Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
com.google.ortools.glop.GlopParametersOrBuilder Interface Reference
Inheritance diagram for com.google.ortools.glop.GlopParametersOrBuilder:
com.google.ortools.glop.GlopParameters com.google.ortools.glop.GlopParameters.Builder

Public Member Functions

boolean hasScalingMethod ()
 
com.google.ortools.glop.GlopParameters.ScalingAlgorithm getScalingMethod ()
 
boolean hasFeasibilityRule ()
 
com.google.ortools.glop.GlopParameters.PricingRule getFeasibilityRule ()
 
boolean hasOptimizationRule ()
 
com.google.ortools.glop.GlopParameters.PricingRule getOptimizationRule ()
 
boolean hasRefactorizationThreshold ()
 
double getRefactorizationThreshold ()
 
boolean hasRecomputeReducedCostsThreshold ()
 
double getRecomputeReducedCostsThreshold ()
 
boolean hasRecomputeEdgesNormThreshold ()
 
double getRecomputeEdgesNormThreshold ()
 
boolean hasPrimalFeasibilityTolerance ()
 
double getPrimalFeasibilityTolerance ()
 
boolean hasDualFeasibilityTolerance ()
 
double getDualFeasibilityTolerance ()
 
boolean hasRatioTestZeroThreshold ()
 
double getRatioTestZeroThreshold ()
 
boolean hasHarrisToleranceRatio ()
 
double getHarrisToleranceRatio ()
 
boolean hasSmallPivotThreshold ()
 
double getSmallPivotThreshold ()
 
boolean hasMinimumAcceptablePivot ()
 
double getMinimumAcceptablePivot ()
 
boolean hasDropTolerance ()
 
double getDropTolerance ()
 
boolean hasUseScaling ()
 
boolean getUseScaling ()
 
boolean hasCostScaling ()
 
com.google.ortools.glop.GlopParameters.CostScalingAlgorithm getCostScaling ()
 
boolean hasInitialBasis ()
 
com.google.ortools.glop.GlopParameters.InitialBasisHeuristic getInitialBasis ()
 
boolean hasUseTransposedMatrix ()
 
boolean getUseTransposedMatrix ()
 
boolean hasBasisRefactorizationPeriod ()
 
int getBasisRefactorizationPeriod ()
 
boolean hasDynamicallyAdjustRefactorizationPeriod ()
 
boolean getDynamicallyAdjustRefactorizationPeriod ()
 
boolean hasSolveDualProblem ()
 
com.google.ortools.glop.GlopParameters.SolverBehavior getSolveDualProblem ()
 
boolean hasDualizerThreshold ()
 
double getDualizerThreshold ()
 
boolean hasSolutionFeasibilityTolerance ()
 
double getSolutionFeasibilityTolerance ()
 
boolean hasProvideStrongOptimalGuarantee ()
 
boolean getProvideStrongOptimalGuarantee ()
 
boolean hasChangeStatusToImprecise ()
 
boolean getChangeStatusToImprecise ()
 
boolean hasMaxNumberOfReoptimizations ()
 
double getMaxNumberOfReoptimizations ()
 
boolean hasLuFactorizationPivotThreshold ()
 
double getLuFactorizationPivotThreshold ()
 
boolean hasMaxTimeInSeconds ()
 
double getMaxTimeInSeconds ()
 
boolean hasMaxDeterministicTime ()
 
double getMaxDeterministicTime ()
 
boolean hasMaxNumberOfIterations ()
 
long getMaxNumberOfIterations ()
 
boolean hasMarkowitzZlatevParameter ()
 
int getMarkowitzZlatevParameter ()
 
boolean hasMarkowitzSingularityThreshold ()
 
double getMarkowitzSingularityThreshold ()
 
boolean hasUseDualSimplex ()
 
boolean getUseDualSimplex ()
 
boolean hasAllowSimplexAlgorithmChange ()
 
boolean getAllowSimplexAlgorithmChange ()
 
boolean hasDevexWeightsResetPeriod ()
 
int getDevexWeightsResetPeriod ()
 
boolean hasUsePreprocessing ()
 
boolean getUsePreprocessing ()
 
boolean hasUseMiddleProductFormUpdate ()
 
boolean getUseMiddleProductFormUpdate ()
 
boolean hasInitializeDevexWithColumnNorms ()
 
boolean getInitializeDevexWithColumnNorms ()
 
boolean hasExploitSingletonColumnInInitialBasis ()
 
boolean getExploitSingletonColumnInInitialBasis ()
 
boolean hasDualSmallPivotThreshold ()
 
double getDualSmallPivotThreshold ()
 
boolean hasPreprocessorZeroTolerance ()
 
double getPreprocessorZeroTolerance ()
 
boolean hasObjectiveLowerLimit ()
 
double getObjectiveLowerLimit ()
 
boolean hasObjectiveUpperLimit ()
 
double getObjectiveUpperLimit ()
 
boolean hasDegenerateMinistepFactor ()
 
double getDegenerateMinistepFactor ()
 
boolean hasRandomSeed ()
 
int getRandomSeed ()
 
boolean hasNumOmpThreads ()
 
int getNumOmpThreads ()
 
boolean hasPerturbCostsInDualSimplex ()
 
boolean getPerturbCostsInDualSimplex ()
 
boolean hasUseDedicatedDualFeasibilityAlgorithm ()
 
boolean getUseDedicatedDualFeasibilityAlgorithm ()
 
boolean hasRelativeCostPerturbation ()
 
double getRelativeCostPerturbation ()
 
boolean hasRelativeMaxCostPerturbation ()
 
double getRelativeMaxCostPerturbation ()
 
boolean hasInitialConditionNumberThreshold ()
 
double getInitialConditionNumberThreshold ()
 
boolean hasLogSearchProgress ()
 
boolean getLogSearchProgress ()
 
boolean hasLogToStdout ()
 
boolean getLogToStdout ()
 
boolean hasCrossoverBoundSnappingDistance ()
 
double getCrossoverBoundSnappingDistance ()
 
boolean hasPushToVertex ()
 
boolean getPushToVertex ()
 
boolean hasUseImpliedFreePreprocessor ()
 
boolean getUseImpliedFreePreprocessor ()
 
boolean hasMaxValidMagnitude ()
 
double getMaxValidMagnitude ()
 
boolean hasDropMagnitude ()
 
double getDropMagnitude ()
 
boolean hasDualPricePrioritizeNorm ()
 
boolean getDualPricePrioritizeNorm ()
 

Detailed Description

Definition at line 7 of file GlopParametersOrBuilder.java.

Member Function Documentation

◆ getAllowSimplexAlgorithmChange()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getAllowSimplexAlgorithmChange ( )
During incremental solve, let the solver decide if it use the primal or
dual simplex algorithm depending on the current solution and on the new
problem. Note that even if this is true, the value of use_dual_simplex
still indicates the default algorithm that the solver will use.

optional bool allow_simplex_algorithm_change = 32 [default = false];

Returns
The allowSimplexAlgorithmChange.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getBasisRefactorizationPeriod()

int com.google.ortools.glop.GlopParametersOrBuilder.getBasisRefactorizationPeriod ( )
Number of iterations between two basis refactorizations. Note that various
conditions in the algorithm may trigger a refactorization before this
period is reached. Set this to 0 if you want to refactorize at each step.

optional int32 basis_refactorization_period = 19 [default = 64];

Returns
The basisRefactorizationPeriod.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getChangeStatusToImprecise()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getChangeStatusToImprecise ( )
If true, the internal API will change the return status to imprecise if the
solution does not respect the internal tolerances.

optional bool change_status_to_imprecise = 58 [default = true];

Returns
The changeStatusToImprecise.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getCostScaling()

com.google.ortools.glop.GlopParameters.CostScalingAlgorithm com.google.ortools.glop.GlopParametersOrBuilder.getCostScaling ( )

optional .operations_research.glop.GlopParameters.CostScalingAlgorithm cost_scaling = 60 [default = CONTAIN_ONE_COST_SCALING];

Returns
The costScaling.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getCrossoverBoundSnappingDistance()

double com.google.ortools.glop.GlopParametersOrBuilder.getCrossoverBoundSnappingDistance ( )
If the starting basis contains FREE variable with bounds, we will move
any such variable to their closer bounds if the distance is smaller than
this parameter.

The starting statuses can contains FREE variables with bounds, if a user
set it like this externally. Also, any variable with an initial BASIC
status that was not kept in the initial basis is marked as FREE before this
step is applied.

Note that by default a FREE variable is assumed to be zero unless a
starting value was specified via SetStartingVariableValuesForNextSolve().

Note that, at the end of the solve, some of these FREE variable with bounds
and an interior point value might still be left in the final solution.
Enable push_to_vertex to clean these up.

optional double crossover_bound_snapping_distance = 64 [default = inf];

Returns
The crossoverBoundSnappingDistance.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDegenerateMinistepFactor()

double com.google.ortools.glop.GlopParametersOrBuilder.getDegenerateMinistepFactor ( )
During a degenerate iteration, the more conservative approach is to do a
step of length zero (while shifting the bound of the leaving variable).
That is, the variable values are unchanged for the primal simplex or the
reduced cost are unchanged for the dual simplex. However, instead of doing
a step of length zero, it seems to be better on degenerate problems to do a
small positive step. This is what is recommended in the EXPAND procedure
described in:
P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. "A practical anti-
cycling procedure for linearly constrained optimization".
Mathematical Programming, 45:437\u2013474, 1989.

Here, during a degenerate iteration we do a small positive step of this
factor times the primal (resp. dual) tolerance. In the primal simplex, this
may effectively push variable values (very slightly) further out of their
bounds (resp. reduced costs for the dual simplex).

Setting this to zero reverts to the more conservative approach of a zero
step during degenerate iterations.

optional double degenerate_ministep_factor = 42 [default = 0.01];

Returns
The degenerateMinistepFactor.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDevexWeightsResetPeriod()

int com.google.ortools.glop.GlopParametersOrBuilder.getDevexWeightsResetPeriod ( )
Devex weights will be reset to 1.0 after that number of updates.

optional int32 devex_weights_reset_period = 33 [default = 150];

Returns
The devexWeightsResetPeriod.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDropMagnitude()

double com.google.ortools.glop.GlopParametersOrBuilder.getDropMagnitude ( )
Value in the input LP lower than this will be ignored. This is similar to
drop_tolerance but more aggressive as this is used before scaling. This is
mainly here to avoid underflow and have simpler invariant in the code, like
a * b == 0 iff a or b is zero and things like this.

optional double drop_magnitude = 71 [default = 1e-30];

Returns
The dropMagnitude.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDropTolerance()

double com.google.ortools.glop.GlopParametersOrBuilder.getDropTolerance ( )
In order to increase the sparsity of the manipulated vectors, floating
point values with a magnitude smaller than this parameter are set to zero
(only in some places). This parameter should be positive or zero.

optional double drop_tolerance = 52 [default = 1e-14];

Returns
The dropTolerance.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDualFeasibilityTolerance()

double com.google.ortools.glop.GlopParametersOrBuilder.getDualFeasibilityTolerance ( )
Variables whose reduced costs have an absolute value smaller than this
tolerance are not considered as entering candidates. That is they do not
take part in deciding whether a solution is dual-feasible or not.

Note that this value can temporarily increase during the execution of the
algorithm if the estimated precision of the reduced costs is higher than
this tolerance. Note also that we scale the costs (in the presolve step) so
that the cost magnitude range contains one.

This is also known as the optimality tolerance in other solvers.

optional double dual_feasibility_tolerance = 11 [default = 1e-08];

Returns
The dualFeasibilityTolerance.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDualizerThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getDualizerThreshold ( )
When solve_dual_problem is LET_SOLVER_DECIDE, take the dual if the number
of constraints of the problem is more than this threshold times the number
of variables.

optional double dualizer_threshold = 21 [default = 1.5];

Returns
The dualizerThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDualPricePrioritizeNorm()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getDualPricePrioritizeNorm ( )
On some problem like stp3d or pds-100 this makes a huge difference in
speed and number of iterations of the dual simplex.

optional bool dual_price_prioritize_norm = 69 [default = false];

Returns
The dualPricePrioritizeNorm.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDualSmallPivotThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getDualSmallPivotThreshold ( )
Like small_pivot_threshold but for the dual simplex. This is needed because
the dual algorithm does not interpret this value in the same way.
TODO(user): Clean this up and use the same small pivot detection.

optional double dual_small_pivot_threshold = 38 [default = 0.0001];

Returns
The dualSmallPivotThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getDynamicallyAdjustRefactorizationPeriod()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getDynamicallyAdjustRefactorizationPeriod ( )
If this is true, then basis_refactorization_period becomes a lower bound on
the number of iterations between two refactorization (provided there is no
numerical accuracy issues). Depending on the estimated time to refactorize
vs the extra time spend in each solves because of the LU update, we try to
balance the two times.

optional bool dynamically_adjust_refactorization_period = 63 [default = true];

Returns
The dynamicallyAdjustRefactorizationPeriod.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getExploitSingletonColumnInInitialBasis()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getExploitSingletonColumnInInitialBasis ( )
Whether or not we exploit the singleton columns already present in the
problem when we create the initial basis.

optional bool exploit_singleton_column_in_initial_basis = 37 [default = true];

Returns
The exploitSingletonColumnInInitialBasis.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getFeasibilityRule()

com.google.ortools.glop.GlopParameters.PricingRule com.google.ortools.glop.GlopParametersOrBuilder.getFeasibilityRule ( )
PricingRule to use during the feasibility phase.

optional .operations_research.glop.GlopParameters.PricingRule feasibility_rule = 1 [default = STEEPEST_EDGE];

Returns
The feasibilityRule.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getHarrisToleranceRatio()

double com.google.ortools.glop.GlopParametersOrBuilder.getHarrisToleranceRatio ( )
This impacts the ratio test and indicates by how much we allow a basic
variable value that we move to go out of bounds. The value should be in
[0.0, 1.0) and should be interpreted as a ratio of the
primal_feasibility_tolerance. Setting this to 0.0 basically disables the
Harris ratio test while setting this too close to 1.0 will make it
difficult to keep the variable values inside their bounds modulo the
primal_feasibility_tolerance.

Note that the same comment applies to the dual simplex ratio test. There,
we allow the reduced costs to be of an infeasible sign by as much as this
ratio times the dual_feasibility_tolerance.

optional double harris_tolerance_ratio = 13 [default = 0.5];

Returns
The harrisToleranceRatio.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getInitialBasis()

com.google.ortools.glop.GlopParameters.InitialBasisHeuristic com.google.ortools.glop.GlopParametersOrBuilder.getInitialBasis ( )
What heuristic is used to try to replace the fixed slack columns in the
initial basis of the primal simplex.

optional .operations_research.glop.GlopParameters.InitialBasisHeuristic initial_basis = 17 [default = TRIANGULAR];

Returns
The initialBasis.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getInitialConditionNumberThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getInitialConditionNumberThreshold ( )
If our upper bound on the condition number of the initial basis (from our
heurisitic or a warm start) is above this threshold, we revert to an all
slack basis.

optional double initial_condition_number_threshold = 59 [default = 1e+50];

Returns
The initialConditionNumberThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getInitializeDevexWithColumnNorms()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getInitializeDevexWithColumnNorms ( )
Whether we initialize devex weights to 1.0 or to the norms of the matrix
columns.

optional bool initialize_devex_with_column_norms = 36 [default = true];

Returns
The initializeDevexWithColumnNorms.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getLogSearchProgress()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getLogSearchProgress ( )
If true, logs the progress of a solve to LOG(INFO). Note that the same
messages can also be turned on by displaying logs at level 1 for the
relevant files.

optional bool log_search_progress = 61 [default = false];

Returns
The logSearchProgress.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getLogToStdout()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getLogToStdout ( )
If true, logs will be displayed to stdout instead of using Google log info.

optional bool log_to_stdout = 66 [default = true];

Returns
The logToStdout.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getLuFactorizationPivotThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getLuFactorizationPivotThreshold ( )
Threshold for LU-factorization: for stability reasons, the magnitude of the
chosen pivot at a given step is guaranteed to be greater than this
threshold times the maximum magnitude of all the possible pivot choices in
the same column. The value must be in [0,1].

optional double lu_factorization_pivot_threshold = 25 [default = 0.01];

Returns
The luFactorizationPivotThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMarkowitzSingularityThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getMarkowitzSingularityThreshold ( )
If a pivot magnitude is smaller than this during the Markowitz LU
factorization, then the matrix is assumed to be singular. Note that
this is an absolute threshold and is not relative to the other possible
pivots on the same column (see lu_factorization_pivot_threshold).

optional double markowitz_singularity_threshold = 30 [default = 1e-15];

Returns
The markowitzSingularityThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMarkowitzZlatevParameter()

int com.google.ortools.glop.GlopParametersOrBuilder.getMarkowitzZlatevParameter ( )
How many columns do we look at in the Markowitz pivoting rule to find
a good pivot. See markowitz.h.

optional int32 markowitz_zlatev_parameter = 29 [default = 3];

Returns
The markowitzZlatevParameter.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMaxDeterministicTime()

double com.google.ortools.glop.GlopParametersOrBuilder.getMaxDeterministicTime ( )
Maximum deterministic time allowed to solve a problem. The deterministic
time is more or less correlated to the running time, and its unit should
be around the second (at least on a Xeon(R) CPU E5-1650 v2 @ 3.50GHz).

TODO(user): Improve the correlation.

optional double max_deterministic_time = 45 [default = inf];

Returns
The maxDeterministicTime.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMaxNumberOfIterations()

long com.google.ortools.glop.GlopParametersOrBuilder.getMaxNumberOfIterations ( )
Maximum number of simplex iterations to solve a problem.
A value of -1 means no limit.

optional int64 max_number_of_iterations = 27 [default = -1];

Returns
The maxNumberOfIterations.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMaxNumberOfReoptimizations()

double com.google.ortools.glop.GlopParametersOrBuilder.getMaxNumberOfReoptimizations ( )
When the solution of phase II is imprecise, we re-run the phase II with the
opposite algorithm from that imprecise solution (i.e., if primal or dual
simplex was used, we use dual or primal simplex, respectively). We repeat
such re-optimization until the solution is precise, or we hit this limit.

optional double max_number_of_reoptimizations = 56 [default = 40];

Returns
The maxNumberOfReoptimizations.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMaxTimeInSeconds()

double com.google.ortools.glop.GlopParametersOrBuilder.getMaxTimeInSeconds ( )
Maximum time allowed in seconds to solve a problem.

optional double max_time_in_seconds = 26 [default = inf];

Returns
The maxTimeInSeconds.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMaxValidMagnitude()

double com.google.ortools.glop.GlopParametersOrBuilder.getMaxValidMagnitude ( )
Any finite values in the input LP must be below this threshold, otherwise
the model will be reported invalid. This is needed to avoid floating point
overflow when evaluating bounds * coeff for instance. In practice, users
shouldn't use super large values in an LP. With the default threshold, even
evaluating large constraint with variables at their bound shouldn't cause
any overflow.

optional double max_valid_magnitude = 70 [default = 1e+30];

Returns
The maxValidMagnitude.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getMinimumAcceptablePivot()

double com.google.ortools.glop.GlopParametersOrBuilder.getMinimumAcceptablePivot ( )
We never follow a basis change with a pivot under this threshold.

optional double minimum_acceptable_pivot = 15 [default = 1e-06];

Returns
The minimumAcceptablePivot.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getNumOmpThreads()

int com.google.ortools.glop.GlopParametersOrBuilder.getNumOmpThreads ( )
Number of threads in the OMP parallel sections. If left to 1, the code will
not create any OMP threads and will remain single-threaded.

optional int32 num_omp_threads = 44 [default = 1];

Returns
The numOmpThreads.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getObjectiveLowerLimit()

double com.google.ortools.glop.GlopParametersOrBuilder.getObjectiveLowerLimit ( )
The solver will stop as soon as it has proven that the objective is smaller
than objective_lower_limit or greater than objective_upper_limit. Depending
on the simplex algorithm (primal or dual) and the optimization direction,
note that only one bound will be used at the time.

Important: The solver does not add any tolerances to these values, and as
soon as the objective (as computed by the solver, so with some imprecision)
crosses one of these bounds (strictly), the search will stop. It is up to
the client to add any tolerance if needed.

optional double objective_lower_limit = 40 [default = -inf];

Returns
The objectiveLowerLimit.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getObjectiveUpperLimit()

double com.google.ortools.glop.GlopParametersOrBuilder.getObjectiveUpperLimit ( )

optional double objective_upper_limit = 41 [default = inf];

Returns
The objectiveUpperLimit.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getOptimizationRule()

com.google.ortools.glop.GlopParameters.PricingRule com.google.ortools.glop.GlopParametersOrBuilder.getOptimizationRule ( )
PricingRule to use during the optimization phase.

optional .operations_research.glop.GlopParameters.PricingRule optimization_rule = 2 [default = STEEPEST_EDGE];

Returns
The optimizationRule.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getPerturbCostsInDualSimplex()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getPerturbCostsInDualSimplex ( )
When this is true, then the costs are randomly perturbed before the dual
simplex is even started. This has been shown to improve the dual simplex
performance. For a good reference, see Huangfu Q (2013) "High performance
simplex solver", Ph.D, dissertation, University of Edinburgh.

optional bool perturb_costs_in_dual_simplex = 53 [default = false];

Returns
The perturbCostsInDualSimplex.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getPreprocessorZeroTolerance()

double com.google.ortools.glop.GlopParametersOrBuilder.getPreprocessorZeroTolerance ( )
A floating point tolerance used by the preprocessors. This is used for
things like detecting if two columns/rows are proportional or if an
interval is empty.

Note that the preprocessors also use solution_feasibility_tolerance() to
detect if a problem is infeasible.

optional double preprocessor_zero_tolerance = 39 [default = 1e-09];

Returns
The preprocessorZeroTolerance.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getPrimalFeasibilityTolerance()

double com.google.ortools.glop.GlopParametersOrBuilder.getPrimalFeasibilityTolerance ( )
This tolerance indicates by how much we allow the variable values to go out
of bounds and still consider the current solution primal-feasible. We also
use the same tolerance for the error A.x - b. Note that the two errors are
closely related if A is scaled in such a way that the greatest coefficient
magnitude on each column is 1.0.

This is also simply called feasibility tolerance in other solvers.

optional double primal_feasibility_tolerance = 10 [default = 1e-08];

Returns
The primalFeasibilityTolerance.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getProvideStrongOptimalGuarantee()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getProvideStrongOptimalGuarantee ( )
If true, then when the solver returns a solution with an OPTIMAL status,
we can guarantee that:
- The primal variable are in their bounds.
- The dual variable are in their bounds.
- If we modify each component of the right-hand side a bit and each
component of the objective function a bit, then the pair (primal values,
dual values) is an EXACT optimal solution of the perturbed problem.
- The modifications above are smaller than the associated tolerances as
defined in the comment for solution_feasibility_tolerance (*).

(*): This is the only place where the guarantee is not tight since we
compute the upper bounds with scalar product of the primal/dual
solution and the initial problem coefficients with only double precision.

Note that whether or not this option is true, we still check the
primal/dual infeasibility and objective gap. However if it is false, we
don't move the primal/dual values within their bounds and leave them
untouched.

optional bool provide_strong_optimal_guarantee = 24 [default = true];

Returns
The provideStrongOptimalGuarantee.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getPushToVertex()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getPushToVertex ( )
If the optimization phases finishes with super-basic variables (i.e.,
variables that either 1) have bounds but are FREE in the basis, or 2) have
no bounds and are FREE in the basis at a nonzero value), then run a "push"
phase to push these variables to bounds, obtaining a vertex solution. Note
this situation can happen only if a starting value was specified via
SetStartingVariableValuesForNextSolve().

optional bool push_to_vertex = 65 [default = true];

Returns
The pushToVertex.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getRandomSeed()

int com.google.ortools.glop.GlopParametersOrBuilder.getRandomSeed ( )
At the beginning of each solve, the random number generator used in some
part of the solver is reinitialized to this seed. If you change the random
seed, the solver may make different choices during the solving process.
Note that this may lead to a different solution, for example a different
optimal basis.

For some problems, the running time may vary a lot depending on small
change in the solving algorithm. Running the solver with different seeds
enables to have more robust benchmarks when evaluating new features.

Also note that the solver is fully deterministic: two runs of the same
binary, on the same machine, on the exact same data and with the same
parameters will go through the exact same iterations. If they hit a time
limit, they might of course yield different results because one will have
advanced farther than the other.

optional int32 random_seed = 43 [default = 1];

Returns
The randomSeed.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getRatioTestZeroThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getRatioTestZeroThreshold ( )
During the primal simplex (resp. dual simplex), the coefficients of the
direction (resp. update row) with a magnitude lower than this threshold are
not considered during the ratio test. This tolerance is related to the
precision at which a Solve() involving the basis matrix can be performed.

TODO(user): Automatically increase it when we detect that the precision
of the Solve() is worse than this.

optional double ratio_test_zero_threshold = 12 [default = 1e-09];

Returns
The ratioTestZeroThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getRecomputeEdgesNormThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getRecomputeEdgesNormThreshold ( )
Note that the threshold is a relative error on the actual norm (not the
squared one) and that edge norms are always greater than 1. Recomputing
norms is a really expensive operation and a large threshold is ok since
this doesn't impact directly the solution but just the entering variable
choice.

optional double recompute_edges_norm_threshold = 9 [default = 100];

Returns
The recomputeEdgesNormThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getRecomputeReducedCostsThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getRecomputeReducedCostsThreshold ( )
We estimate the accuracy of the iteratively computed reduced costs. If
it falls below this threshold, we reinitialize them from scratch. Note
that such an operation is pretty fast, so we can use a low threshold.
It is important to have a good accuracy here (better than the
dual_feasibility_tolerance below) to be sure of the sign of such a cost.

optional double recompute_reduced_costs_threshold = 8 [default = 1e-08];

Returns
The recomputeReducedCostsThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getRefactorizationThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getRefactorizationThreshold ( )
We estimate the factorization accuracy of B during each pivot by using
the fact that we can compute the pivot coefficient in two ways:
- From direction[leaving_row].
- From update_row[entering_column].
If the two values have a relative difference above this threshold, we
trigger a refactorization.

optional double refactorization_threshold = 6 [default = 1e-09];

Returns
The refactorizationThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getRelativeCostPerturbation()

double com.google.ortools.glop.GlopParametersOrBuilder.getRelativeCostPerturbation ( )
The magnitude of the cost perturbation is given by
RandomIn(1.0, 2.0) * (
relative_cost_perturbation * cost
+ relative_max_cost_perturbation * max_cost);

optional double relative_cost_perturbation = 54 [default = 1e-05];

Returns
The relativeCostPerturbation.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getRelativeMaxCostPerturbation()

double com.google.ortools.glop.GlopParametersOrBuilder.getRelativeMaxCostPerturbation ( )

optional double relative_max_cost_perturbation = 55 [default = 1e-07];

Returns
The relativeMaxCostPerturbation.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getScalingMethod()

com.google.ortools.glop.GlopParameters.ScalingAlgorithm com.google.ortools.glop.GlopParametersOrBuilder.getScalingMethod ( )

optional .operations_research.glop.GlopParameters.ScalingAlgorithm scaling_method = 57 [default = EQUILIBRATION];

Returns
The scalingMethod.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getSmallPivotThreshold()

double com.google.ortools.glop.GlopParametersOrBuilder.getSmallPivotThreshold ( )
When we choose the leaving variable, we want to avoid small pivot because
they are the less precise and may cause numerical instabilities. For a
pivot under this threshold times the infinity norm of the direction, we try
various countermeasures in order to avoid using it.

optional double small_pivot_threshold = 14 [default = 1e-06];

Returns
The smallPivotThreshold.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getSolutionFeasibilityTolerance()

double com.google.ortools.glop.GlopParametersOrBuilder.getSolutionFeasibilityTolerance ( )
When the problem status is OPTIMAL, we check the optimality using this
relative tolerance and change the status to IMPRECISE if an issue is
detected.

The tolerance is "relative" in the sense that our thresholds are:
- tolerance * max(1.0, abs(bound)) for crossing a given bound.
- tolerance * max(1.0, abs(cost)) for an infeasible reduced cost.
- tolerance for an infeasible dual value.

optional double solution_feasibility_tolerance = 22 [default = 1e-06];

Returns
The solutionFeasibilityTolerance.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getSolveDualProblem()

com.google.ortools.glop.GlopParameters.SolverBehavior com.google.ortools.glop.GlopParametersOrBuilder.getSolveDualProblem ( )
Whether or not we solve the dual of the given problem.
With a value of auto, the algorithm decide which approach is probably the
fastest depending on the problem dimensions (see dualizer_threshold).

optional .operations_research.glop.GlopParameters.SolverBehavior solve_dual_problem = 20 [default = LET_SOLVER_DECIDE];

Returns
The solveDualProblem.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getUseDedicatedDualFeasibilityAlgorithm()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getUseDedicatedDualFeasibilityAlgorithm ( )
We have two possible dual phase I algorithms. Both work on an LP that
minimize the sum of dual infeasiblities. One use dedicated code (when this
param is true), the other one use exactly the same code as the dual phase
II but on an auxiliary problem where the variable bounds of the original
problem are changed.

TODO(user): For now we have both, but ideally the non-dedicated version
will win since it is a lot less code to maintain.

optional bool use_dedicated_dual_feasibility_algorithm = 62 [default = true];

Returns
The useDedicatedDualFeasibilityAlgorithm.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getUseDualSimplex()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getUseDualSimplex ( )
Whether or not we use the dual simplex algorithm instead of the primal.

optional bool use_dual_simplex = 31 [default = false];

Returns
The useDualSimplex.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getUseImpliedFreePreprocessor()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getUseImpliedFreePreprocessor ( )
If presolve runs, include the pass that detects implied free variables.

optional bool use_implied_free_preprocessor = 67 [default = true];

Returns
The useImpliedFreePreprocessor.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getUseMiddleProductFormUpdate()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getUseMiddleProductFormUpdate ( )
Whether or not to use the middle product form update rather than the
standard eta LU update. The middle form product update should be a lot more
efficient (close to the Forrest-Tomlin update, a bit slower but easier to
implement). See for more details:
Qi Huangfu, J. A. Julian Hall, "Novel update techniques for the revised
simplex method", 28 january 2013, Technical Report ERGO-13-0001
http://www.maths.ed.ac.uk/hall/HuHa12/ERGO-13-001.pdf

optional bool use_middle_product_form_update = 35 [default = true];

Returns
The useMiddleProductFormUpdate.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getUsePreprocessing()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getUsePreprocessing ( )
Whether or not we use advanced preprocessing techniques.

optional bool use_preprocessing = 34 [default = true];

Returns
The usePreprocessing.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getUseScaling()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getUseScaling ( )
Whether or not we scale the matrix A so that the maximum coefficient on
each line and each column is 1.0.

optional bool use_scaling = 16 [default = true];

Returns
The useScaling.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ getUseTransposedMatrix()

boolean com.google.ortools.glop.GlopParametersOrBuilder.getUseTransposedMatrix ( )
Whether or not we keep a transposed version of the matrix A to speed-up the
pricing at the cost of extra memory and the initial tranposition
computation.

optional bool use_transposed_matrix = 18 [default = true];

Returns
The useTransposedMatrix.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasAllowSimplexAlgorithmChange()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasAllowSimplexAlgorithmChange ( )
During incremental solve, let the solver decide if it use the primal or
dual simplex algorithm depending on the current solution and on the new
problem. Note that even if this is true, the value of use_dual_simplex
still indicates the default algorithm that the solver will use.

optional bool allow_simplex_algorithm_change = 32 [default = false];

Returns
Whether the allowSimplexAlgorithmChange field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasBasisRefactorizationPeriod()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasBasisRefactorizationPeriod ( )
Number of iterations between two basis refactorizations. Note that various
conditions in the algorithm may trigger a refactorization before this
period is reached. Set this to 0 if you want to refactorize at each step.

optional int32 basis_refactorization_period = 19 [default = 64];

Returns
Whether the basisRefactorizationPeriod field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasChangeStatusToImprecise()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasChangeStatusToImprecise ( )
If true, the internal API will change the return status to imprecise if the
solution does not respect the internal tolerances.

optional bool change_status_to_imprecise = 58 [default = true];

Returns
Whether the changeStatusToImprecise field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasCostScaling()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasCostScaling ( )

optional .operations_research.glop.GlopParameters.CostScalingAlgorithm cost_scaling = 60 [default = CONTAIN_ONE_COST_SCALING];

Returns
Whether the costScaling field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasCrossoverBoundSnappingDistance()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasCrossoverBoundSnappingDistance ( )
If the starting basis contains FREE variable with bounds, we will move
any such variable to their closer bounds if the distance is smaller than
this parameter.

The starting statuses can contains FREE variables with bounds, if a user
set it like this externally. Also, any variable with an initial BASIC
status that was not kept in the initial basis is marked as FREE before this
step is applied.

Note that by default a FREE variable is assumed to be zero unless a
starting value was specified via SetStartingVariableValuesForNextSolve().

Note that, at the end of the solve, some of these FREE variable with bounds
and an interior point value might still be left in the final solution.
Enable push_to_vertex to clean these up.

optional double crossover_bound_snapping_distance = 64 [default = inf];

Returns
Whether the crossoverBoundSnappingDistance field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDegenerateMinistepFactor()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDegenerateMinistepFactor ( )
During a degenerate iteration, the more conservative approach is to do a
step of length zero (while shifting the bound of the leaving variable).
That is, the variable values are unchanged for the primal simplex or the
reduced cost are unchanged for the dual simplex. However, instead of doing
a step of length zero, it seems to be better on degenerate problems to do a
small positive step. This is what is recommended in the EXPAND procedure
described in:
P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. "A practical anti-
cycling procedure for linearly constrained optimization".
Mathematical Programming, 45:437\u2013474, 1989.

Here, during a degenerate iteration we do a small positive step of this
factor times the primal (resp. dual) tolerance. In the primal simplex, this
may effectively push variable values (very slightly) further out of their
bounds (resp. reduced costs for the dual simplex).

Setting this to zero reverts to the more conservative approach of a zero
step during degenerate iterations.

optional double degenerate_ministep_factor = 42 [default = 0.01];

Returns
Whether the degenerateMinistepFactor field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDevexWeightsResetPeriod()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDevexWeightsResetPeriod ( )
Devex weights will be reset to 1.0 after that number of updates.

optional int32 devex_weights_reset_period = 33 [default = 150];

Returns
Whether the devexWeightsResetPeriod field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDropMagnitude()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDropMagnitude ( )
Value in the input LP lower than this will be ignored. This is similar to
drop_tolerance but more aggressive as this is used before scaling. This is
mainly here to avoid underflow and have simpler invariant in the code, like
a * b == 0 iff a or b is zero and things like this.

optional double drop_magnitude = 71 [default = 1e-30];

Returns
Whether the dropMagnitude field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDropTolerance()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDropTolerance ( )
In order to increase the sparsity of the manipulated vectors, floating
point values with a magnitude smaller than this parameter are set to zero
(only in some places). This parameter should be positive or zero.

optional double drop_tolerance = 52 [default = 1e-14];

Returns
Whether the dropTolerance field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDualFeasibilityTolerance()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDualFeasibilityTolerance ( )
Variables whose reduced costs have an absolute value smaller than this
tolerance are not considered as entering candidates. That is they do not
take part in deciding whether a solution is dual-feasible or not.

Note that this value can temporarily increase during the execution of the
algorithm if the estimated precision of the reduced costs is higher than
this tolerance. Note also that we scale the costs (in the presolve step) so
that the cost magnitude range contains one.

This is also known as the optimality tolerance in other solvers.

optional double dual_feasibility_tolerance = 11 [default = 1e-08];

Returns
Whether the dualFeasibilityTolerance field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDualizerThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDualizerThreshold ( )
When solve_dual_problem is LET_SOLVER_DECIDE, take the dual if the number
of constraints of the problem is more than this threshold times the number
of variables.

optional double dualizer_threshold = 21 [default = 1.5];

Returns
Whether the dualizerThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDualPricePrioritizeNorm()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDualPricePrioritizeNorm ( )
On some problem like stp3d or pds-100 this makes a huge difference in
speed and number of iterations of the dual simplex.

optional bool dual_price_prioritize_norm = 69 [default = false];

Returns
Whether the dualPricePrioritizeNorm field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDualSmallPivotThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDualSmallPivotThreshold ( )
Like small_pivot_threshold but for the dual simplex. This is needed because
the dual algorithm does not interpret this value in the same way.
TODO(user): Clean this up and use the same small pivot detection.

optional double dual_small_pivot_threshold = 38 [default = 0.0001];

Returns
Whether the dualSmallPivotThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasDynamicallyAdjustRefactorizationPeriod()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasDynamicallyAdjustRefactorizationPeriod ( )
If this is true, then basis_refactorization_period becomes a lower bound on
the number of iterations between two refactorization (provided there is no
numerical accuracy issues). Depending on the estimated time to refactorize
vs the extra time spend in each solves because of the LU update, we try to
balance the two times.

optional bool dynamically_adjust_refactorization_period = 63 [default = true];

Returns
Whether the dynamicallyAdjustRefactorizationPeriod field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasExploitSingletonColumnInInitialBasis()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasExploitSingletonColumnInInitialBasis ( )
Whether or not we exploit the singleton columns already present in the
problem when we create the initial basis.

optional bool exploit_singleton_column_in_initial_basis = 37 [default = true];

Returns
Whether the exploitSingletonColumnInInitialBasis field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasFeasibilityRule()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasFeasibilityRule ( )
PricingRule to use during the feasibility phase.

optional .operations_research.glop.GlopParameters.PricingRule feasibility_rule = 1 [default = STEEPEST_EDGE];

Returns
Whether the feasibilityRule field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasHarrisToleranceRatio()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasHarrisToleranceRatio ( )
This impacts the ratio test and indicates by how much we allow a basic
variable value that we move to go out of bounds. The value should be in
[0.0, 1.0) and should be interpreted as a ratio of the
primal_feasibility_tolerance. Setting this to 0.0 basically disables the
Harris ratio test while setting this too close to 1.0 will make it
difficult to keep the variable values inside their bounds modulo the
primal_feasibility_tolerance.

Note that the same comment applies to the dual simplex ratio test. There,
we allow the reduced costs to be of an infeasible sign by as much as this
ratio times the dual_feasibility_tolerance.

optional double harris_tolerance_ratio = 13 [default = 0.5];

Returns
Whether the harrisToleranceRatio field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasInitialBasis()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasInitialBasis ( )
What heuristic is used to try to replace the fixed slack columns in the
initial basis of the primal simplex.

optional .operations_research.glop.GlopParameters.InitialBasisHeuristic initial_basis = 17 [default = TRIANGULAR];

Returns
Whether the initialBasis field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasInitialConditionNumberThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasInitialConditionNumberThreshold ( )
If our upper bound on the condition number of the initial basis (from our
heurisitic or a warm start) is above this threshold, we revert to an all
slack basis.

optional double initial_condition_number_threshold = 59 [default = 1e+50];

Returns
Whether the initialConditionNumberThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasInitializeDevexWithColumnNorms()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasInitializeDevexWithColumnNorms ( )
Whether we initialize devex weights to 1.0 or to the norms of the matrix
columns.

optional bool initialize_devex_with_column_norms = 36 [default = true];

Returns
Whether the initializeDevexWithColumnNorms field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasLogSearchProgress()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasLogSearchProgress ( )
If true, logs the progress of a solve to LOG(INFO). Note that the same
messages can also be turned on by displaying logs at level 1 for the
relevant files.

optional bool log_search_progress = 61 [default = false];

Returns
Whether the logSearchProgress field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasLogToStdout()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasLogToStdout ( )
If true, logs will be displayed to stdout instead of using Google log info.

optional bool log_to_stdout = 66 [default = true];

Returns
Whether the logToStdout field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasLuFactorizationPivotThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasLuFactorizationPivotThreshold ( )
Threshold for LU-factorization: for stability reasons, the magnitude of the
chosen pivot at a given step is guaranteed to be greater than this
threshold times the maximum magnitude of all the possible pivot choices in
the same column. The value must be in [0,1].

optional double lu_factorization_pivot_threshold = 25 [default = 0.01];

Returns
Whether the luFactorizationPivotThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMarkowitzSingularityThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMarkowitzSingularityThreshold ( )
If a pivot magnitude is smaller than this during the Markowitz LU
factorization, then the matrix is assumed to be singular. Note that
this is an absolute threshold and is not relative to the other possible
pivots on the same column (see lu_factorization_pivot_threshold).

optional double markowitz_singularity_threshold = 30 [default = 1e-15];

Returns
Whether the markowitzSingularityThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMarkowitzZlatevParameter()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMarkowitzZlatevParameter ( )
How many columns do we look at in the Markowitz pivoting rule to find
a good pivot. See markowitz.h.

optional int32 markowitz_zlatev_parameter = 29 [default = 3];

Returns
Whether the markowitzZlatevParameter field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMaxDeterministicTime()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMaxDeterministicTime ( )
Maximum deterministic time allowed to solve a problem. The deterministic
time is more or less correlated to the running time, and its unit should
be around the second (at least on a Xeon(R) CPU E5-1650 v2 @ 3.50GHz).

TODO(user): Improve the correlation.

optional double max_deterministic_time = 45 [default = inf];

Returns
Whether the maxDeterministicTime field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMaxNumberOfIterations()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMaxNumberOfIterations ( )
Maximum number of simplex iterations to solve a problem.
A value of -1 means no limit.

optional int64 max_number_of_iterations = 27 [default = -1];

Returns
Whether the maxNumberOfIterations field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMaxNumberOfReoptimizations()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMaxNumberOfReoptimizations ( )
When the solution of phase II is imprecise, we re-run the phase II with the
opposite algorithm from that imprecise solution (i.e., if primal or dual
simplex was used, we use dual or primal simplex, respectively). We repeat
such re-optimization until the solution is precise, or we hit this limit.

optional double max_number_of_reoptimizations = 56 [default = 40];

Returns
Whether the maxNumberOfReoptimizations field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMaxTimeInSeconds()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMaxTimeInSeconds ( )
Maximum time allowed in seconds to solve a problem.

optional double max_time_in_seconds = 26 [default = inf];

Returns
Whether the maxTimeInSeconds field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMaxValidMagnitude()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMaxValidMagnitude ( )
Any finite values in the input LP must be below this threshold, otherwise
the model will be reported invalid. This is needed to avoid floating point
overflow when evaluating bounds * coeff for instance. In practice, users
shouldn't use super large values in an LP. With the default threshold, even
evaluating large constraint with variables at their bound shouldn't cause
any overflow.

optional double max_valid_magnitude = 70 [default = 1e+30];

Returns
Whether the maxValidMagnitude field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasMinimumAcceptablePivot()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasMinimumAcceptablePivot ( )
We never follow a basis change with a pivot under this threshold.

optional double minimum_acceptable_pivot = 15 [default = 1e-06];

Returns
Whether the minimumAcceptablePivot field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasNumOmpThreads()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasNumOmpThreads ( )
Number of threads in the OMP parallel sections. If left to 1, the code will
not create any OMP threads and will remain single-threaded.

optional int32 num_omp_threads = 44 [default = 1];

Returns
Whether the numOmpThreads field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasObjectiveLowerLimit()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasObjectiveLowerLimit ( )
The solver will stop as soon as it has proven that the objective is smaller
than objective_lower_limit or greater than objective_upper_limit. Depending
on the simplex algorithm (primal or dual) and the optimization direction,
note that only one bound will be used at the time.

Important: The solver does not add any tolerances to these values, and as
soon as the objective (as computed by the solver, so with some imprecision)
crosses one of these bounds (strictly), the search will stop. It is up to
the client to add any tolerance if needed.

optional double objective_lower_limit = 40 [default = -inf];

Returns
Whether the objectiveLowerLimit field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasObjectiveUpperLimit()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasObjectiveUpperLimit ( )

optional double objective_upper_limit = 41 [default = inf];

Returns
Whether the objectiveUpperLimit field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasOptimizationRule()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasOptimizationRule ( )
PricingRule to use during the optimization phase.

optional .operations_research.glop.GlopParameters.PricingRule optimization_rule = 2 [default = STEEPEST_EDGE];

Returns
Whether the optimizationRule field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasPerturbCostsInDualSimplex()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasPerturbCostsInDualSimplex ( )
When this is true, then the costs are randomly perturbed before the dual
simplex is even started. This has been shown to improve the dual simplex
performance. For a good reference, see Huangfu Q (2013) "High performance
simplex solver", Ph.D, dissertation, University of Edinburgh.

optional bool perturb_costs_in_dual_simplex = 53 [default = false];

Returns
Whether the perturbCostsInDualSimplex field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasPreprocessorZeroTolerance()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasPreprocessorZeroTolerance ( )
A floating point tolerance used by the preprocessors. This is used for
things like detecting if two columns/rows are proportional or if an
interval is empty.

Note that the preprocessors also use solution_feasibility_tolerance() to
detect if a problem is infeasible.

optional double preprocessor_zero_tolerance = 39 [default = 1e-09];

Returns
Whether the preprocessorZeroTolerance field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasPrimalFeasibilityTolerance()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasPrimalFeasibilityTolerance ( )
This tolerance indicates by how much we allow the variable values to go out
of bounds and still consider the current solution primal-feasible. We also
use the same tolerance for the error A.x - b. Note that the two errors are
closely related if A is scaled in such a way that the greatest coefficient
magnitude on each column is 1.0.

This is also simply called feasibility tolerance in other solvers.

optional double primal_feasibility_tolerance = 10 [default = 1e-08];

Returns
Whether the primalFeasibilityTolerance field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasProvideStrongOptimalGuarantee()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasProvideStrongOptimalGuarantee ( )
If true, then when the solver returns a solution with an OPTIMAL status,
we can guarantee that:
- The primal variable are in their bounds.
- The dual variable are in their bounds.
- If we modify each component of the right-hand side a bit and each
component of the objective function a bit, then the pair (primal values,
dual values) is an EXACT optimal solution of the perturbed problem.
- The modifications above are smaller than the associated tolerances as
defined in the comment for solution_feasibility_tolerance (*).

(*): This is the only place where the guarantee is not tight since we
compute the upper bounds with scalar product of the primal/dual
solution and the initial problem coefficients with only double precision.

Note that whether or not this option is true, we still check the
primal/dual infeasibility and objective gap. However if it is false, we
don't move the primal/dual values within their bounds and leave them
untouched.

optional bool provide_strong_optimal_guarantee = 24 [default = true];

Returns
Whether the provideStrongOptimalGuarantee field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasPushToVertex()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasPushToVertex ( )
If the optimization phases finishes with super-basic variables (i.e.,
variables that either 1) have bounds but are FREE in the basis, or 2) have
no bounds and are FREE in the basis at a nonzero value), then run a "push"
phase to push these variables to bounds, obtaining a vertex solution. Note
this situation can happen only if a starting value was specified via
SetStartingVariableValuesForNextSolve().

optional bool push_to_vertex = 65 [default = true];

Returns
Whether the pushToVertex field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasRandomSeed()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasRandomSeed ( )
At the beginning of each solve, the random number generator used in some
part of the solver is reinitialized to this seed. If you change the random
seed, the solver may make different choices during the solving process.
Note that this may lead to a different solution, for example a different
optimal basis.

For some problems, the running time may vary a lot depending on small
change in the solving algorithm. Running the solver with different seeds
enables to have more robust benchmarks when evaluating new features.

Also note that the solver is fully deterministic: two runs of the same
binary, on the same machine, on the exact same data and with the same
parameters will go through the exact same iterations. If they hit a time
limit, they might of course yield different results because one will have
advanced farther than the other.

optional int32 random_seed = 43 [default = 1];

Returns
Whether the randomSeed field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasRatioTestZeroThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasRatioTestZeroThreshold ( )
During the primal simplex (resp. dual simplex), the coefficients of the
direction (resp. update row) with a magnitude lower than this threshold are
not considered during the ratio test. This tolerance is related to the
precision at which a Solve() involving the basis matrix can be performed.

TODO(user): Automatically increase it when we detect that the precision
of the Solve() is worse than this.

optional double ratio_test_zero_threshold = 12 [default = 1e-09];

Returns
Whether the ratioTestZeroThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasRecomputeEdgesNormThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasRecomputeEdgesNormThreshold ( )
Note that the threshold is a relative error on the actual norm (not the
squared one) and that edge norms are always greater than 1. Recomputing
norms is a really expensive operation and a large threshold is ok since
this doesn't impact directly the solution but just the entering variable
choice.

optional double recompute_edges_norm_threshold = 9 [default = 100];

Returns
Whether the recomputeEdgesNormThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasRecomputeReducedCostsThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasRecomputeReducedCostsThreshold ( )
We estimate the accuracy of the iteratively computed reduced costs. If
it falls below this threshold, we reinitialize them from scratch. Note
that such an operation is pretty fast, so we can use a low threshold.
It is important to have a good accuracy here (better than the
dual_feasibility_tolerance below) to be sure of the sign of such a cost.

optional double recompute_reduced_costs_threshold = 8 [default = 1e-08];

Returns
Whether the recomputeReducedCostsThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasRefactorizationThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasRefactorizationThreshold ( )
We estimate the factorization accuracy of B during each pivot by using
the fact that we can compute the pivot coefficient in two ways:
- From direction[leaving_row].
- From update_row[entering_column].
If the two values have a relative difference above this threshold, we
trigger a refactorization.

optional double refactorization_threshold = 6 [default = 1e-09];

Returns
Whether the refactorizationThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasRelativeCostPerturbation()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasRelativeCostPerturbation ( )
The magnitude of the cost perturbation is given by
RandomIn(1.0, 2.0) * (
relative_cost_perturbation * cost
+ relative_max_cost_perturbation * max_cost);

optional double relative_cost_perturbation = 54 [default = 1e-05];

Returns
Whether the relativeCostPerturbation field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasRelativeMaxCostPerturbation()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasRelativeMaxCostPerturbation ( )

optional double relative_max_cost_perturbation = 55 [default = 1e-07];

Returns
Whether the relativeMaxCostPerturbation field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasScalingMethod()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasScalingMethod ( )

optional .operations_research.glop.GlopParameters.ScalingAlgorithm scaling_method = 57 [default = EQUILIBRATION];

Returns
Whether the scalingMethod field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasSmallPivotThreshold()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasSmallPivotThreshold ( )
When we choose the leaving variable, we want to avoid small pivot because
they are the less precise and may cause numerical instabilities. For a
pivot under this threshold times the infinity norm of the direction, we try
various countermeasures in order to avoid using it.

optional double small_pivot_threshold = 14 [default = 1e-06];

Returns
Whether the smallPivotThreshold field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasSolutionFeasibilityTolerance()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasSolutionFeasibilityTolerance ( )
When the problem status is OPTIMAL, we check the optimality using this
relative tolerance and change the status to IMPRECISE if an issue is
detected.

The tolerance is "relative" in the sense that our thresholds are:
- tolerance * max(1.0, abs(bound)) for crossing a given bound.
- tolerance * max(1.0, abs(cost)) for an infeasible reduced cost.
- tolerance for an infeasible dual value.

optional double solution_feasibility_tolerance = 22 [default = 1e-06];

Returns
Whether the solutionFeasibilityTolerance field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasSolveDualProblem()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasSolveDualProblem ( )
Whether or not we solve the dual of the given problem.
With a value of auto, the algorithm decide which approach is probably the
fastest depending on the problem dimensions (see dualizer_threshold).

optional .operations_research.glop.GlopParameters.SolverBehavior solve_dual_problem = 20 [default = LET_SOLVER_DECIDE];

Returns
Whether the solveDualProblem field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasUseDedicatedDualFeasibilityAlgorithm()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasUseDedicatedDualFeasibilityAlgorithm ( )
We have two possible dual phase I algorithms. Both work on an LP that
minimize the sum of dual infeasiblities. One use dedicated code (when this
param is true), the other one use exactly the same code as the dual phase
II but on an auxiliary problem where the variable bounds of the original
problem are changed.

TODO(user): For now we have both, but ideally the non-dedicated version
will win since it is a lot less code to maintain.

optional bool use_dedicated_dual_feasibility_algorithm = 62 [default = true];

Returns
Whether the useDedicatedDualFeasibilityAlgorithm field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasUseDualSimplex()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasUseDualSimplex ( )
Whether or not we use the dual simplex algorithm instead of the primal.

optional bool use_dual_simplex = 31 [default = false];

Returns
Whether the useDualSimplex field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasUseImpliedFreePreprocessor()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasUseImpliedFreePreprocessor ( )
If presolve runs, include the pass that detects implied free variables.

optional bool use_implied_free_preprocessor = 67 [default = true];

Returns
Whether the useImpliedFreePreprocessor field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasUseMiddleProductFormUpdate()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasUseMiddleProductFormUpdate ( )
Whether or not to use the middle product form update rather than the
standard eta LU update. The middle form product update should be a lot more
efficient (close to the Forrest-Tomlin update, a bit slower but easier to
implement). See for more details:
Qi Huangfu, J. A. Julian Hall, "Novel update techniques for the revised
simplex method", 28 january 2013, Technical Report ERGO-13-0001
http://www.maths.ed.ac.uk/hall/HuHa12/ERGO-13-001.pdf

optional bool use_middle_product_form_update = 35 [default = true];

Returns
Whether the useMiddleProductFormUpdate field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasUsePreprocessing()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasUsePreprocessing ( )
Whether or not we use advanced preprocessing techniques.

optional bool use_preprocessing = 34 [default = true];

Returns
Whether the usePreprocessing field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasUseScaling()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasUseScaling ( )
Whether or not we scale the matrix A so that the maximum coefficient on
each line and each column is 1.0.

optional bool use_scaling = 16 [default = true];

Returns
Whether the useScaling field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.

◆ hasUseTransposedMatrix()

boolean com.google.ortools.glop.GlopParametersOrBuilder.hasUseTransposedMatrix ( )
Whether or not we keep a transposed version of the matrix A to speed-up the
pricing at the cost of extra memory and the initial tranposition
computation.

optional bool use_transposed_matrix = 18 [default = true];

Returns
Whether the useTransposedMatrix field is set.

Implemented in com.google.ortools.glop.GlopParameters.Builder, and com.google.ortools.glop.GlopParameters.


The documentation for this interface was generated from the following file: