![]() |
Google OR-Tools v9.14
a fast and portable software suite for combinatorial optimization
|
EXPERIMENTAL. For now, this is meant to be used by the solver and not filled by clients. Hold symmetry information about the set of feasible solutions. If we permute the variable values of any feasible solution using one of the permutation described here, we should always get another feasible solution. We usually also enforce that the objective of the new solution is the same. The group of permutations encoded here is usually computed from the encoding of the model, so it is not meant to be a complete representation of the feasible solution symmetries, just a valid subgroup.
Protobuf type operations_research.sat.SymmetryProto
Definition at line 425 of file SymmetryProto.java.
Static Public Member Functions | |
static final com.google.protobuf.Descriptors.Descriptor | getDescriptor () |
Protected Member Functions | |
com.google.protobuf.GeneratedMessage.FieldAccessorTable | internalGetFieldAccessorTable () |
Builder com.google.ortools.sat.SymmetryProto.Builder.addAllOrbitopes | ( | java.lang.Iterable<? extends com.google.ortools.sat.DenseMatrixProto > | values | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1265 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addAllPermutations | ( | java.lang.Iterable<? extends com.google.ortools.sat.SparsePermutationProto > | values | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 857 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | com.google.ortools.sat.DenseMatrixProto | value | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1156 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1213 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto | value ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1184 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1239 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1406 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1425 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | com.google.ortools.sat.SparsePermutationProto | value | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 772 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 817 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto | value ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 794 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 837 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 962 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 975 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.build | ( | ) |
Definition at line 485 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.buildPartial | ( | ) |
Definition at line 494 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clear | ( | ) |
Definition at line 453 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clearOrbitopes | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1292 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clearPermutations | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 878 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.getDefaultInstanceForType | ( | ) |
Definition at line 480 of file SymmetryProto.java.
|
static |
Definition at line 430 of file SymmetryProto.java.
com.google.protobuf.Descriptors.Descriptor com.google.ortools.sat.SymmetryProto.Builder.getDescriptorForType | ( | ) |
Definition at line 475 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto com.google.ortools.sat.SymmetryProto.Builder.getOrbitopes | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1079 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1342 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.DenseMatrixProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilderList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1446 of file SymmetryProto.java.
int com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesCount | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1057 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.DenseMatrixProto > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1035 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1361 of file SymmetryProto.java.
java.util.List<? extends com.google.ortools.sat.DenseMatrixProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilderList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1384 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto com.google.ortools.sat.SymmetryProto.Builder.getPermutations | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 713 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 916 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.SparsePermutationProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilderList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 990 of file SymmetryProto.java.
int com.google.ortools.sat.SymmetryProto.Builder.getPermutationsCount | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 697 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.SparsePermutationProto > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 681 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 929 of file SymmetryProto.java.
java.util.List<? extends com.google.ortools.sat.SparsePermutationProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilderList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 946 of file SymmetryProto.java.
|
protected |
Definition at line 436 of file SymmetryProto.java.
final boolean com.google.ortools.sat.SymmetryProto.Builder.isInitialized | ( | ) |
Definition at line 597 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.ortools.sat.SymmetryProto | other | ) |
Definition at line 537 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.protobuf.CodedInputStream | input, |
com.google.protobuf.ExtensionRegistryLite | extensionRegistry ) throws java.io.IOException |
Definition at line 602 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.protobuf.Message | other | ) |
Definition at line 528 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.removeOrbitopes | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1317 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.removePermutations | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 897 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto | value ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1101 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1130 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto | value ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 729 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 752 of file SymmetryProto.java.