line 596 of file SymmetryProto.java.

◆ mergeFrom() [1/3]

Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom ( com.google.ortools.sat.SymmetryProto other)

Definition at line 536 of file SymmetryProto.java.

◆ mergeFrom() [2/3]

Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom ( com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry ) throws java.io.IOException

Definition at line 601 of file SymmetryProto.java.

◆ mergeFrom() [3/3]

Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom ( com.google.protobuf.Message other)

Definition at line 527 of file SymmetryProto.java.

◆ removeOrbitopes()

Builder com.google.ortools.sat.SymmetryProto.Builder.removeOrbitopes ( int index)
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1316 of file SymmetryProto.java.

◆ removePermutations()

Builder com.google.ortools.sat.SymmetryProto.Builder.removePermutations ( int index)
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 896 of file SymmetryProto.java.

◆ setOrbitopes() [1/2]

Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes ( int index,
com.google.ortools.sat.DenseMatrixProto value )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1100 of file SymmetryProto.java.

◆ setOrbitopes() [2/2]

Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes ( int index,
com.google.ortools.sat.DenseMatrixProto.Builder builderForValue )
An orbitope is a special symmetry structure of the solution space. If the
variable indices are arranged in a matrix (with no duplicates), then any
permutation of the columns will be a valid permutation of the feasible
space.

This arise quite often. The typical example is a graph coloring problem
where for each node i, you have j booleans to indicate its color. If the
variables color_of_i_is_j are arranged in a matrix[i][j], then any columns
permutations leave the problem invariant.

repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;

Definition at line 1129 of file SymmetryProto.java.

◆ setPermutations() [1/2]

Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations ( int index,
com.google.ortools.sat.SparsePermutationProto value )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 728 of file SymmetryProto.java.

◆ setPermutations() [2/2]

Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations ( int index,
com.google.ortools.sat.SparsePermutationProto.Builder builderForValue )
A list of variable indices permutations that leave the feasible space of
solution invariant. Usually, we only encode a set of generators of the
group.

repeated .operations_research.sat.SparsePermutationProto permutations = 1;

Definition at line 751 of file SymmetryProto.java.


The documentation for this class was generated from the following file: