![]() |
Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
|
Static Public Member Functions | |
static final com.google.protobuf.Descriptors.Descriptor | getDescriptor () |
Protected Member Functions | |
com.google.protobuf.GeneratedMessage.FieldAccessorTable | internalGetFieldAccessorTable () |
EXPERIMENTAL. For now, this is meant to be used by the solver and not filled by clients. Hold symmetry information about the set of feasible solutions. If we permute the variable values of any feasible solution using one of the permutation described here, we should always get another feasible solution. We usually also enforce that the objective of the new solution is the same. The group of permutations encoded here is usually computed from the encoding of the model, so it is not meant to be a complete representation of the feasible solution symmetries, just a valid subgroup.
Protobuf type operations_research.sat.SymmetryProto
Definition at line 424 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addAllOrbitopes | ( | java.lang.Iterable<? extends com.google.ortools.sat.DenseMatrixProto > | values | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1264 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addAllPermutations | ( | java.lang.Iterable<? extends com.google.ortools.sat.SparsePermutationProto > | values | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 856 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | com.google.ortools.sat.DenseMatrixProto | value | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1155 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1212 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto | value ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1183 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1238 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1405 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1424 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | com.google.ortools.sat.SparsePermutationProto | value | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 771 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 816 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto | value ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 793 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 836 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 961 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 974 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.build | ( | ) |
Definition at line 484 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.buildPartial | ( | ) |
Definition at line 493 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clear | ( | ) |
Definition at line 452 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clearOrbitopes | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1291 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clearPermutations | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 877 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.getDefaultInstanceForType | ( | ) |
Definition at line 479 of file SymmetryProto.java.
|
static |
Definition at line 429 of file SymmetryProto.java.
com.google.protobuf.Descriptors.Descriptor com.google.ortools.sat.SymmetryProto.Builder.getDescriptorForType | ( | ) |
Definition at line 474 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto com.google.ortools.sat.SymmetryProto.Builder.getOrbitopes | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1078 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1341 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.DenseMatrixProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilderList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1445 of file SymmetryProto.java.
int com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesCount | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1056 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.DenseMatrixProto > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1034 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1360 of file SymmetryProto.java.
java.util.List<? extends com.google.ortools.sat.DenseMatrixProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilderList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1383 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto com.google.ortools.sat.SymmetryProto.Builder.getPermutations | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 712 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 915 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.SparsePermutationProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilderList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 989 of file SymmetryProto.java.
int com.google.ortools.sat.SymmetryProto.Builder.getPermutationsCount | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 696 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.SparsePermutationProto > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 680 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 928 of file SymmetryProto.java.
java.util.List<? extends com.google.ortools.sat.SparsePermutationProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilderList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 945 of file SymmetryProto.java.
|
protected |
Definition at line 435 of file SymmetryProto.java.
final boolean com.google.ortools.sat.SymmetryProto.Builder.isInitialized | ( | ) |
Definition at line 596 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.ortools.sat.SymmetryProto | other | ) |
Definition at line 536 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.protobuf.CodedInputStream | input, |
com.google.protobuf.ExtensionRegistryLite | extensionRegistry ) throws java.io.IOException |
Definition at line 601 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.protobuf.Message | other | ) |
Definition at line 527 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.removeOrbitopes | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1316 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.removePermutations | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 896 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto | value ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1100 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1129 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto | value ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 728 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 751 of file SymmetryProto.java.