Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
|
Classes | |
class | Builder |
enum | CostScalingAlgorithm |
enum | InitialBasisHeuristic |
enum | PricingRule |
enum | ScalingAlgorithm |
enum | SolverBehavior |
Static Public Member Functions | |
static final com.google.protobuf.Descriptors.Descriptor | getDescriptor () |
static com.google.ortools.glop.GlopParameters | parseFrom (java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException |
static com.google.ortools.glop.GlopParameters | parseFrom (java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException |
static com.google.ortools.glop.GlopParameters | parseFrom (com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException |
static com.google.ortools.glop.GlopParameters | parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException |
static com.google.ortools.glop.GlopParameters | parseFrom (byte[] data) throws com.google.protobuf.InvalidProtocolBufferException |
static com.google.ortools.glop.GlopParameters | parseFrom (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException |
static com.google.ortools.glop.GlopParameters | parseFrom (java.io.InputStream input) throws java.io.IOException |
static com.google.ortools.glop.GlopParameters | parseFrom (java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException |
static com.google.ortools.glop.GlopParameters | parseDelimitedFrom (java.io.InputStream input) throws java.io.IOException |
static com.google.ortools.glop.GlopParameters | parseDelimitedFrom (java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException |
static com.google.ortools.glop.GlopParameters | parseFrom (com.google.protobuf.CodedInputStream input) throws java.io.IOException |
static com.google.ortools.glop.GlopParameters | parseFrom (com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException |
static Builder | newBuilder () |
static Builder | newBuilder (com.google.ortools.glop.GlopParameters prototype) |
static com.google.ortools.glop.GlopParameters | getDefaultInstance () |
static com.google.protobuf.Parser< GlopParameters > | parser () |
Protected Member Functions | |
com.google.protobuf.GeneratedMessage.FieldAccessorTable | internalGetFieldAccessorTable () |
Builder | newBuilderForType (com.google.protobuf.GeneratedMessage.BuilderParent parent) |
next id = 72
Protobuf type operations_research.glop.GlopParameters
Definition at line 14 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.equals | ( | final java.lang.Object | obj | ) |
Definition at line 3226 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getAllowSimplexAlgorithmChange | ( | ) |
During incremental solve, let the solver decide if it use the primal or dual simplex algorithm depending on the current solution and on the new problem. Note that even if this is true, the value of use_dual_simplex still indicates the default algorithm that the solver will use.
optional bool allow_simplex_algorithm_change = 32 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1928 of file GlopParameters.java.
int com.google.ortools.glop.GlopParameters.getBasisRefactorizationPeriod | ( | ) |
Number of iterations between two basis refactorizations. Note that various conditions in the algorithm may trigger a refactorization before this period is reached. Set this to 0 if you want to refactorize at each step.
optional int32 basis_refactorization_period = 19 [default = 64];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1422 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getChangeStatusToImprecise | ( | ) |
If true, the internal API will change the return status to imprecise if the solution does not respect the internal tolerances.
optional bool change_status_to_imprecise = 58 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1649 of file GlopParameters.java.
com.google.ortools.glop.GlopParameters.CostScalingAlgorithm com.google.ortools.glop.GlopParameters.getCostScaling | ( | ) |
optional .operations_research.glop.GlopParameters.CostScalingAlgorithm cost_scaling = 60 [default = CONTAIN_ONE_COST_SCALING];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1331 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getCrossoverBoundSnappingDistance | ( | ) |
If the starting basis contains FREE variable with bounds, we will move any such variable to their closer bounds if the distance is smaller than this parameter. The starting statuses can contains FREE variables with bounds, if a user set it like this externally. Also, any variable with an initial BASIC status that was not kept in the initial basis is marked as FREE before this step is applied. Note that by default a FREE variable is assumed to be zero unless a starting value was specified via SetStartingVariableValuesForNextSolve(). Note that, at the end of the solve, some of these FREE variable with bounds and an interior point value might still be left in the final solution. Enable push_to_vertex to clean these up.
optional double crossover_bound_snapping_distance = 64 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2624 of file GlopParameters.java.
|
static |
Definition at line 8898 of file GlopParameters.java.
com.google.ortools.glop.GlopParameters com.google.ortools.glop.GlopParameters.getDefaultInstanceForType | ( | ) |
Definition at line 8934 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getDegenerateMinistepFactor | ( | ) |
During a degenerate iteration, the more conservative approach is to do a step of length zero (while shifting the bound of the leaving variable). That is, the variable values are unchanged for the primal simplex or the reduced cost are unchanged for the dual simplex. However, instead of doing a step of length zero, it seems to be better on degenerate problems to do a small positive step. This is what is recommended in the EXPAND procedure described in: P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. "A practical anti- cycling procedure for linearly constrained optimization". Mathematical Programming, 45:437\u2013474, 1989. Here, during a degenerate iteration we do a small positive step of this factor times the primal (resp. dual) tolerance. In the primal simplex, this may effectively push variable values (very slightly) further out of their bounds (resp. reduced costs for the dual simplex). Setting this to zero reverts to the more conservative approach of a zero step during degenerate iterations.
optional double degenerate_ministep_factor = 42 [default = 0.01];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2270 of file GlopParameters.java.
|
static |
Definition at line 89 of file GlopParameters.java.
int com.google.ortools.glop.GlopParameters.getDevexWeightsResetPeriod | ( | ) |
Devex weights will be reset to 1.0 after that number of updates.
optional int32 devex_weights_reset_period = 33 [default = 150];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1955 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getDropMagnitude | ( | ) |
Value in the input LP lower than this will be ignored. This is similar to drop_tolerance but more aggressive as this is used before scaling. This is mainly here to avoid underflow and have simpler invariant in the code, like a * b == 0 iff a or b is zero and things like this.
optional double drop_magnitude = 71 [default = 1e-30];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2758 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getDropTolerance | ( | ) |
In order to increase the sparsity of the manipulated vectors, floating point values with a magnitude smaller than this parameter are set to zero (only in some places). This parameter should be positive or zero.
optional double drop_tolerance = 52 [default = 1e-14];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1285 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getDualFeasibilityTolerance | ( | ) |
Variables whose reduced costs have an absolute value smaller than this tolerance are not considered as entering candidates. That is they do not take part in deciding whether a solution is dual-feasible or not. Note that this value can temporarily increase during the execution of the algorithm if the estimated precision of the reduced costs is higher than this tolerance. Note also that we scale the costs (in the presolve step) so that the cost magnitude range contains one. This is also known as the optimality tolerance in other solvers.
optional double dual_feasibility_tolerance = 11 [default = 1e-08];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1108 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getDualizerThreshold | ( | ) |
When solve_dual_problem is LET_SOLVER_DECIDE, take the dual if the number of constraints of the problem is more than this threshold times the number of variables.
optional double dualizer_threshold = 21 [default = 1.5];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1518 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getDualPricePrioritizeNorm | ( | ) |
On some problem like stp3d or pds-100 this makes a huge difference in speed and number of iterations of the dual simplex.
optional bool dual_price_prioritize_norm = 69 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2787 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getDualSmallPivotThreshold | ( | ) |
Like small_pivot_threshold but for the dual simplex. This is needed because the dual algorithm does not interpret this value in the same way. TODO(user): Clean this up and use the same small pivot detection.
optional double dual_small_pivot_threshold = 38 [default = 0.0001];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2110 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getDynamicallyAdjustRefactorizationPeriod | ( | ) |
If this is true, then basis_refactorization_period becomes a lower bound on the number of iterations between two refactorization (provided there is no numerical accuracy issues). Depending on the estimated time to refactorize vs the extra time spend in each solves because of the LU update, we try to balance the two times.
optional bool dynamically_adjust_refactorization_period = 63 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1457 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getExploitSingletonColumnInInitialBasis | ( | ) |
Whether or not we exploit the singleton columns already present in the problem when we create the initial basis.
optional bool exploit_singleton_column_in_initial_basis = 37 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2079 of file GlopParameters.java.
com.google.ortools.glop.GlopParameters.PricingRule com.google.ortools.glop.GlopParameters.getFeasibilityRule | ( | ) |
PricingRule to use during the feasibility phase.
optional .operations_research.glop.GlopParameters.PricingRule feasibility_rule = 1 [default = STEEPEST_EDGE];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 890 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getHarrisToleranceRatio | ( | ) |
This impacts the ratio test and indicates by how much we allow a basic variable value that we move to go out of bounds. The value should be in [0.0, 1.0) and should be interpreted as a ratio of the primal_feasibility_tolerance. Setting this to 0.0 basically disables the Harris ratio test while setting this too close to 1.0 will make it difficult to keep the variable values inside their bounds modulo the primal_feasibility_tolerance. Note that the same comment applies to the dual simplex ratio test. There, we allow the reduced costs to be of an infeasible sign by as much as this ratio times the dual_feasibility_tolerance.
optional double harris_tolerance_ratio = 13 [default = 0.5];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1194 of file GlopParameters.java.
com.google.ortools.glop.GlopParameters.InitialBasisHeuristic com.google.ortools.glop.GlopParameters.getInitialBasis | ( | ) |
What heuristic is used to try to replace the fixed slack columns in the initial basis of the primal simplex.
optional .operations_research.glop.GlopParameters.InitialBasisHeuristic initial_basis = 17 [default = TRIANGULAR];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1359 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getInitialConditionNumberThreshold | ( | ) |
If our upper bound on the condition number of the initial basis (from our heurisitic or a warm start) is above this threshold, we revert to an all slack basis.
optional double initial_condition_number_threshold = 59 [default = 1e+50];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2511 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getInitializeDevexWithColumnNorms | ( | ) |
Whether we initialize devex weights to 1.0 or to the norms of the matrix columns.
optional bool initialize_devex_with_column_norms = 36 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2050 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getLogSearchProgress | ( | ) |
If true, logs the progress of a solve to LOG(INFO). Note that the same messages can also be turned on by displaying logs at level 1 for the relevant files.
optional bool log_search_progress = 61 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2542 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getLogToStdout | ( | ) |
If true, logs will be displayed to stdout instead of using Google log info.
optional bool log_to_stdout = 66 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2569 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getLuFactorizationPivotThreshold | ( | ) |
Threshold for LU-factorization: for stability reasons, the magnitude of the chosen pivot at a given step is guaranteed to be greater than this threshold times the maximum magnitude of all the possible pivot choices in the same column. The value must be in [0,1].
optional double lu_factorization_pivot_threshold = 25 [default = 0.01];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1715 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getMarkowitzSingularityThreshold | ( | ) |
If a pivot magnitude is smaller than this during the Markowitz LU factorization, then the matrix is assumed to be singular. Note that this is an absolute threshold and is not relative to the other possible pivots on the same column (see lu_factorization_pivot_threshold).
optional double markowitz_singularity_threshold = 30 [default = 1e-15];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1868 of file GlopParameters.java.
int com.google.ortools.glop.GlopParameters.getMarkowitzZlatevParameter | ( | ) |
How many columns do we look at in the Markowitz pivoting rule to find a good pivot. See markowitz.h.
optional int32 markowitz_zlatev_parameter = 29 [default = 3];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1835 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getMaxDeterministicTime | ( | ) |
Maximum deterministic time allowed to solve a problem. The deterministic time is more or less correlated to the running time, and its unit should be around the second (at least on a Xeon(R) CPU E5-1650 v2 @ 3.50GHz). TODO(user): Improve the correlation.
optional double max_deterministic_time = 45 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1777 of file GlopParameters.java.
long com.google.ortools.glop.GlopParameters.getMaxNumberOfIterations | ( | ) |
Maximum number of simplex iterations to solve a problem. A value of -1 means no limit.
optional int64 max_number_of_iterations = 27 [default = -1];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1806 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getMaxNumberOfReoptimizations | ( | ) |
When the solution of phase II is imprecise, we re-run the phase II with the opposite algorithm from that imprecise solution (i.e., if primal or dual simplex was used, we use dual or primal simplex, respectively). We repeat such re-optimization until the solution is precise, or we hit this limit.
optional double max_number_of_reoptimizations = 56 [default = 40];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1682 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getMaxTimeInSeconds | ( | ) |
Maximum time allowed in seconds to solve a problem.
optional double max_time_in_seconds = 26 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1742 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getMaxValidMagnitude | ( | ) |
Any finite values in the input LP must be below this threshold, otherwise the model will be reported invalid. This is needed to avoid floating point overflow when evaluating bounds * coeff for instance. In practice, users shouldn't use super large values in an LP. With the default threshold, even evaluating large constraint with variables at their bound shouldn't cause any overflow.
optional double max_valid_magnitude = 70 [default = 1e+30];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2725 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getMinimumAcceptablePivot | ( | ) |
We never follow a basis change with a pivot under this threshold.
optional double minimum_acceptable_pivot = 15 [default = 1e-06];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1254 of file GlopParameters.java.
int com.google.ortools.glop.GlopParameters.getNumOmpThreads | ( | ) |
Number of threads in the OMP parallel sections. If left to 1, the code will not create any OMP threads and will remain single-threaded.
optional int32 num_omp_threads = 44 [default = 1];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2354 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getObjectiveLowerLimit | ( | ) |
The solver will stop as soon as it has proven that the objective is smaller than objective_lower_limit or greater than objective_upper_limit. Depending on the simplex algorithm (primal or dual) and the optimization direction, note that only one bound will be used at the time. Important: The solver does not add any tolerances to these values, and as soon as the objective (as computed by the solver, so with some imprecision) crosses one of these bounds (strictly), the search will stop. It is up to the client to add any tolerance if needed.
optional double objective_lower_limit = 40 [default = -inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2190 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getObjectiveUpperLimit | ( | ) |
optional double objective_upper_limit = 41 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2209 of file GlopParameters.java.
com.google.ortools.glop.GlopParameters.PricingRule com.google.ortools.glop.GlopParameters.getOptimizationRule | ( | ) |
PricingRule to use during the optimization phase.
optional .operations_research.glop.GlopParameters.PricingRule optimization_rule = 2 [default = STEEPEST_EDGE];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 916 of file GlopParameters.java.
com.google.protobuf.Parser< GlopParameters > com.google.ortools.glop.GlopParameters.getParserForType | ( | ) |
Definition at line 8929 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getPerturbCostsInDualSimplex | ( | ) |
When this is true, then the costs are randomly perturbed before the dual simplex is even started. This has been shown to improve the dual simplex performance. For a good reference, see Huangfu Q (2013) "High performance simplex solver", Ph.D, dissertation, University of Edinburgh.
optional bool perturb_costs_in_dual_simplex = 53 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2387 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getPreprocessorZeroTolerance | ( | ) |
A floating point tolerance used by the preprocessors. This is used for things like detecting if two columns/rows are proportional or if an interval is empty. Note that the preprocessors also use solution_feasibility_tolerance() to detect if a problem is infeasible.
optional double preprocessor_zero_tolerance = 39 [default = 1e-09];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2147 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getPrimalFeasibilityTolerance | ( | ) |
This tolerance indicates by how much we allow the variable values to go out of bounds and still consider the current solution primal-feasible. We also use the same tolerance for the error A.x - b. Note that the two errors are closely related if A is scaled in such a way that the greatest coefficient magnitude on each column is 1.0. This is also simply called feasibility tolerance in other solvers.
optional double primal_feasibility_tolerance = 10 [default = 1e-08];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1063 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getProvideStrongOptimalGuarantee | ( | ) |
If true, then when the solver returns a solution with an OPTIMAL status, we can guarantee that: - The primal variable are in their bounds. - The dual variable are in their bounds. - If we modify each component of the right-hand side a bit and each component of the objective function a bit, then the pair (primal values, dual values) is an EXACT optimal solution of the perturbed problem. - The modifications above are smaller than the associated tolerances as defined in the comment for solution_feasibility_tolerance (*). (*): This is the only place where the guarantee is not tight since we compute the upper bounds with scalar product of the primal/dual solution and the initial problem coefficients with only double precision. Note that whether or not this option is true, we still check the primal/dual infeasibility and objective gap. However if it is false, we don't move the primal/dual values within their bounds and leave them untouched.
optional bool provide_strong_optimal_guarantee = 24 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1620 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getPushToVertex | ( | ) |
If the optimization phases finishes with super-basic variables (i.e., variables that either 1) have bounds but are FREE in the basis, or 2) have no bounds and are FREE in the basis at a nonzero value), then run a "push" phase to push these variables to bounds, obtaining a vertex solution. Note this situation can happen only if a starting value was specified via SetStartingVariableValuesForNextSolve().
optional bool push_to_vertex = 65 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2661 of file GlopParameters.java.
int com.google.ortools.glop.GlopParameters.getRandomSeed | ( | ) |
At the beginning of each solve, the random number generator used in some part of the solver is reinitialized to this seed. If you change the random seed, the solver may make different choices during the solving process. Note that this may lead to a different solution, for example a different optimal basis. For some problems, the running time may vary a lot depending on small change in the solving algorithm. Running the solver with different seeds enables to have more robust benchmarks when evaluating new features. Also note that the solver is fully deterministic: two runs of the same binary, on the same machine, on the exact same data and with the same parameters will go through the exact same iterations. If they hit a time limit, they might of course yield different results because one will have advanced farther than the other.
optional int32 random_seed = 43 [default = 1];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2325 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getRatioTestZeroThreshold | ( | ) |
During the primal simplex (resp. dual simplex), the coefficients of the direction (resp. update row) with a magnitude lower than this threshold are not considered during the ratio test. This tolerance is related to the precision at which a Solve() involving the basis matrix can be performed. TODO(user): Automatically increase it when we detect that the precision of the Solve() is worse than this.
optional double ratio_test_zero_threshold = 12 [default = 1e-09];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1147 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getRecomputeEdgesNormThreshold | ( | ) |
Note that the threshold is a relative error on the actual norm (not the squared one) and that edge norms are always greater than 1. Recomputing norms is a really expensive operation and a large threshold is ok since this doesn't impact directly the solution but just the entering variable choice.
optional double recompute_edges_norm_threshold = 9 [default = 100];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1024 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getRecomputeReducedCostsThreshold | ( | ) |
We estimate the accuracy of the iteratively computed reduced costs. If it falls below this threshold, we reinitialize them from scratch. Note that such an operation is pretty fast, so we can use a low threshold. It is important to have a good accuracy here (better than the dual_feasibility_tolerance below) to be sure of the sign of such a cost.
optional double recompute_reduced_costs_threshold = 8 [default = 1e-08];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 989 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getRefactorizationThreshold | ( | ) |
We estimate the factorization accuracy of B during each pivot by using the fact that we can compute the pivot coefficient in two ways: - From direction[leaving_row]. - From update_row[entering_column]. If the two values have a relative difference above this threshold, we trigger a refactorization.
optional double refactorization_threshold = 6 [default = 1e-09];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 954 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getRelativeCostPerturbation | ( | ) |
The magnitude of the cost perturbation is given by RandomIn(1.0, 2.0) * ( relative_cost_perturbation * cost + relative_max_cost_perturbation * max_cost);
optional double relative_cost_perturbation = 54 [default = 1e-05];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2461 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getRelativeMaxCostPerturbation | ( | ) |
optional double relative_max_cost_perturbation = 55 [default = 1e-07];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2480 of file GlopParameters.java.
com.google.ortools.glop.GlopParameters.ScalingAlgorithm com.google.ortools.glop.GlopParameters.getScalingMethod | ( | ) |
optional .operations_research.glop.GlopParameters.ScalingAlgorithm scaling_method = 57 [default = EQUILIBRATION];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 864 of file GlopParameters.java.
int com.google.ortools.glop.GlopParameters.getSerializedSize | ( | ) |
Definition at line 2983 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getSmallPivotThreshold | ( | ) |
When we choose the leaving variable, we want to avoid small pivot because they are the less precise and may cause numerical instabilities. For a pivot under this threshold times the infinity norm of the direction, we try various countermeasures in order to avoid using it.
optional double small_pivot_threshold = 14 [default = 1e-06];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1227 of file GlopParameters.java.
double com.google.ortools.glop.GlopParameters.getSolutionFeasibilityTolerance | ( | ) |
When the problem status is OPTIMAL, we check the optimality using this relative tolerance and change the status to IMPRECISE if an issue is detected. The tolerance is "relative" in the sense that our thresholds are: - tolerance * max(1.0, abs(bound)) for crossing a given bound. - tolerance * max(1.0, abs(cost)) for an infeasible reduced cost. - tolerance for an infeasible dual value.
optional double solution_feasibility_tolerance = 22 [default = 1e-06];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1559 of file GlopParameters.java.
com.google.ortools.glop.GlopParameters.SolverBehavior com.google.ortools.glop.GlopParameters.getSolveDualProblem | ( | ) |
Whether or not we solve the dual of the given problem. With a value of auto, the algorithm decide which approach is probably the fastest depending on the problem dimensions (see dualizer_threshold).
optional .operations_research.glop.GlopParameters.SolverBehavior solve_dual_problem = 20 [default = LET_SOLVER_DECIDE];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1486 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getUseDedicatedDualFeasibilityAlgorithm | ( | ) |
We have two possible dual phase I algorithms. Both work on an LP that minimize the sum of dual infeasiblities. One use dedicated code (when this param is true), the other one use exactly the same code as the dual phase II but on an auxiliary problem where the variable bounds of the original problem are changed. TODO(user): For now we have both, but ideally the non-dedicated version will win since it is a lot less code to maintain.
optional bool use_dedicated_dual_feasibility_algorithm = 62 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2428 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getUseDualSimplex | ( | ) |
Whether or not we use the dual simplex algorithm instead of the primal.
optional bool use_dual_simplex = 31 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1895 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getUseImpliedFreePreprocessor | ( | ) |
If presolve runs, include the pass that detects implied free variables.
optional bool use_implied_free_preprocessor = 67 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2688 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getUseMiddleProductFormUpdate | ( | ) |
Whether or not to use the middle product form update rather than the standard eta LU update. The middle form product update should be a lot more efficient (close to the Forrest-Tomlin update, a bit slower but easier to implement). See for more details: Qi Huangfu, J. A. Julian Hall, "Novel update techniques for the revised simplex method", 28 january 2013, Technical Report ERGO-13-0001 http://www.maths.ed.ac.uk/hall/HuHa12/ERGO-13-001.pdf
optional bool use_middle_product_form_update = 35 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2021 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getUsePreprocessing | ( | ) |
Whether or not we use advanced preprocessing techniques.
optional bool use_preprocessing = 34 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1982 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getUseScaling | ( | ) |
Whether or not we scale the matrix A so that the maximum coefficient on each line and each column is 1.0.
optional bool use_scaling = 16 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1314 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.getUseTransposedMatrix | ( | ) |
Whether or not we keep a transposed version of the matrix A to speed-up the pricing at the cost of extra memory and the initial tranposition computation.
optional bool use_transposed_matrix = 18 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1391 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasAllowSimplexAlgorithmChange | ( | ) |
During incremental solve, let the solver decide if it use the primal or dual simplex algorithm depending on the current solution and on the new problem. Note that even if this is true, the value of use_dual_simplex still indicates the default algorithm that the solver will use.
optional bool allow_simplex_algorithm_change = 32 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1913 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasBasisRefactorizationPeriod | ( | ) |
Number of iterations between two basis refactorizations. Note that various conditions in the algorithm may trigger a refactorization before this period is reached. Set this to 0 if you want to refactorize at each step.
optional int32 basis_refactorization_period = 19 [default = 64];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1408 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasChangeStatusToImprecise | ( | ) |
If true, the internal API will change the return status to imprecise if the solution does not respect the internal tolerances.
optional bool change_status_to_imprecise = 58 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1636 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasCostScaling | ( | ) |
optional .operations_research.glop.GlopParameters.CostScalingAlgorithm cost_scaling = 60 [default = CONTAIN_ONE_COST_SCALING];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1324 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasCrossoverBoundSnappingDistance | ( | ) |
If the starting basis contains FREE variable with bounds, we will move any such variable to their closer bounds if the distance is smaller than this parameter. The starting statuses can contains FREE variables with bounds, if a user set it like this externally. Also, any variable with an initial BASIC status that was not kept in the initial basis is marked as FREE before this step is applied. Note that by default a FREE variable is assumed to be zero unless a starting value was specified via SetStartingVariableValuesForNextSolve(). Note that, at the end of the solve, some of these FREE variable with bounds and an interior point value might still be left in the final solution. Enable push_to_vertex to clean these up.
optional double crossover_bound_snapping_distance = 64 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2598 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDegenerateMinistepFactor | ( | ) |
During a degenerate iteration, the more conservative approach is to do a step of length zero (while shifting the bound of the leaving variable). That is, the variable values are unchanged for the primal simplex or the reduced cost are unchanged for the dual simplex. However, instead of doing a step of length zero, it seems to be better on degenerate problems to do a small positive step. This is what is recommended in the EXPAND procedure described in: P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. "A practical anti- cycling procedure for linearly constrained optimization". Mathematical Programming, 45:437\u2013474, 1989. Here, during a degenerate iteration we do a small positive step of this factor times the primal (resp. dual) tolerance. In the primal simplex, this may effectively push variable values (very slightly) further out of their bounds (resp. reduced costs for the dual simplex). Setting this to zero reverts to the more conservative approach of a zero step during degenerate iterations.
optional double degenerate_ministep_factor = 42 [default = 0.01];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2241 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDevexWeightsResetPeriod | ( | ) |
Devex weights will be reset to 1.0 after that number of updates.
optional int32 devex_weights_reset_period = 33 [default = 150];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1943 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDropMagnitude | ( | ) |
Value in the input LP lower than this will be ignored. This is similar to drop_tolerance but more aggressive as this is used before scaling. This is mainly here to avoid underflow and have simpler invariant in the code, like a * b == 0 iff a or b is zero and things like this.
optional double drop_magnitude = 71 [default = 1e-30];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2743 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDropTolerance | ( | ) |
In order to increase the sparsity of the manipulated vectors, floating point values with a magnitude smaller than this parameter are set to zero (only in some places). This parameter should be positive or zero.
optional double drop_tolerance = 52 [default = 1e-14];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1271 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDualFeasibilityTolerance | ( | ) |
Variables whose reduced costs have an absolute value smaller than this tolerance are not considered as entering candidates. That is they do not take part in deciding whether a solution is dual-feasible or not. Note that this value can temporarily increase during the execution of the algorithm if the estimated precision of the reduced costs is higher than this tolerance. Note also that we scale the costs (in the presolve step) so that the cost magnitude range contains one. This is also known as the optimality tolerance in other solvers.
optional double dual_feasibility_tolerance = 11 [default = 1e-08];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1087 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDualizerThreshold | ( | ) |
When solve_dual_problem is LET_SOLVER_DECIDE, take the dual if the number of constraints of the problem is more than this threshold times the number of variables.
optional double dualizer_threshold = 21 [default = 1.5];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1504 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDualPricePrioritizeNorm | ( | ) |
On some problem like stp3d or pds-100 this makes a huge difference in speed and number of iterations of the dual simplex.
optional bool dual_price_prioritize_norm = 69 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2774 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDualSmallPivotThreshold | ( | ) |
Like small_pivot_threshold but for the dual simplex. This is needed because the dual algorithm does not interpret this value in the same way. TODO(user): Clean this up and use the same small pivot detection.
optional double dual_small_pivot_threshold = 38 [default = 0.0001];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2096 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasDynamicallyAdjustRefactorizationPeriod | ( | ) |
If this is true, then basis_refactorization_period becomes a lower bound on the number of iterations between two refactorization (provided there is no numerical accuracy issues). Depending on the estimated time to refactorize vs the extra time spend in each solves because of the LU update, we try to balance the two times.
optional bool dynamically_adjust_refactorization_period = 63 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1441 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasExploitSingletonColumnInInitialBasis | ( | ) |
Whether or not we exploit the singleton columns already present in the problem when we create the initial basis.
optional bool exploit_singleton_column_in_initial_basis = 37 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2066 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasFeasibilityRule | ( | ) |
PricingRule to use during the feasibility phase.
optional .operations_research.glop.GlopParameters.PricingRule feasibility_rule = 1 [default = STEEPEST_EDGE];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 879 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasHarrisToleranceRatio | ( | ) |
This impacts the ratio test and indicates by how much we allow a basic variable value that we move to go out of bounds. The value should be in [0.0, 1.0) and should be interpreted as a ratio of the primal_feasibility_tolerance. Setting this to 0.0 basically disables the Harris ratio test while setting this too close to 1.0 will make it difficult to keep the variable values inside their bounds modulo the primal_feasibility_tolerance. Note that the same comment applies to the dual simplex ratio test. There, we allow the reduced costs to be of an infeasible sign by as much as this ratio times the dual_feasibility_tolerance.
optional double harris_tolerance_ratio = 13 [default = 0.5];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1172 of file GlopParameters.java.
int com.google.ortools.glop.GlopParameters.hashCode | ( | ) |
Definition at line 3552 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasInitialBasis | ( | ) |
What heuristic is used to try to replace the fixed slack columns in the initial basis of the primal simplex.
optional .operations_research.glop.GlopParameters.InitialBasisHeuristic initial_basis = 17 [default = TRIANGULAR];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1347 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasInitialConditionNumberThreshold | ( | ) |
If our upper bound on the condition number of the initial basis (from our heurisitic or a warm start) is above this threshold, we revert to an all slack basis.
optional double initial_condition_number_threshold = 59 [default = 1e+50];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2497 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasInitializeDevexWithColumnNorms | ( | ) |
Whether we initialize devex weights to 1.0 or to the norms of the matrix columns.
optional bool initialize_devex_with_column_norms = 36 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2037 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasLogSearchProgress | ( | ) |
If true, logs the progress of a solve to LOG(INFO). Note that the same messages can also be turned on by displaying logs at level 1 for the relevant files.
optional bool log_search_progress = 61 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2528 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasLogToStdout | ( | ) |
If true, logs will be displayed to stdout instead of using Google log info.
optional bool log_to_stdout = 66 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2557 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasLuFactorizationPivotThreshold | ( | ) |
Threshold for LU-factorization: for stability reasons, the magnitude of the chosen pivot at a given step is guaranteed to be greater than this threshold times the maximum magnitude of all the possible pivot choices in the same column. The value must be in [0,1].
optional double lu_factorization_pivot_threshold = 25 [default = 0.01];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1700 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMarkowitzSingularityThreshold | ( | ) |
If a pivot magnitude is smaller than this during the Markowitz LU factorization, then the matrix is assumed to be singular. Note that this is an absolute threshold and is not relative to the other possible pivots on the same column (see lu_factorization_pivot_threshold).
optional double markowitz_singularity_threshold = 30 [default = 1e-15];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1853 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMarkowitzZlatevParameter | ( | ) |
How many columns do we look at in the Markowitz pivoting rule to find a good pivot. See markowitz.h.
optional int32 markowitz_zlatev_parameter = 29 [default = 3];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1822 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMaxDeterministicTime | ( | ) |
Maximum deterministic time allowed to solve a problem. The deterministic time is more or less correlated to the running time, and its unit should be around the second (at least on a Xeon(R) CPU E5-1650 v2 @ 3.50GHz). TODO(user): Improve the correlation.
optional double max_deterministic_time = 45 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1761 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMaxNumberOfIterations | ( | ) |
Maximum number of simplex iterations to solve a problem. A value of -1 means no limit.
optional int64 max_number_of_iterations = 27 [default = -1];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1793 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMaxNumberOfReoptimizations | ( | ) |
When the solution of phase II is imprecise, we re-run the phase II with the opposite algorithm from that imprecise solution (i.e., if primal or dual simplex was used, we use dual or primal simplex, respectively). We repeat such re-optimization until the solution is precise, or we hit this limit.
optional double max_number_of_reoptimizations = 56 [default = 40];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1667 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMaxTimeInSeconds | ( | ) |
Maximum time allowed in seconds to solve a problem.
optional double max_time_in_seconds = 26 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1730 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMaxValidMagnitude | ( | ) |
Any finite values in the input LP must be below this threshold, otherwise the model will be reported invalid. This is needed to avoid floating point overflow when evaluating bounds * coeff for instance. In practice, users shouldn't use super large values in an LP. With the default threshold, even evaluating large constraint with variables at their bound shouldn't cause any overflow.
optional double max_valid_magnitude = 70 [default = 1e+30];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2708 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasMinimumAcceptablePivot | ( | ) |
We never follow a basis change with a pivot under this threshold.
optional double minimum_acceptable_pivot = 15 [default = 1e-06];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1242 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasNumOmpThreads | ( | ) |
Number of threads in the OMP parallel sections. If left to 1, the code will not create any OMP threads and will remain single-threaded.
optional int32 num_omp_threads = 44 [default = 1];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2341 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasObjectiveLowerLimit | ( | ) |
The solver will stop as soon as it has proven that the objective is smaller than objective_lower_limit or greater than objective_upper_limit. Depending on the simplex algorithm (primal or dual) and the optimization direction, note that only one bound will be used at the time. Important: The solver does not add any tolerances to these values, and as soon as the objective (as computed by the solver, so with some imprecision) crosses one of these bounds (strictly), the search will stop. It is up to the client to add any tolerance if needed.
optional double objective_lower_limit = 40 [default = -inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2170 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasObjectiveUpperLimit | ( | ) |
optional double objective_upper_limit = 41 [default = inf];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2201 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasOptimizationRule | ( | ) |
PricingRule to use during the optimization phase.
optional .operations_research.glop.GlopParameters.PricingRule optimization_rule = 2 [default = STEEPEST_EDGE];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 905 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasPerturbCostsInDualSimplex | ( | ) |
When this is true, then the costs are randomly perturbed before the dual simplex is even started. This has been shown to improve the dual simplex performance. For a good reference, see Huangfu Q (2013) "High performance simplex solver", Ph.D, dissertation, University of Edinburgh.
optional bool perturb_costs_in_dual_simplex = 53 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2372 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasPreprocessorZeroTolerance | ( | ) |
A floating point tolerance used by the preprocessors. This is used for things like detecting if two columns/rows are proportional or if an interval is empty. Note that the preprocessors also use solution_feasibility_tolerance() to detect if a problem is infeasible.
optional double preprocessor_zero_tolerance = 39 [default = 1e-09];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2130 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasPrimalFeasibilityTolerance | ( | ) |
This tolerance indicates by how much we allow the variable values to go out of bounds and still consider the current solution primal-feasible. We also use the same tolerance for the error A.x - b. Note that the two errors are closely related if A is scaled in such a way that the greatest coefficient magnitude on each column is 1.0. This is also simply called feasibility tolerance in other solvers.
optional double primal_feasibility_tolerance = 10 [default = 1e-08];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1045 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasProvideStrongOptimalGuarantee | ( | ) |
If true, then when the solver returns a solution with an OPTIMAL status, we can guarantee that: - The primal variable are in their bounds. - The dual variable are in their bounds. - If we modify each component of the right-hand side a bit and each component of the objective function a bit, then the pair (primal values, dual values) is an EXACT optimal solution of the perturbed problem. - The modifications above are smaller than the associated tolerances as defined in the comment for solution_feasibility_tolerance (*). (*): This is the only place where the guarantee is not tight since we compute the upper bounds with scalar product of the primal/dual solution and the initial problem coefficients with only double precision. Note that whether or not this option is true, we still check the primal/dual infeasibility and objective gap. However if it is false, we don't move the primal/dual values within their bounds and leave them untouched.
optional bool provide_strong_optimal_guarantee = 24 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1591 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasPushToVertex | ( | ) |
If the optimization phases finishes with super-basic variables (i.e., variables that either 1) have bounds but are FREE in the basis, or 2) have no bounds and are FREE in the basis at a nonzero value), then run a "push" phase to push these variables to bounds, obtaining a vertex solution. Note this situation can happen only if a starting value was specified via SetStartingVariableValuesForNextSolve().
optional bool push_to_vertex = 65 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2644 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasRandomSeed | ( | ) |
At the beginning of each solve, the random number generator used in some part of the solver is reinitialized to this seed. If you change the random seed, the solver may make different choices during the solving process. Note that this may lead to a different solution, for example a different optimal basis. For some problems, the running time may vary a lot depending on small change in the solving algorithm. Running the solver with different seeds enables to have more robust benchmarks when evaluating new features. Also note that the solver is fully deterministic: two runs of the same binary, on the same machine, on the exact same data and with the same parameters will go through the exact same iterations. If they hit a time limit, they might of course yield different results because one will have advanced farther than the other.
optional int32 random_seed = 43 [default = 1];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2299 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasRatioTestZeroThreshold | ( | ) |
During the primal simplex (resp. dual simplex), the coefficients of the direction (resp. update row) with a magnitude lower than this threshold are not considered during the ratio test. This tolerance is related to the precision at which a Solve() involving the basis matrix can be performed. TODO(user): Automatically increase it when we detect that the precision of the Solve() is worse than this.
optional double ratio_test_zero_threshold = 12 [default = 1e-09];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1129 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasRecomputeEdgesNormThreshold | ( | ) |
Note that the threshold is a relative error on the actual norm (not the squared one) and that edge norms are always greater than 1. Recomputing norms is a really expensive operation and a large threshold is ok since this doesn't impact directly the solution but just the entering variable choice.
optional double recompute_edges_norm_threshold = 9 [default = 100];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1008 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasRecomputeReducedCostsThreshold | ( | ) |
We estimate the accuracy of the iteratively computed reduced costs. If it falls below this threshold, we reinitialize them from scratch. Note that such an operation is pretty fast, so we can use a low threshold. It is important to have a good accuracy here (better than the dual_feasibility_tolerance below) to be sure of the sign of such a cost.
optional double recompute_reduced_costs_threshold = 8 [default = 1e-08];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 973 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasRefactorizationThreshold | ( | ) |
We estimate the factorization accuracy of B during each pivot by using the fact that we can compute the pivot coefficient in two ways: - From direction[leaving_row]. - From update_row[entering_column]. If the two values have a relative difference above this threshold, we trigger a refactorization.
optional double refactorization_threshold = 6 [default = 1e-09];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 937 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasRelativeCostPerturbation | ( | ) |
The magnitude of the cost perturbation is given by RandomIn(1.0, 2.0) * ( relative_cost_perturbation * cost + relative_max_cost_perturbation * max_cost);
optional double relative_cost_perturbation = 54 [default = 1e-05];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2446 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasRelativeMaxCostPerturbation | ( | ) |
optional double relative_max_cost_perturbation = 55 [default = 1e-07];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2472 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasScalingMethod | ( | ) |
optional .operations_research.glop.GlopParameters.ScalingAlgorithm scaling_method = 57 [default = EQUILIBRATION];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 857 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasSmallPivotThreshold | ( | ) |
When we choose the leaving variable, we want to avoid small pivot because they are the less precise and may cause numerical instabilities. For a pivot under this threshold times the infinity norm of the direction, we try various countermeasures in order to avoid using it.
optional double small_pivot_threshold = 14 [default = 1e-06];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1212 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasSolutionFeasibilityTolerance | ( | ) |
When the problem status is OPTIMAL, we check the optimality using this relative tolerance and change the status to IMPRECISE if an issue is detected. The tolerance is "relative" in the sense that our thresholds are: - tolerance * max(1.0, abs(bound)) for crossing a given bound. - tolerance * max(1.0, abs(cost)) for an infeasible reduced cost. - tolerance for an infeasible dual value.
optional double solution_feasibility_tolerance = 22 [default = 1e-06];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1540 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasSolveDualProblem | ( | ) |
Whether or not we solve the dual of the given problem. With a value of auto, the algorithm decide which approach is probably the fastest depending on the problem dimensions (see dualizer_threshold).
optional .operations_research.glop.GlopParameters.SolverBehavior solve_dual_problem = 20 [default = LET_SOLVER_DECIDE];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1473 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasUseDedicatedDualFeasibilityAlgorithm | ( | ) |
We have two possible dual phase I algorithms. Both work on an LP that minimize the sum of dual infeasiblities. One use dedicated code (when this param is true), the other one use exactly the same code as the dual phase II but on an auxiliary problem where the variable bounds of the original problem are changed. TODO(user): For now we have both, but ideally the non-dedicated version will win since it is a lot less code to maintain.
optional bool use_dedicated_dual_feasibility_algorithm = 62 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2409 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasUseDualSimplex | ( | ) |
Whether or not we use the dual simplex algorithm instead of the primal.
optional bool use_dual_simplex = 31 [default = false];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1883 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasUseImpliedFreePreprocessor | ( | ) |
If presolve runs, include the pass that detects implied free variables.
optional bool use_implied_free_preprocessor = 67 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2676 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasUseMiddleProductFormUpdate | ( | ) |
Whether or not to use the middle product form update rather than the standard eta LU update. The middle form product update should be a lot more efficient (close to the Forrest-Tomlin update, a bit slower but easier to implement). See for more details: Qi Huangfu, J. A. Julian Hall, "Novel update techniques for the revised simplex method", 28 january 2013, Technical Report ERGO-13-0001 http://www.maths.ed.ac.uk/hall/HuHa12/ERGO-13-001.pdf
optional bool use_middle_product_form_update = 35 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 2003 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasUsePreprocessing | ( | ) |
Whether or not we use advanced preprocessing techniques.
optional bool use_preprocessing = 34 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1970 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasUseScaling | ( | ) |
Whether or not we scale the matrix A so that the maximum coefficient on each line and each column is 1.0.
optional bool use_scaling = 16 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1301 of file GlopParameters.java.
boolean com.google.ortools.glop.GlopParameters.hasUseTransposedMatrix | ( | ) |
Whether or not we keep a transposed version of the matrix A to speed-up the pricing at the cost of extra memory and the initial tranposition computation.
optional bool use_transposed_matrix = 18 [default = true];
Implements com.google.ortools.glop.GlopParametersOrBuilder.
Definition at line 1377 of file GlopParameters.java.
|
protected |
Definition at line 95 of file GlopParameters.java.
final boolean com.google.ortools.glop.GlopParameters.isInitialized | ( | ) |
Definition at line 2793 of file GlopParameters.java.
|
static |
Definition at line 3916 of file GlopParameters.java.
|
static |
Definition at line 3919 of file GlopParameters.java.
Builder com.google.ortools.glop.GlopParameters.newBuilderForType | ( | ) |
Definition at line 3915 of file GlopParameters.java.
|
protected |
Definition at line 3929 of file GlopParameters.java.
|
static |
Definition at line 3887 of file GlopParameters.java.
|
static |
Definition at line 3893 of file GlopParameters.java.
|
static |
Definition at line 3864 of file GlopParameters.java.
|
static |
Definition at line 3868 of file GlopParameters.java.
|
static |
Definition at line 3853 of file GlopParameters.java.
|
static |
Definition at line 3858 of file GlopParameters.java.
|
static |
Definition at line 3900 of file GlopParameters.java.
|
static |
Definition at line 3906 of file GlopParameters.java.
|
static |
Definition at line 3874 of file GlopParameters.java.
|
static |
Definition at line 3879 of file GlopParameters.java.
|
static |
Definition at line 3842 of file GlopParameters.java.
|
static |
Definition at line 3847 of file GlopParameters.java.
|
static |
Definition at line 8924 of file GlopParameters.java.
Builder com.google.ortools.glop.GlopParameters.toBuilder | ( | ) |
Definition at line 3923 of file GlopParameters.java.
void com.google.ortools.glop.GlopParameters.writeTo | ( | com.google.protobuf.CodedOutputStream | output | ) | throws java.io.IOException |
Definition at line 2803 of file GlopParameters.java.
|
static |
Definition at line 1899 of file GlopParameters.java.
|
static |
Definition at line 1395 of file GlopParameters.java.
|
static |
Definition at line 1624 of file GlopParameters.java.
|
static |
Definition at line 1318 of file GlopParameters.java.
|
static |
Definition at line 2573 of file GlopParameters.java.
|
static |
Definition at line 2213 of file GlopParameters.java.
|
static |
Definition at line 1932 of file GlopParameters.java.
|
static |
Definition at line 2729 of file GlopParameters.java.
|
static |
Definition at line 1258 of file GlopParameters.java.
|
static |
Definition at line 1067 of file GlopParameters.java.
|
static |
Definition at line 2762 of file GlopParameters.java.
|
static |
Definition at line 2083 of file GlopParameters.java.
|
static |
Definition at line 1491 of file GlopParameters.java.
|
static |
Definition at line 1426 of file GlopParameters.java.
|
static |
Definition at line 2054 of file GlopParameters.java.
|
static |
Definition at line 869 of file GlopParameters.java.
|
static |
Definition at line 1151 of file GlopParameters.java.
|
static |
Definition at line 1336 of file GlopParameters.java.
|
static |
Definition at line 2484 of file GlopParameters.java.
|
static |
Definition at line 2025 of file GlopParameters.java.
|
static |
Definition at line 2515 of file GlopParameters.java.
|
static |
Definition at line 2546 of file GlopParameters.java.
|
static |
Definition at line 1686 of file GlopParameters.java.
|
static |
Definition at line 1839 of file GlopParameters.java.
|
static |
Definition at line 1810 of file GlopParameters.java.
|
static |
Definition at line 1746 of file GlopParameters.java.
|
static |
Definition at line 1781 of file GlopParameters.java.
|
static |
Definition at line 1653 of file GlopParameters.java.
|
static |
Definition at line 1719 of file GlopParameters.java.
|
static |
Definition at line 2692 of file GlopParameters.java.
|
static |
Definition at line 1231 of file GlopParameters.java.
|
static |
Definition at line 2329 of file GlopParameters.java.
|
static |
Definition at line 2151 of file GlopParameters.java.
|
static |
Definition at line 2194 of file GlopParameters.java.
|
static |
Definition at line 895 of file GlopParameters.java.
|
static |
Definition at line 2358 of file GlopParameters.java.
|
static |
Definition at line 2114 of file GlopParameters.java.
|
static |
Definition at line 1028 of file GlopParameters.java.
|
static |
Definition at line 1563 of file GlopParameters.java.
|
static |
Definition at line 2628 of file GlopParameters.java.
|
static |
Definition at line 2274 of file GlopParameters.java.
|
static |
Definition at line 1112 of file GlopParameters.java.
|
static |
Definition at line 993 of file GlopParameters.java.
|
static |
Definition at line 958 of file GlopParameters.java.
|
static |
Definition at line 921 of file GlopParameters.java.
|
static |
Definition at line 2432 of file GlopParameters.java.
|
static |
Definition at line 2465 of file GlopParameters.java.
|
static |
Definition at line 851 of file GlopParameters.java.
|
static |
Definition at line 1198 of file GlopParameters.java.
|
static |
Definition at line 1522 of file GlopParameters.java.
|
static |
Definition at line 1461 of file GlopParameters.java.
|
static |
Definition at line 2391 of file GlopParameters.java.
|
static |
Definition at line 1872 of file GlopParameters.java.
|
static |
Definition at line 2665 of file GlopParameters.java.
|
static |
Definition at line 1986 of file GlopParameters.java.
|
static |
Definition at line 1959 of file GlopParameters.java.
|
static |
Definition at line 1289 of file GlopParameters.java.
|
static |
Definition at line 1364 of file GlopParameters.java.