24#include "absl/log/check.h"
25#include "absl/strings/str_cat.h"
26#include "absl/strings/string_view.h"
27#include "absl/types/span.h"
31#include "ortools/glop/parameters.pb.h"
32#include "ortools/linear_solver/linear_solver.pb.h"
37#include "ortools/sat/boolean_problem.pb.h"
38#include "ortools/sat/cp_model.pb.h"
41#include "ortools/sat/sat_parameters.pb.h"
55using operations_research::MPConstraintProto;
56using operations_research::MPModelProto;
57using operations_research::MPVariableProto;
61void ScaleConstraint(absl::Span<const double> var_scaling,
62 MPConstraintProto* mp_constraint) {
63 const int num_terms = mp_constraint->coefficient_size();
64 for (
int i = 0;
i < num_terms; ++
i) {
65 const int var_index = mp_constraint->var_index(
i);
66 mp_constraint->set_coefficient(
67 i, mp_constraint->coefficient(
i) / var_scaling[var_index]);
71void ApplyVarScaling(absl::Span<const double> var_scaling,
72 MPModelProto* mp_model) {
73 const int num_variables = mp_model->variable_size();
74 for (
int i = 0;
i < num_variables; ++
i) {
75 const double scaling = var_scaling[
i];
76 const MPVariableProto& mp_var = mp_model->variable(
i);
77 const double old_lb = mp_var.lower_bound();
78 const double old_ub = mp_var.upper_bound();
79 const double old_obj = mp_var.objective_coefficient();
80 mp_model->mutable_variable(
i)->set_lower_bound(old_lb * scaling);
81 mp_model->mutable_variable(
i)->set_upper_bound(old_ub * scaling);
82 mp_model->mutable_variable(
i)->set_objective_coefficient(old_obj / scaling);
86 for (MPConstraintProto& mp_constraint : *mp_model->mutable_constraint()) {
87 ScaleConstraint(var_scaling, &mp_constraint);
89 for (MPGeneralConstraintProto& general_constraint :
90 *mp_model->mutable_general_constraint()) {
91 switch (general_constraint.general_constraint_case()) {
92 case MPGeneralConstraintProto::kIndicatorConstraint:
93 ScaleConstraint(var_scaling,
94 general_constraint.mutable_indicator_constraint()
95 ->mutable_constraint());
97 case MPGeneralConstraintProto::kAndConstraint:
98 case MPGeneralConstraintProto::kOrConstraint:
103 LOG(FATAL) <<
"Scaling unsupported for general constraint of type "
104 << general_constraint.general_constraint_case();
112 MPModelProto* mp_model) {
113 const int num_variables = mp_model->variable_size();
114 std::vector<double> var_scaling(num_variables, 1.0);
115 for (
int i = 0;
i < num_variables; ++
i) {
116 if (mp_model->variable(
i).is_integer())
continue;
117 if (max_bound == std::numeric_limits<double>::infinity()) {
118 var_scaling[
i] = scaling;
121 const double lb = mp_model->variable(
i).lower_bound();
122 const double ub = mp_model->variable(
i).upper_bound();
123 const double magnitude = std::max(std::abs(lb), std::abs(ub));
124 if (magnitude == 0 || magnitude > max_bound)
continue;
125 var_scaling[
i] = std::min(scaling, max_bound / magnitude);
127 ApplyVarScaling(var_scaling, mp_model);
135 const double initial_x = x;
138 int64_t current_q = 1;
140 while (current_q < limit) {
141 const double q =
static_cast<double>(current_q);
142 const double qx = q * initial_x;
143 const double qtolerance = q * tolerance;
144 if (std::abs(qx - std::round(qx)) < qtolerance) {
148 const double floored_x = std::floor(x);
149 if (floored_x >=
static_cast<double>(std::numeric_limits<int64_t>::max())) {
152 const int64_t new_q =
153 CapAdd(prev_q,
CapProd(
static_cast<int64_t
>(floored_x), current_q));
167double GetIntegralityMultiplier(
const MPModelProto& mp_model,
168 absl::Span<const double> var_scaling,
int var,
169 int ct_index,
double tolerance) {
170 DCHECK(!mp_model.variable(var).is_integer());
171 const MPConstraintProto& ct = mp_model.constraint(ct_index);
172 double multiplier = 1.0;
173 double var_coeff = 0.0;
174 const double max_multiplier = 1e4;
175 for (
int i = 0;
i < ct.var_index().size(); ++
i) {
176 if (var == ct.var_index(
i)) {
177 var_coeff = ct.coefficient(
i);
181 DCHECK(mp_model.variable(ct.var_index(
i)).is_integer());
185 multiplier * ct.coefficient(
i) / var_scaling[ct.var_index(
i)];
188 if (multiplier == 0 || multiplier > max_multiplier)
return 0.0;
190 DCHECK_NE(var_coeff, 0.0);
193 for (
const double bound : {ct.lower_bound(), ct.upper_bound()}) {
194 if (!std::isfinite(bound))
continue;
195 if (std::abs(std::round(bound * multiplier) - bound * multiplier) >
196 tolerance * multiplier) {
200 return std::abs(multiplier * var_coeff);
206 MPModelProto* mp_model,
208 const int num_variables = mp_model->variable_size();
209 const double tolerance = params.mip_wanted_precision();
210 int64_t num_changes = 0;
211 for (
int i = 0;
i < num_variables; ++
i) {
212 const MPVariableProto& mp_var = mp_model->variable(
i);
213 if (!mp_var.is_integer())
continue;
215 const double lb = mp_var.lower_bound();
216 const double new_lb = std::isfinite(lb) ? std::ceil(lb - tolerance) : lb;
219 mp_model->mutable_variable(
i)->set_lower_bound(new_lb);
222 const double ub = mp_var.upper_bound();
223 const double new_ub = std::isfinite(ub) ? std::floor(ub + tolerance) : ub;
226 mp_model->mutable_variable(
i)->set_upper_bound(new_ub);
229 if (new_ub < new_lb) {
230 SOLVER_LOG(logger,
"Empty domain for integer variable #",
i,
": [", lb,
240 const int num_variables = mp_model->variable_size();
241 int64_t num_variable_bounds_pushed_to_infinity = 0;
242 const double infinity = std::numeric_limits<double>::infinity();
243 for (
int i = 0;
i < num_variables; ++
i) {
244 MPVariableProto* mp_var = mp_model->mutable_variable(
i);
245 const double lb = mp_var->lower_bound();
246 if (std::isfinite(lb) && lb < -max_magnitude) {
247 ++num_variable_bounds_pushed_to_infinity;
248 mp_var->set_lower_bound(-infinity);
251 const double ub = mp_var->upper_bound();
252 if (std::isfinite(ub) && ub > max_magnitude) {
253 ++num_variable_bounds_pushed_to_infinity;
254 mp_var->set_upper_bound(infinity);
258 if (num_variable_bounds_pushed_to_infinity > 0) {
259 SOLVER_LOG(logger,
"Pushed ", num_variable_bounds_pushed_to_infinity,
260 " variable bounds to +/-infinity");
263 const int num_constraints = mp_model->constraint_size();
264 int64_t num_constraint_bounds_pushed_to_infinity = 0;
266 for (
int i = 0;
i < num_constraints; ++
i) {
267 MPConstraintProto* mp_ct = mp_model->mutable_constraint(
i);
268 const double lb = mp_ct->lower_bound();
269 if (std::isfinite(lb) && lb < -max_magnitude) {
270 ++num_constraint_bounds_pushed_to_infinity;
271 mp_ct->set_lower_bound(-infinity);
274 const double ub = mp_ct->upper_bound();
275 if (std::isfinite(ub) && ub > max_magnitude) {
276 ++num_constraint_bounds_pushed_to_infinity;
277 mp_ct->set_upper_bound(infinity);
281 for (
int i = 0;
i < mp_model->general_constraint_size(); ++
i) {
282 if (mp_model->general_constraint(
i).general_constraint_case() !=
283 MPGeneralConstraintProto::kIndicatorConstraint) {
287 MPConstraintProto* mp_ct = mp_model->mutable_general_constraint(
i)
288 ->mutable_indicator_constraint()
289 ->mutable_constraint();
290 const double lb = mp_ct->lower_bound();
291 if (std::isfinite(lb) && lb < -max_magnitude) {
292 ++num_constraint_bounds_pushed_to_infinity;
293 mp_ct->set_lower_bound(-infinity);
296 const double ub = mp_ct->upper_bound();
297 if (std::isfinite(ub) && ub > max_magnitude) {
298 ++num_constraint_bounds_pushed_to_infinity;
299 mp_ct->set_upper_bound(infinity);
303 if (num_constraint_bounds_pushed_to_infinity > 0) {
304 SOLVER_LOG(logger,
"Pushed ", num_constraint_bounds_pushed_to_infinity,
305 " constraint bounds to +/-infinity");
313 double max_dropped = 0.0;
314 const double drop = params.mip_drop_tolerance();
315 const int num_variables = mp_model->variable_size();
316 for (
int i = 0;
i < num_variables; ++
i) {
317 MPVariableProto* var = mp_model->mutable_variable(
i);
318 if (var->lower_bound() != 0.0 && std::abs(var->lower_bound()) < drop) {
320 max_dropped = std::max(max_dropped, std::abs(var->lower_bound()));
321 var->set_lower_bound(0.0);
323 if (var->upper_bound() != 0.0 && std::abs(var->upper_bound()) < drop) {
325 max_dropped = std::max(max_dropped, std::abs(var->upper_bound()));
326 var->set_upper_bound(0.0);
329 const int num_constraints = mp_model->constraint_size();
330 for (
int i = 0;
i < num_constraints; ++
i) {
331 MPConstraintProto* ct = mp_model->mutable_constraint(
i);
332 if (ct->lower_bound() != 0.0 && std::abs(ct->lower_bound()) < drop) {
334 max_dropped = std::max(max_dropped, std::abs(ct->lower_bound()));
335 ct->set_lower_bound(0.0);
337 if (ct->upper_bound() != 0.0 && std::abs(ct->upper_bound()) < drop) {
339 max_dropped = std::max(max_dropped, std::abs(ct->upper_bound()));
340 ct->set_upper_bound(0.0);
343 if (num_dropped > 0) {
344 SOLVER_LOG(logger,
"Set to zero ", num_dropped,
345 " variable or constraint bounds with largest magnitude ",
352 std::vector<double> max_bounds(num_variables);
353 for (
int i = 0;
i < num_variables; ++
i) {
354 double value = std::abs(mp_model->variable(
i).lower_bound());
355 value = std::max(value, std::abs(mp_model->variable(
i).upper_bound()));
356 value = std::min(value, params.mip_max_bound());
357 max_bounds[
i] = value;
362 double largest_removed = 0.0;
369 int64_t num_removed = 0;
370 for (
int c = 0; c < num_constraints; ++c) {
371 MPConstraintProto* ct = mp_model->mutable_constraint(c);
373 const int size = ct->var_index().size();
374 if (size == 0)
continue;
375 const double threshold =
376 params.mip_wanted_precision() /
static_cast<double>(size);
377 for (
int i = 0;
i < size; ++
i) {
378 const int var = ct->var_index(
i);
379 const double coeff = ct->coefficient(
i);
380 if (std::abs(coeff) * max_bounds[var] < threshold) {
381 if (max_bounds[var] != 0) {
382 largest_removed = std::max(largest_removed, std::abs(coeff));
386 ct->set_var_index(new_size, var);
387 ct->set_coefficient(new_size, coeff);
390 num_removed += size - new_size;
391 ct->mutable_var_index()->Truncate(new_size);
392 ct->mutable_coefficient()->Truncate(new_size);
396 if (num_variables > 0) {
397 const double threshold =
398 params.mip_wanted_precision() /
static_cast<double>(num_variables);
399 for (
int var = 0; var < num_variables; ++var) {
400 const double coeff = mp_model->variable(var).objective_coefficient();
401 if (coeff == 0.0)
continue;
402 if (std::abs(coeff) * max_bounds[var] < threshold) {
404 if (max_bounds[var] != 0) {
405 largest_removed = std::max(largest_removed, std::abs(coeff));
407 mp_model->mutable_variable(var)->clear_objective_coefficient();
412 if (num_removed > 0) {
414 " near zero terms with largest magnitude of ", largest_removed,
420 const MPModelProto& mp_model,
423 for (
const MPGeneralConstraintProto& general_constraint :
424 mp_model.general_constraint()) {
425 switch (general_constraint.general_constraint_case()) {
426 case MPGeneralConstraintProto::kIndicatorConstraint:
428 case MPGeneralConstraintProto::kAndConstraint:
430 case MPGeneralConstraintProto::kOrConstraint:
433 SOLVER_LOG(logger,
"General constraints of type ",
434 general_constraint.general_constraint_case(),
435 " are not supported.");
441 const double threshold = params.mip_max_valid_magnitude();
442 const int num_variables = mp_model.variable_size();
443 for (
int i = 0;
i < num_variables; ++
i) {
444 const MPVariableProto& var = mp_model.variable(
i);
445 if ((std::isfinite(var.lower_bound()) &&
446 std::abs(var.lower_bound()) > threshold) ||
447 (std::isfinite(var.upper_bound()) &&
448 std::abs(var.upper_bound()) > threshold)) {
449 SOLVER_LOG(logger,
"Variable bounds are too large [", var.lower_bound(),
450 ",", var.upper_bound(),
"]");
453 if (std::abs(var.objective_coefficient()) > threshold) {
454 SOLVER_LOG(logger,
"Objective coefficient is too large: ",
455 var.objective_coefficient());
461 const int num_constraints = mp_model.constraint_size();
462 for (
int c = 0; c < num_constraints; ++c) {
463 const MPConstraintProto& ct = mp_model.constraint(c);
464 if ((std::isfinite(ct.lower_bound()) &&
465 std::abs(ct.lower_bound()) > threshold) ||
466 (std::isfinite(ct.upper_bound()) &&
467 std::abs(ct.upper_bound()) > threshold)) {
468 SOLVER_LOG(logger,
"Constraint bounds are too large [", ct.lower_bound(),
469 ",", ct.upper_bound(),
"]");
472 for (
const double coeff : ct.coefficient()) {
473 if (std::abs(coeff) > threshold) {
474 SOLVER_LOG(logger,
"Constraint coefficient is too large: ", coeff);
485 const int num_variables = mp_model->variable_size();
486 std::vector<double> var_scaling(num_variables, 1.0);
488 int initial_num_integers = 0;
489 for (
int i = 0;
i < num_variables; ++
i) {
490 if (mp_model->variable(
i).is_integer()) ++initial_num_integers;
492 VLOG(1) <<
"Initial num integers: " << initial_num_integers;
495 const double tolerance = 1e-6;
496 std::vector<int> constraint_queue;
498 const int num_constraints = mp_model->constraint_size();
499 std::vector<int> constraint_to_num_non_integer(num_constraints, 0);
500 std::vector<std::vector<int>> var_to_constraints(num_variables);
501 for (
int i = 0;
i < num_constraints; ++
i) {
502 const MPConstraintProto& mp_constraint = mp_model->constraint(
i);
504 for (
const int var : mp_constraint.var_index()) {
505 if (!mp_model->variable(var).is_integer()) {
506 var_to_constraints[var].push_back(
i);
507 constraint_to_num_non_integer[
i]++;
510 if (constraint_to_num_non_integer[
i] == 1) {
511 constraint_queue.push_back(
i);
514 VLOG(1) <<
"Initial constraint queue: " << constraint_queue.size() <<
" / "
517 int num_detected = 0;
518 double max_scaling = 0.0;
519 auto scale_and_mark_as_integer = [&](
int var,
double scaling)
mutable {
521 CHECK(!mp_model->variable(var).is_integer());
522 CHECK_EQ(var_scaling[var], 1.0);
523 if (scaling != 1.0) {
524 VLOG(2) <<
"Scaled " << var <<
" by " << scaling;
528 max_scaling = std::max(max_scaling, scaling);
532 var_scaling[var] = scaling;
533 mp_model->mutable_variable(var)->set_is_integer(
true);
536 for (
const int ct_index : var_to_constraints[var]) {
537 constraint_to_num_non_integer[ct_index]--;
538 if (constraint_to_num_non_integer[ct_index] == 1) {
539 constraint_queue.push_back(ct_index);
544 int num_fail_due_to_rhs = 0;
545 int num_fail_due_to_large_multiplier = 0;
546 int num_processed_constraints = 0;
547 while (!constraint_queue.empty()) {
548 const int top_ct_index = constraint_queue.back();
549 constraint_queue.pop_back();
553 if (constraint_to_num_non_integer[top_ct_index] == 0)
continue;
556 const MPConstraintProto& ct = mp_model->constraint(top_ct_index);
557 if (ct.lower_bound() + tolerance < ct.upper_bound())
continue;
559 ++num_processed_constraints;
571 double multiplier = 1.0;
572 const double max_multiplier = 1e4;
574 for (
int i = 0;
i < ct.var_index().size(); ++
i) {
575 if (!mp_model->variable(ct.var_index(
i)).is_integer()) {
577 var = ct.var_index(
i);
578 var_coeff = ct.coefficient(
i);
583 multiplier * ct.coefficient(
i) / var_scaling[ct.var_index(
i)];
586 if (multiplier == 0 || multiplier > max_multiplier) {
592 if (multiplier == 0 || multiplier > max_multiplier) {
593 ++num_fail_due_to_large_multiplier;
598 const double rhs = ct.lower_bound();
599 if (std::abs(std::round(rhs * multiplier) - rhs * multiplier) >
600 tolerance * multiplier) {
601 ++num_fail_due_to_rhs;
611 double best_scaling = std::abs(var_coeff * multiplier);
612 for (
const int ct_index : var_to_constraints[var]) {
613 if (ct_index == top_ct_index)
continue;
614 if (constraint_to_num_non_integer[ct_index] != 1)
continue;
617 const MPConstraintProto& ct = mp_model->constraint(top_ct_index);
618 if (ct.lower_bound() + tolerance < ct.upper_bound())
continue;
620 const double multiplier = GetIntegralityMultiplier(
621 *mp_model, var_scaling, var, ct_index, tolerance);
622 if (multiplier != 0.0 && multiplier < best_scaling) {
623 best_scaling = multiplier;
627 scale_and_mark_as_integer(var, best_scaling);
635 int num_in_inequalities = 0;
636 int num_to_be_handled = 0;
637 for (
int var = 0; var < num_variables; ++var) {
638 if (mp_model->variable(var).is_integer())
continue;
641 if (var_to_constraints[var].empty())
continue;
644 for (
const int ct_index : var_to_constraints[var]) {
645 if (constraint_to_num_non_integer[ct_index] != 1) {
652 std::vector<double> scaled_coeffs;
653 for (
const int ct_index : var_to_constraints[var]) {
654 const double multiplier = GetIntegralityMultiplier(
655 *mp_model, var_scaling, var, ct_index, tolerance);
656 if (multiplier == 0.0) {
660 scaled_coeffs.push_back(multiplier);
669 double scaling = scaled_coeffs[0];
670 for (
const double c : scaled_coeffs) {
671 scaling = std::min(scaling, c);
673 CHECK_GT(scaling, 0.0);
674 for (
const double c : scaled_coeffs) {
675 const double fraction = c / scaling;
676 if (std::abs(std::round(fraction) - fraction) > tolerance) {
688 for (
const double bound : {mp_model->variable(var).lower_bound(),
689 mp_model->variable(var).upper_bound()}) {
690 if (!std::isfinite(bound))
continue;
691 if (std::abs(std::round(bound * scaling) - bound * scaling) >
692 tolerance * scaling) {
704 ++num_in_inequalities;
705 scale_and_mark_as_integer(var, scaling);
707 VLOG(1) <<
"num_new_integer: " << num_detected
708 <<
" num_processed_constraints: " << num_processed_constraints
709 <<
" num_rhs_fail: " << num_fail_due_to_rhs
710 <<
" num_multiplier_fail: " << num_fail_due_to_large_multiplier;
712 if (num_to_be_handled > 0) {
713 SOLVER_LOG(logger,
"Missed ", num_to_be_handled,
714 " potential implied integer.");
717 const int num_integers = initial_num_integers + num_detected;
718 SOLVER_LOG(logger,
"Num integers: ", num_integers,
"/", num_variables,
719 " (implied: ", num_detected,
720 " in_inequalities: ", num_in_inequalities,
721 " max_scaling: ", max_scaling,
")",
722 (num_integers == num_variables ?
" [IP] " :
" [MIP] "));
724 ApplyVarScaling(var_scaling, mp_model);
731struct ConstraintScaler {
733 ConstraintProto* AddConstraint(
const MPModelProto& mp_model,
734 const MPConstraintProto& mp_constraint,
735 CpModelProto* cp_model);
737 bool keep_names =
false;
738 double max_relative_coeff_error = 0.0;
739 double max_absolute_rhs_error = 0.0;
740 double max_scaling_factor = 0.0;
741 double min_scaling_factor = std::numeric_limits<double>::infinity();
743 double wanted_precision = 1e-6;
744 int64_t scaling_target = int64_t{1} << 50;
745 std::vector<int> var_indices;
746 std::vector<double> coefficients;
747 std::vector<double> lower_bounds;
748 std::vector<double> upper_bounds;
751ConstraintProto* ConstraintScaler::AddConstraint(
752 const MPModelProto& mp_model,
const MPConstraintProto& mp_constraint,
753 CpModelProto* cp_model) {
754 if (mp_constraint.lower_bound() == -kInfinity &&
755 mp_constraint.upper_bound() == kInfinity) {
759 auto* constraint = cp_model->add_constraints();
760 if (keep_names) constraint->set_name(mp_constraint.name());
761 auto* arg = constraint->mutable_linear();
766 coefficients.clear();
767 lower_bounds.clear();
768 upper_bounds.clear();
769 const int num_coeffs = mp_constraint.coefficient_size();
770 for (
int i = 0;
i < num_coeffs; ++
i) {
771 const auto& var_proto = cp_model->variables(mp_constraint.var_index(i));
772 const int64_t lb = var_proto.domain(0);
773 const int64_t ub = var_proto.domain(var_proto.domain_size() - 1);
774 if (lb == 0 && ub == 0)
continue;
776 const double coeff = mp_constraint.coefficient(i);
777 if (coeff == 0.0)
continue;
779 var_indices.push_back(mp_constraint.var_index(i));
780 coefficients.push_back(coeff);
781 lower_bounds.push_back(lb);
782 upper_bounds.push_back(ub);
785 double relative_coeff_error;
786 double scaled_sum_error;
788 coefficients, lower_bounds, upper_bounds, scaling_target,
789 wanted_precision, &relative_coeff_error, &scaled_sum_error);
790 if (scaling_factor == 0.0) {
794 LOG(DFATAL) <<
"Scaling factor of zero while scaling constraint: "
800 max_relative_coeff_error =
801 std::max(relative_coeff_error, max_relative_coeff_error);
802 max_scaling_factor = std::max(scaling_factor / gcd, max_scaling_factor);
803 min_scaling_factor = std::min(scaling_factor / gcd, min_scaling_factor);
805 for (
int i = 0;
i < coefficients.size(); ++
i) {
806 const double scaled_value = coefficients[
i] * scaling_factor;
807 const int64_t value =
static_cast<int64_t
>(std::round(scaled_value)) / gcd;
809 arg->add_vars(var_indices[i]);
810 arg->add_coeffs(value);
813 max_absolute_rhs_error =
814 std::max(max_absolute_rhs_error, scaled_sum_error / scaling_factor);
824 const Fractional lb = mp_constraint.lower_bound() - wanted_precision;
825 const Fractional ub = mp_constraint.upper_bound() + wanted_precision;
830 const Fractional scaled_lb = std::ceil(lb * scaling_factor);
831 if (lb == kInfinity || scaled_lb >= std::numeric_limits<int64_t>::max()) {
833 arg->add_domain(std::numeric_limits<int64_t>::max());
834 }
else if (lb == -kInfinity ||
835 scaled_lb <= std::numeric_limits<int64_t>::min()) {
836 arg->add_domain(std::numeric_limits<int64_t>::min());
838 arg->add_domain(
CeilRatio(IntegerValue(
static_cast<int64_t
>(scaled_lb)),
843 const Fractional scaled_ub = std::floor(ub * scaling_factor);
844 if (ub == -kInfinity || scaled_ub <= std::numeric_limits<int64_t>::min()) {
846 arg->add_domain(std::numeric_limits<int64_t>::min());
847 }
else if (ub == kInfinity ||
848 scaled_ub >= std::numeric_limits<int64_t>::max()) {
849 arg->add_domain(std::numeric_limits<int64_t>::max());
851 arg->add_domain(
FloorRatio(IntegerValue(
static_cast<int64_t
>(scaled_ub)),
860double FindFractionalScaling(absl::Span<const double> coefficients,
862 double multiplier = 1.0;
863 for (
const double coeff : coefficients) {
865 multiplier * tolerance);
866 if (multiplier == 0.0)
break;
874 absl::Span<const double> coefficients,
875 absl::Span<const double> lower_bounds,
876 absl::Span<const double> upper_bounds, int64_t max_absolute_activity,
877 double wanted_absolute_activity_precision,
double* relative_coeff_error,
878 double* scaled_sum_error) {
881 coefficients, lower_bounds, upper_bounds, max_absolute_activity);
882 if (scaling_factor == 0.0)
return scaling_factor;
892 double x = std::min(scaling_factor, 1.0);
893 for (; x <= scaling_factor; x *= 2) {
895 relative_coeff_error, scaled_sum_error);
896 if (*scaled_sum_error < wanted_absolute_activity_precision * x)
break;
899 if (x == scaling_factor)
break;
902 DCHECK(std::isfinite(scaling_factor));
912 const double integer_factor = FindFractionalScaling(coefficients, 1e-8);
913 DCHECK(std::isfinite(integer_factor));
914 if (integer_factor != 0 && integer_factor < scaling_factor) {
915 double local_relative_coeff_error;
916 double local_scaled_sum_error;
918 integer_factor, &local_relative_coeff_error,
919 &local_scaled_sum_error);
920 if (local_scaled_sum_error * scaling_factor <=
921 *scaled_sum_error * integer_factor ||
922 local_scaled_sum_error <
923 wanted_absolute_activity_precision * integer_factor) {
924 *relative_coeff_error = local_relative_coeff_error;
925 *scaled_sum_error = local_scaled_sum_error;
926 scaling_factor = integer_factor;
930 DCHECK(std::isfinite(scaling_factor));
931 return scaling_factor;
935 const MPModelProto& mp_model,
936 CpModelProto* cp_model,
938 CHECK(cp_model !=
nullptr);
940 cp_model->set_name(mp_model.name());
954 const int64_t kMaxVariableBound =
955 static_cast<int64_t
>(params.mip_max_bound());
957 int num_truncated_bounds = 0;
958 int num_small_domains = 0;
959 const int64_t kSmallDomainSize = 1000;
960 const double kWantedPrecision = params.mip_wanted_precision();
963 const int num_variables = mp_model.variable_size();
964 const bool keep_names = !params.ignore_names();
965 for (
int i = 0;
i < num_variables; ++
i) {
966 const MPVariableProto& mp_var = mp_model.variable(
i);
967 IntegerVariableProto* cp_var = cp_model->add_variables();
968 if (keep_names) cp_var->set_name(mp_var.name());
976 if (mp_var.lower_bound() >
static_cast<double>(kMaxVariableBound) ||
977 mp_var.upper_bound() <
static_cast<double>(-kMaxVariableBound)) {
978 SOLVER_LOG(logger,
"Error: variable ", mp_var,
979 " is outside [-mip_max_bound..mip_max_bound]");
984 for (
const bool lower : {
true,
false}) {
985 const double bound = lower ? mp_var.lower_bound() : mp_var.upper_bound();
986 if (std::abs(bound) + kWantedPrecision >=
987 static_cast<double>(kMaxVariableBound)) {
988 ++num_truncated_bounds;
989 cp_var->add_domain(bound < 0 ? -kMaxVariableBound : kMaxVariableBound);
995 static_cast<int64_t
>(lower ? std::ceil(bound - kWantedPrecision)
996 : std::floor(bound + kWantedPrecision)));
999 if (cp_var->domain(0) > cp_var->domain(1)) {
1000 LOG(WARNING) <<
"Variable #" <<
i <<
" cannot take integer value. "
1007 if (!mp_var.is_integer()) {
1008 const double diff = mp_var.upper_bound() - mp_var.lower_bound();
1009 if (diff > kWantedPrecision && diff < kSmallDomainSize) {
1010 ++num_small_domains;
1015 if (num_truncated_bounds > 0) {
1016 SOLVER_LOG(logger,
"Warning: ", num_truncated_bounds,
1017 " bounds were truncated to ", kMaxVariableBound,
".");
1019 if (num_small_domains > 0) {
1020 SOLVER_LOG(logger,
"Warning: ", num_small_domains,
1021 " continuous variable domain with fewer than ", kSmallDomainSize,
1025 ConstraintScaler scaler;
1026 const int64_t kScalingTarget = int64_t{1}
1027 << params.mip_max_activity_exponent();
1028 scaler.wanted_precision = kWantedPrecision;
1029 scaler.scaling_target = kScalingTarget;
1030 scaler.keep_names = keep_names;
1033 for (
const MPConstraintProto& mp_constraint : mp_model.constraint()) {
1034 scaler.AddConstraint(mp_model, mp_constraint, cp_model);
1036 for (
const MPGeneralConstraintProto& general_constraint :
1037 mp_model.general_constraint()) {
1038 switch (general_constraint.general_constraint_case()) {
1039 case MPGeneralConstraintProto::kIndicatorConstraint: {
1040 const auto& indicator_constraint =
1041 general_constraint.indicator_constraint();
1042 const MPConstraintProto& mp_constraint =
1043 indicator_constraint.constraint();
1044 ConstraintProto* ct =
1045 scaler.AddConstraint(mp_model, mp_constraint, cp_model);
1046 if (ct ==
nullptr)
continue;
1049 const int var = indicator_constraint.var_index();
1050 const int value = indicator_constraint.var_value();
1051 ct->add_enforcement_literal(value == 1 ? var :
NegatedRef(var));
1054 case MPGeneralConstraintProto::kAndConstraint: {
1055 const auto& and_constraint = general_constraint.and_constraint();
1056 absl::string_view name = general_constraint.name();
1058 ConstraintProto* ct_pos = cp_model->add_constraints();
1059 ct_pos->set_name(name.empty() ?
"" : absl::StrCat(name,
"_pos"));
1060 ct_pos->add_enforcement_literal(and_constraint.resultant_var_index());
1061 *ct_pos->mutable_bool_and()->mutable_literals() =
1062 and_constraint.var_index();
1064 ConstraintProto* ct_neg = cp_model->add_constraints();
1065 ct_neg->set_name(name.empty() ?
"" : absl::StrCat(name,
"_neg"));
1066 ct_neg->add_enforcement_literal(
1067 NegatedRef(and_constraint.resultant_var_index()));
1068 for (
const int var_index : and_constraint.var_index()) {
1069 ct_neg->mutable_bool_or()->add_literals(
NegatedRef(var_index));
1073 case MPGeneralConstraintProto::kOrConstraint: {
1074 const auto& or_constraint = general_constraint.or_constraint();
1075 absl::string_view name = general_constraint.name();
1077 ConstraintProto* ct_pos = cp_model->add_constraints();
1078 ct_pos->set_name(name.empty() ?
"" : absl::StrCat(name,
"_pos"));
1079 ct_pos->add_enforcement_literal(or_constraint.resultant_var_index());
1080 *ct_pos->mutable_bool_or()->mutable_literals() =
1081 or_constraint.var_index();
1083 ConstraintProto* ct_neg = cp_model->add_constraints();
1084 ct_neg->set_name(name.empty() ?
"" : absl::StrCat(name,
"_neg"));
1085 ct_neg->add_enforcement_literal(
1086 NegatedRef(or_constraint.resultant_var_index()));
1087 for (
const int var_index : or_constraint.var_index()) {
1088 ct_neg->mutable_bool_and()->add_literals(
NegatedRef(var_index));
1093 LOG(ERROR) <<
"Can't convert general constraints of type "
1094 << general_constraint.general_constraint_case()
1095 <<
" to CpModelProto.";
1101 SOLVER_LOG(logger,
"Maximum constraint coefficient relative error: ",
1102 scaler.max_relative_coeff_error);
1103 SOLVER_LOG(logger,
"Maximum constraint worst-case activity error: ",
1104 scaler.max_absolute_rhs_error,
1105 (scaler.max_absolute_rhs_error > params.mip_check_precision()
1106 ?
" [Potentially IMPRECISE]"
1108 SOLVER_LOG(logger,
"Constraint scaling factor range: [",
1109 scaler.min_scaling_factor,
", ", scaler.max_scaling_factor,
"]");
1114 auto* float_objective = cp_model->mutable_floating_point_objective();
1115 float_objective->set_maximize(mp_model.maximize());
1116 float_objective->set_offset(mp_model.objective_offset());
1117 for (
int i = 0;
i < num_variables; ++
i) {
1118 const MPVariableProto& mp_var = mp_model.variable(
i);
1119 if (mp_var.objective_coefficient() != 0.0) {
1120 float_objective->add_vars(
i);
1121 float_objective->add_coeffs(mp_var.objective_coefficient());
1126 if (float_objective->offset() == 0 && float_objective->vars().empty()) {
1127 cp_model->clear_floating_point_objective();
1134int AppendSumOfLiteral(absl::Span<const int> literals, MPConstraintProto* out) {
1136 for (
const int ref : literals) {
1138 out->add_coefficient(1);
1139 out->add_var_index(ref);
1141 out->add_coefficient(-1);
1152 MPModelProto* output) {
1153 CHECK(output !=
nullptr);
1157 const int num_vars =
input.variables().size();
1158 for (
int v = 0; v < num_vars; ++v) {
1159 if (
input.variables(v).domain().size() != 2) {
1160 VLOG(1) <<
"Cannot convert "
1165 MPVariableProto* var = output->add_variable();
1166 var->set_is_integer(
true);
1167 var->set_lower_bound(
input.variables(v).domain(0));
1168 var->set_upper_bound(
input.variables(v).domain(1));
1172 if (
input.has_objective()) {
1173 double factor =
input.objective().scaling_factor();
1174 if (factor == 0.0) factor = 1.0;
1175 const int num_terms =
input.objective().vars().size();
1176 for (
int i = 0;
i < num_terms; ++
i) {
1177 const int var =
input.objective().vars(
i);
1178 if (var < 0)
return false;
1179 CHECK_EQ(output->variable(var).objective_coefficient(), 0.0);
1180 output->mutable_variable(var)->set_objective_coefficient(
1181 factor *
input.objective().coeffs(
i));
1183 output->set_objective_offset(factor *
input.objective().offset());
1185 output->set_maximize(
true);
1187 }
else if (
input.has_floating_point_objective()) {
1188 const int num_terms =
input.floating_point_objective().vars().size();
1189 for (
int i = 0;
i < num_terms; ++
i) {
1190 const int var =
input.floating_point_objective().vars(
i);
1191 if (var < 0)
return false;
1192 CHECK_EQ(output->variable(var).objective_coefficient(), 0.0);
1193 output->mutable_variable(var)->set_objective_coefficient(
1194 input.floating_point_objective().coeffs(
i));
1196 output->set_objective_offset(
input.floating_point_objective().offset());
1198 if (output->objective_offset() == 0.0) {
1199 output->clear_objective_offset();
1203 const int num_constraints =
input.constraints().size();
1204 std::vector<int> tmp_literals;
1205 for (
int c = 0; c < num_constraints; ++c) {
1206 const ConstraintProto& ct =
input.constraints(c);
1207 if (!ct.enforcement_literal().empty() &&
1208 (ct.constraint_case() != ConstraintProto::kBoolAnd &&
1209 ct.constraint_case() != ConstraintProto::kLinear)) {
1214 switch (ct.constraint_case()) {
1215 case ConstraintProto::kExactlyOne: {
1216 MPConstraintProto* out = output->add_constraint();
1217 const int shift = AppendSumOfLiteral(ct.exactly_one().literals(), out);
1218 out->set_lower_bound(1 - shift);
1219 out->set_upper_bound(1 - shift);
1222 case ConstraintProto::kAtMostOne: {
1223 MPConstraintProto* out = output->add_constraint();
1224 const int shift = AppendSumOfLiteral(ct.at_most_one().literals(), out);
1226 out->set_upper_bound(1 - shift);
1229 case ConstraintProto::kBoolOr: {
1230 MPConstraintProto* out = output->add_constraint();
1231 const int shift = AppendSumOfLiteral(ct.bool_or().literals(), out);
1232 out->set_lower_bound(1 - shift);
1236 case ConstraintProto::kBoolAnd: {
1237 tmp_literals.clear();
1238 for (
const int ref : ct.enforcement_literal()) {
1241 for (
const int ref : ct.bool_and().literals()) {
1242 MPConstraintProto* out = output->add_constraint();
1243 tmp_literals.push_back(ref);
1244 const int shift = AppendSumOfLiteral(tmp_literals, out);
1245 out->set_lower_bound(1 - shift);
1247 tmp_literals.pop_back();
1251 case ConstraintProto::kLinear: {
1252 if (ct.linear().domain().size() != 2) {
1253 VLOG(1) <<
"Cannot convert constraint: "
1259 int64_t min_activity = 0;
1260 int64_t max_activity = 0;
1261 const int num_terms = ct.linear().vars().size();
1262 for (
int i = 0;
i < num_terms; ++
i) {
1263 const int var = ct.linear().vars(
i);
1264 if (var < 0)
return false;
1265 DCHECK_EQ(
input.variables(var).domain().size(), 2);
1266 const int64_t coeff = ct.linear().coeffs(
i);
1268 min_activity += coeff *
input.variables(var).domain(0);
1269 max_activity += coeff *
input.variables(var).domain(1);
1271 min_activity += coeff *
input.variables(var).domain(1);
1272 max_activity += coeff *
input.variables(var).domain(0);
1276 if (ct.enforcement_literal().empty()) {
1277 MPConstraintProto* out_ct = output->add_constraint();
1278 if (min_activity < ct.linear().domain(0)) {
1279 out_ct->set_lower_bound(ct.linear().domain(0));
1283 if (max_activity > ct.linear().domain(1)) {
1284 out_ct->set_upper_bound(ct.linear().domain(1));
1288 for (
int i = 0;
i < num_terms; ++
i) {
1289 const int var = ct.linear().vars(
i);
1290 if (var < 0)
return false;
1291 out_ct->add_var_index(var);
1292 out_ct->add_coefficient(ct.linear().coeffs(
i));
1297 std::vector<MPConstraintProto*> out_cts;
1298 if (ct.linear().domain(1) < max_activity) {
1299 MPConstraintProto* high_out_ct = output->add_constraint();
1300 high_out_ct->set_lower_bound(-
kInfinity);
1301 int64_t ub = ct.linear().domain(1);
1302 const int64_t coeff = max_activity - ct.linear().domain(1);
1303 for (
const int lit : ct.enforcement_literal()) {
1306 high_out_ct->add_var_index(lit);
1307 high_out_ct->add_coefficient(coeff);
1311 high_out_ct->add_coefficient(-coeff);
1314 high_out_ct->set_upper_bound(ub);
1315 out_cts.push_back(high_out_ct);
1317 if (ct.linear().domain(0) > min_activity) {
1318 MPConstraintProto* low_out_ct = output->add_constraint();
1320 int64_t lb = ct.linear().domain(0);
1321 int64_t coeff = min_activity - ct.linear().domain(0);
1322 for (
const int lit : ct.enforcement_literal()) {
1325 low_out_ct->add_var_index(lit);
1326 low_out_ct->add_coefficient(coeff);
1330 low_out_ct->add_coefficient(-coeff);
1333 low_out_ct->set_lower_bound(lb);
1334 out_cts.push_back(low_out_ct);
1336 for (MPConstraintProto* out_ct : out_cts) {
1337 for (
int i = 0;
i < num_terms; ++
i) {
1338 const int var = ct.linear().vars(
i);
1339 if (var < 0)
return false;
1340 out_ct->add_var_index(var);
1341 out_ct->add_coefficient(ct.linear().coeffs(
i));
1356 absl::Span<
const std::pair<int, double>> objective,
1357 double objective_offset,
bool maximize,
1360 cp_model->clear_objective();
1363 std::vector<int> var_indices;
1364 std::vector<double> coefficients;
1365 std::vector<double> lower_bounds;
1366 std::vector<double> upper_bounds;
1367 double min_magnitude = std::numeric_limits<double>::infinity();
1368 double max_magnitude = 0.0;
1369 double l1_norm = 0.0;
1370 for (
const auto& [var, coeff] : objective) {
1371 const auto& var_proto = cp_model->variables(var);
1372 const int64_t lb = var_proto.domain(0);
1373 const int64_t ub = var_proto.domain(var_proto.domain_size() - 1);
1375 if (lb != 0) objective_offset += lb * coeff;
1378 var_indices.push_back(var);
1379 coefficients.push_back(coeff);
1380 lower_bounds.push_back(lb);
1381 upper_bounds.push_back(ub);
1383 min_magnitude = std::min(min_magnitude, std::abs(coeff));
1384 max_magnitude = std::max(max_magnitude, std::abs(coeff));
1385 l1_norm += std::abs(coeff);
1388 if (coefficients.empty() && objective_offset == 0.0)
return true;
1390 if (!coefficients.empty()) {
1391 const double average_magnitude =
1392 l1_norm /
static_cast<double>(coefficients.size());
1393 SOLVER_LOG(logger,
"[Scaling] Floating point objective has ",
1394 coefficients.size(),
" terms with magnitude in [", min_magnitude,
1395 ", ", max_magnitude,
"] average = ", average_magnitude);
1399 const int64_t max_absolute_activity = int64_t{1}
1400 << params.mip_max_activity_exponent();
1401 const double wanted_precision =
1402 std::max(params.mip_wanted_precision(), params.absolute_gap_limit());
1404 double relative_coeff_error;
1405 double scaled_sum_error;
1407 coefficients, lower_bounds, upper_bounds, max_absolute_activity,
1408 wanted_precision, &relative_coeff_error, &scaled_sum_error);
1409 if (scaling_factor == 0.0) {
1410 LOG(ERROR) <<
"Scaling factor of zero while scaling objective! This "
1411 "likely indicate an infinite coefficient in the objective.";
1418 SOLVER_LOG(logger,
"[Scaling] Objective coefficient relative error: ",
1419 relative_coeff_error);
1420 SOLVER_LOG(logger,
"[Scaling] Objective worst-case absolute error: ",
1421 scaled_sum_error / scaling_factor);
1423 "[Scaling] Objective scaling factor: ", scaling_factor / gcd);
1425 if (scaled_sum_error / scaling_factor > wanted_precision) {
1427 "[Scaling] Warning: the worst-case absolute error is greater "
1428 "than the wanted precision (",
1430 "). Try to increase mip_max_activity_exponent (default = ",
1431 params.mip_max_activity_exponent(),
1432 ") or reduced your variables range and/or objective "
1433 "coefficient. We will continue the solve, but the final "
1434 "objective value might be off.");
1440 auto* objective_proto = cp_model->mutable_objective();
1441 const int64_t mult = maximize ? -1 : 1;
1442 objective_proto->set_offset(objective_offset * scaling_factor / gcd * mult);
1443 objective_proto->set_scaling_factor(1.0 / scaling_factor * gcd * mult);
1444 for (
int i = 0;
i < coefficients.size(); ++
i) {
1445 const int64_t value =
1446 static_cast<int64_t
>(std::round(coefficients[
i] * scaling_factor)) /
1449 objective_proto->add_vars(var_indices[
i]);
1450 objective_proto->add_coeffs(value * mult);
1454 if (scaled_sum_error == 0.0) {
1455 objective_proto->set_scaling_was_exact(
true);
1462 LinearBooleanProblem* problem) {
1463 CHECK(problem !=
nullptr);
1465 problem->set_name(mp_model.name());
1466 const int num_variables = mp_model.variable_size();
1467 problem->set_num_variables(num_variables);
1471 for (
int var_id(0); var_id < num_variables; ++var_id) {
1472 const MPVariableProto& mp_var = mp_model.variable(var_id);
1473 problem->add_var_names(mp_var.name());
1478 bool is_binary = mp_var.is_integer();
1482 if (lb <= -1.0) is_binary =
false;
1483 if (ub >= 2.0) is_binary =
false;
1486 if (lb <= 0.0 && ub >= 1.0) {
1488 }
else if (lb <= 1.0 && ub >= 1.0) {
1490 LinearBooleanConstraint* constraint = problem->add_constraints();
1491 constraint->set_lower_bound(1);
1492 constraint->set_upper_bound(1);
1493 constraint->add_literals(var_id + 1);
1494 constraint->add_coefficients(1);
1495 }
else if (lb <= 0.0 && ub >= 0.0) {
1497 LinearBooleanConstraint* constraint = problem->add_constraints();
1498 constraint->set_lower_bound(0);
1499 constraint->set_upper_bound(0);
1500 constraint->add_literals(var_id + 1);
1501 constraint->add_coefficients(1);
1510 LOG(WARNING) <<
"The variable #" << var_id <<
" with name "
1511 << mp_var.name() <<
" is not binary. "
1512 <<
"lb: " << lb <<
" ub: " << ub;
1518 const int64_t kInt64Max = std::numeric_limits<int64_t>::max();
1519 double max_relative_error = 0.0;
1520 double max_bound_error = 0.0;
1521 double max_scaling_factor = 0.0;
1522 double relative_error = 0.0;
1523 double scaling_factor = 0.0;
1524 std::vector<double> coefficients;
1527 for (
const MPConstraintProto& mp_constraint : mp_model.constraint()) {
1528 LinearBooleanConstraint* constraint = problem->add_constraints();
1529 constraint->set_name(mp_constraint.name());
1532 coefficients.clear();
1533 const int num_coeffs = mp_constraint.coefficient_size();
1534 for (
int i = 0;
i < num_coeffs; ++
i) {
1535 coefficients.push_back(mp_constraint.coefficient(
i));
1541 max_relative_error = std::max(relative_error, max_relative_error);
1542 max_scaling_factor = std::max(scaling_factor / gcd, max_scaling_factor);
1544 double bound_error = 0.0;
1545 for (
int i = 0;
i < num_coeffs; ++
i) {
1546 const double scaled_value = mp_constraint.coefficient(
i) * scaling_factor;
1547 bound_error += std::abs(round(scaled_value) - scaled_value);
1548 const int64_t value =
static_cast<int64_t
>(round(scaled_value)) / gcd;
1550 constraint->add_literals(mp_constraint.var_index(
i) + 1);
1551 constraint->add_coefficients(value);
1554 max_bound_error = std::max(max_bound_error, bound_error);
1561 const Fractional lb = mp_constraint.lower_bound();
1563 if (lb * scaling_factor >
static_cast<double>(kInt64Max)) {
1564 LOG(WARNING) <<
"A constraint is trivially unsatisfiable.";
1567 if (lb * scaling_factor > -
static_cast<double>(kInt64Max)) {
1569 constraint->set_lower_bound(
1570 static_cast<int64_t
>(round(lb * scaling_factor - bound_error)) /
1574 const Fractional ub = mp_constraint.upper_bound();
1576 if (ub * scaling_factor < -
static_cast<double>(kInt64Max)) {
1577 LOG(WARNING) <<
"A constraint is trivially unsatisfiable.";
1580 if (ub * scaling_factor <
static_cast<double>(kInt64Max)) {
1582 constraint->set_upper_bound(
1583 static_cast<int64_t
>(round(ub * scaling_factor + bound_error)) /
1590 LOG(INFO) <<
"Maximum constraint relative error: " << max_relative_error;
1591 LOG(INFO) <<
"Maximum constraint bound error: " << max_bound_error;
1592 LOG(INFO) <<
"Maximum constraint scaling factor: " << max_scaling_factor;
1595 coefficients.clear();
1596 for (
int var_id = 0; var_id < num_variables; ++var_id) {
1597 const MPVariableProto& mp_var = mp_model.variable(var_id);
1598 coefficients.push_back(mp_var.objective_coefficient());
1603 max_relative_error = std::max(relative_error, max_relative_error);
1606 LOG(INFO) <<
"objective relative error: " << relative_error;
1607 LOG(INFO) <<
"objective scaling factor: " << scaling_factor / gcd;
1609 LinearObjective* objective = problem->mutable_objective();
1610 objective->set_offset(mp_model.objective_offset() * scaling_factor / gcd);
1614 objective->set_scaling_factor(1.0 / scaling_factor * gcd);
1615 for (
int var_id = 0; var_id < num_variables; ++var_id) {
1616 const MPVariableProto& mp_var = mp_model.variable(var_id);
1617 const int64_t value =
1618 static_cast<int64_t
>(
1619 round(mp_var.objective_coefficient() * scaling_factor)) /
1622 objective->add_literals(var_id + 1);
1623 objective->add_coefficients(value);
1631 const double kRelativeTolerance = 1e-8;
1632 if (max_relative_error > kRelativeTolerance) {
1633 LOG(WARNING) <<
"The relative error during double -> int64_t conversion "
1643 for (
int i = 0;
i < problem.num_variables(); ++
i) {
1650 if (problem.var_names_size() != 0) {
1651 CHECK_EQ(problem.var_names_size(), problem.num_variables());
1652 for (
int i = 0;
i < problem.num_variables(); ++
i) {
1657 for (
const LinearBooleanConstraint& constraint : problem.constraints()) {
1661 for (
int i = 0;
i < constraint.literals_size(); ++
i) {
1662 const int literal = constraint.literals(
i);
1663 const double coeff = constraint.coefficients(
i);
1664 const ColIndex variable_index = ColIndex(abs(literal) - 1);
1674 constraint.has_lower_bound() ? constraint.lower_bound() - sum
1676 constraint.has_upper_bound() ? constraint.upper_bound() - sum
1683 const LinearObjective& objective = problem.objective();
1684 const double scaling_factor = objective.scaling_factor();
1685 for (
int i = 0;
i < objective.literals_size(); ++
i) {
1686 const int literal = objective.literals(
i);
1687 const double coeff =
1688 static_cast<double>(objective.coefficients(
i)) * scaling_factor;
1689 const ColIndex variable_index = ColIndex(abs(literal) - 1);
1705 const CpModelProto& model_proto_with_floating_point_objective,
1706 const CpObjectiveProto& integer_objective,
1707 const int64_t inner_integer_objective_lower_bound) {
1710 const CpModelProto& proto = model_proto_with_floating_point_objective;
1711 for (
int i = 0;
i < proto.variables().size(); ++
i) {
1712 const auto& domain = proto.variables(
i).domain();
1714 static_cast<double>(domain[domain.size() - 1]));
1719 const FloatObjectiveProto& float_obj = proto.floating_point_objective();
1722 for (
int i = 0;
i < float_obj.vars().size(); ++
i) {
1723 const glop::ColIndex col(float_obj.vars(
i));
1731 ct,
static_cast<double>(inner_integer_objective_lower_bound),
1732 std::numeric_limits<double>::infinity());
1733 for (
int i = 0;
i < integer_objective.vars().size(); ++
i) {
1735 static_cast<double>(integer_objective.coeffs(
i)));
1743 glop::GlopParameters glop_parameters;
1744 glop_parameters.set_max_number_of_iterations(100 * proto.variables().size());
1745 glop_parameters.set_change_status_to_imprecise(
false);
1753 return float_obj.maximize() ? std::numeric_limits<double>::infinity()
1754 : -std::numeric_limits<double>::infinity();
A full-fledged linear programming solver.
Fractional GetObjectiveValue() const
Returns the objective value of the solution with its offset and scaling.
void SetParameters(const GlopParameters ¶meters)
ABSL_MUST_USE_RESULT ProblemStatus Solve(const LinearProgram &lp)
const DenseRow & objective_coefficients() const
Returns the objective coefficients (or cost) of variables as a row vector.
void Clear()
Clears, i.e. reset the object to its initial value.
void SetConstraintName(RowIndex row, absl::string_view name)
@ INTEGER
The variable must only take integer values.
void SetObjectiveOffset(Fractional objective_offset)
void SetObjectiveCoefficient(ColIndex col, Fractional value)
void SetVariableBounds(ColIndex col, Fractional lower_bound, Fractional upper_bound)
void SetVariableType(ColIndex col, VariableType type)
Set the type of the variable.
void SetConstraintBounds(RowIndex row, Fractional lower_bound, Fractional upper_bound)
void SetCoefficient(RowIndex row, ColIndex col, Fractional value)
Defines the coefficient for col / row.
void SetVariableName(ColIndex col, absl::string_view name)
RowIndex CreateNewConstraint()
ColIndex CreateNewVariable()
void SetMaximizationProblem(bool maximize)
constexpr Fractional kInfinity
Infinity for type Fractional.
ProblemStatus
Different statuses for a given problem.
IntegerValue FloorRatio(IntegerValue dividend, IntegerValue positive_divisor)
double FindBestScalingAndComputeErrors(absl::Span< const double > coefficients, absl::Span< const double > lower_bounds, absl::Span< const double > upper_bounds, int64_t max_absolute_activity, double wanted_absolute_activity_precision, double *relative_coeff_error, double *scaled_sum_error)
bool RefIsPositive(int ref)
IntegerValue CeilRatio(IntegerValue dividend, IntegerValue positive_divisor)
bool ConvertMPModelProtoToCpModelProto(const SatParameters ¶ms, const MPModelProto &mp_model, CpModelProto *cp_model, SolverLogger *logger)
int64_t FindRationalFactor(double x, int64_t limit, double tolerance)
void ConvertBooleanProblemToLinearProgram(const LinearBooleanProblem &problem, glop::LinearProgram *lp)
Converts a Boolean optimization problem to its lp formulation.
bool MakeBoundsOfIntegerVariablesInteger(const SatParameters ¶ms, MPModelProto *mp_model, SolverLogger *logger)
void ChangeLargeBoundsToInfinity(double max_magnitude, MPModelProto *mp_model, SolverLogger *logger)
bool ScaleAndSetObjective(const SatParameters ¶ms, absl::Span< const std::pair< int, double > > objective, double objective_offset, bool maximize, CpModelProto *cp_model, SolverLogger *logger)
void ChangeOptimizationDirection(LinearBooleanProblem *problem)
std::vector< double > DetectImpliedIntegers(MPModelProto *mp_model, SolverLogger *logger)
void RemoveNearZeroTerms(const SatParameters ¶ms, MPModelProto *mp_model, SolverLogger *logger)
bool ConvertBinaryMPModelProtoToBooleanProblem(const MPModelProto &mp_model, LinearBooleanProblem *problem)
double ComputeTrueObjectiveLowerBound(const CpModelProto &model_proto_with_floating_point_objective, const CpObjectiveProto &integer_objective, const int64_t inner_integer_objective_lower_bound)
bool ConvertCpModelProtoToMPModelProto(const CpModelProto &input, MPModelProto *output)
constexpr Fractional kInfinity
Infinity for type Fractional.
std::vector< double > ScaleContinuousVariables(double scaling, double max_bound, MPModelProto *mp_model)
int NegatedRef(int ref)
Small utility functions to deal with negative variable/literal references.
bool MPModelProtoValidationBeforeConversion(const SatParameters ¶ms, const MPModelProto &mp_model, SolverLogger *logger)
In SWIG mode, we don't want anything besides these top-level includes.
int64_t CapAdd(int64_t x, int64_t y)
double GetBestScalingOfDoublesToInt64(absl::Span< const double > input, absl::Span< const double > lb, absl::Span< const double > ub, int64_t max_absolute_sum)
std::string ProtobufShortDebugString(const P &message)
int64_t CapProd(int64_t x, int64_t y)
void ComputeScalingErrors(absl::Span< const double > input, absl::Span< const double > lb, absl::Span< const double > ub, double scaling_factor, double *max_relative_coeff_error, double *max_scaled_sum_error)
std::string ProtobufDebugString(const P &message)
int64_t ComputeGcdOfRoundedDoubles(absl::Span< const double > x, double scaling_factor)
static int input(yyscan_t yyscanner)
#define SOLVER_LOG(logger,...)