Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
|
Static Public Member Functions | |
static final com.google.protobuf.Descriptors.Descriptor | getDescriptor () |
Protected Member Functions | |
com.google.protobuf.GeneratedMessage.FieldAccessorTable | internalGetFieldAccessorTable () |
EXPERIMENTAL. For now, this is meant to be used by the solver and not filled by clients. Hold symmetry information about the set of feasible solutions. If we permute the variable values of any feasible solution using one of the permutation described here, we should always get another feasible solution. We usually also enforce that the objective of the new solution is the same. The group of permutations encoded here is usually computed from the encoding of the model, so it is not meant to be a complete representation of the feasible solution symmetries, just a valid subgroup.
Protobuf type operations_research.sat.SymmetryProto
Definition at line 423 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addAllOrbitopes | ( | java.lang.Iterable<? extends com.google.ortools.sat.DenseMatrixProto > | values | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1263 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addAllPermutations | ( | java.lang.Iterable<? extends com.google.ortools.sat.SparsePermutationProto > | values | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 855 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | com.google.ortools.sat.DenseMatrixProto | value | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1154 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1211 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto | value ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1182 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1237 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1404 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addOrbitopesBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1423 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | com.google.ortools.sat.SparsePermutationProto | value | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 770 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 815 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto | value ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 792 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 835 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 960 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.addPermutationsBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 973 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.build | ( | ) |
Definition at line 483 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.buildPartial | ( | ) |
Definition at line 492 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clear | ( | ) |
Definition at line 451 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clearOrbitopes | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1290 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.clearPermutations | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 876 of file SymmetryProto.java.
com.google.ortools.sat.SymmetryProto com.google.ortools.sat.SymmetryProto.Builder.getDefaultInstanceForType | ( | ) |
Definition at line 478 of file SymmetryProto.java.
|
static |
Definition at line 428 of file SymmetryProto.java.
com.google.protobuf.Descriptors.Descriptor com.google.ortools.sat.SymmetryProto.Builder.getDescriptorForType | ( | ) |
Definition at line 473 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto com.google.ortools.sat.SymmetryProto.Builder.getOrbitopes | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1077 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1340 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.DenseMatrixProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesBuilderList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1444 of file SymmetryProto.java.
int com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesCount | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1055 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.DenseMatrixProto > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1033 of file SymmetryProto.java.
com.google.ortools.sat.DenseMatrixProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilder | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1359 of file SymmetryProto.java.
java.util.List<? extends com.google.ortools.sat.DenseMatrixProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getOrbitopesOrBuilderList | ( | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 1382 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto com.google.ortools.sat.SymmetryProto.Builder.getPermutations | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 711 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProto.Builder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 914 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.SparsePermutationProto.Builder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsBuilderList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 988 of file SymmetryProto.java.
int com.google.ortools.sat.SymmetryProto.Builder.getPermutationsCount | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 695 of file SymmetryProto.java.
java.util.List< com.google.ortools.sat.SparsePermutationProto > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 679 of file SymmetryProto.java.
com.google.ortools.sat.SparsePermutationProtoOrBuilder com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilder | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 927 of file SymmetryProto.java.
java.util.List<? extends com.google.ortools.sat.SparsePermutationProtoOrBuilder > com.google.ortools.sat.SymmetryProto.Builder.getPermutationsOrBuilderList | ( | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Implements com.google.ortools.sat.SymmetryProtoOrBuilder.
Definition at line 944 of file SymmetryProto.java.
|
protected |
Definition at line 434 of file SymmetryProto.java.
final boolean com.google.ortools.sat.SymmetryProto.Builder.isInitialized | ( | ) |
Definition at line 595 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.ortools.sat.SymmetryProto | other | ) |
Definition at line 535 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.protobuf.CodedInputStream | input, |
com.google.protobuf.ExtensionRegistryLite | extensionRegistry ) throws java.io.IOException |
Definition at line 600 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.mergeFrom | ( | com.google.protobuf.Message | other | ) |
Definition at line 526 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.removeOrbitopes | ( | int | index | ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1315 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.removePermutations | ( | int | index | ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 895 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto | value ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1099 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setOrbitopes | ( | int | index, |
com.google.ortools.sat.DenseMatrixProto.Builder | builderForValue ) |
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Definition at line 1128 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto | value ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 727 of file SymmetryProto.java.
Builder com.google.ortools.sat.SymmetryProto.Builder.setPermutations | ( | int | index, |
com.google.ortools.sat.SparsePermutationProto.Builder | builderForValue ) |
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
Definition at line 750 of file SymmetryProto.java.