public static final class SymmetryProto.Builder extends com.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder> implements SymmetryProtoOrBuilder
EXPERIMENTAL. For now, this is meant to be used by the solver and not filled by clients. Hold symmetry information about the set of feasible solutions. If we permute the variable values of any feasible solution using one of the permutation described here, we should always get another feasible solution. We usually also enforce that the objective of the new solution is the same. The group of permutations encoded here is usually computed from the encoding of the model, so it is not meant to be a complete representation of the feasible solution symmetries, just a valid subgroup.Protobuf type
operations_research.sat.SymmetryProto
Modifier and Type | Method and Description |
---|---|
SymmetryProto.Builder |
addAllOrbitopes(java.lang.Iterable<? extends DenseMatrixProto> values)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
addAllPermutations(java.lang.Iterable<? extends SparsePermutationProto> values)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto.Builder |
addOrbitopes(DenseMatrixProto.Builder builderForValue)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
addOrbitopes(DenseMatrixProto value)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
addOrbitopes(int index,
DenseMatrixProto.Builder builderForValue)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
addOrbitopes(int index,
DenseMatrixProto value)
An orbitope is a special symmetry structure of the solution space.
|
DenseMatrixProto.Builder |
addOrbitopesBuilder()
An orbitope is a special symmetry structure of the solution space.
|
DenseMatrixProto.Builder |
addOrbitopesBuilder(int index)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
addPermutations(int index,
SparsePermutationProto.Builder builderForValue)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto.Builder |
addPermutations(int index,
SparsePermutationProto value)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto.Builder |
addPermutations(SparsePermutationProto.Builder builderForValue)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto.Builder |
addPermutations(SparsePermutationProto value)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SparsePermutationProto.Builder |
addPermutationsBuilder()
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SparsePermutationProto.Builder |
addPermutationsBuilder(int index)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto |
build() |
SymmetryProto |
buildPartial() |
SymmetryProto.Builder |
clear() |
SymmetryProto.Builder |
clearOrbitopes()
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
clearPermutations()
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto |
getDefaultInstanceForType() |
static com.google.protobuf.Descriptors.Descriptor |
getDescriptor() |
com.google.protobuf.Descriptors.Descriptor |
getDescriptorForType() |
DenseMatrixProto |
getOrbitopes(int index)
An orbitope is a special symmetry structure of the solution space.
|
DenseMatrixProto.Builder |
getOrbitopesBuilder(int index)
An orbitope is a special symmetry structure of the solution space.
|
java.util.List<DenseMatrixProto.Builder> |
getOrbitopesBuilderList()
An orbitope is a special symmetry structure of the solution space.
|
int |
getOrbitopesCount()
An orbitope is a special symmetry structure of the solution space.
|
java.util.List<DenseMatrixProto> |
getOrbitopesList()
An orbitope is a special symmetry structure of the solution space.
|
DenseMatrixProtoOrBuilder |
getOrbitopesOrBuilder(int index)
An orbitope is a special symmetry structure of the solution space.
|
java.util.List<? extends DenseMatrixProtoOrBuilder> |
getOrbitopesOrBuilderList()
An orbitope is a special symmetry structure of the solution space.
|
SparsePermutationProto |
getPermutations(int index)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SparsePermutationProto.Builder |
getPermutationsBuilder(int index)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
java.util.List<SparsePermutationProto.Builder> |
getPermutationsBuilderList()
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
int |
getPermutationsCount()
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
java.util.List<SparsePermutationProto> |
getPermutationsList()
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SparsePermutationProtoOrBuilder |
getPermutationsOrBuilder(int index)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
java.util.List<? extends SparsePermutationProtoOrBuilder> |
getPermutationsOrBuilderList()
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
protected com.google.protobuf.GeneratedMessage.FieldAccessorTable |
internalGetFieldAccessorTable() |
boolean |
isInitialized() |
SymmetryProto.Builder |
mergeFrom(com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
SymmetryProto.Builder |
mergeFrom(com.google.protobuf.Message other) |
SymmetryProto.Builder |
mergeFrom(SymmetryProto other) |
SymmetryProto.Builder |
removeOrbitopes(int index)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
removePermutations(int index)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto.Builder |
setOrbitopes(int index,
DenseMatrixProto.Builder builderForValue)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
setOrbitopes(int index,
DenseMatrixProto value)
An orbitope is a special symmetry structure of the solution space.
|
SymmetryProto.Builder |
setPermutations(int index,
SparsePermutationProto.Builder builderForValue)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
SymmetryProto.Builder |
setPermutations(int index,
SparsePermutationProto value)
A list of variable indices permutations that leave the feasible space of
solution invariant.
|
addRepeatedField, clearField, clearOneof, clone, getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMapFieldReflection, internalGetMutableMapField, internalGetMutableMapFieldReflection, isClean, markClean, mergeUnknownFields, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setField, setRepeatedField, setUnknownFields, setUnknownFieldSetBuilder, setUnknownFieldsProto3
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, newUninitializedMessageException
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
protected com.google.protobuf.GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable()
internalGetFieldAccessorTable
in class com.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
public SymmetryProto.Builder clear()
clear
in interface com.google.protobuf.Message.Builder
clear
in interface com.google.protobuf.MessageLite.Builder
clear
in class com.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
getDescriptorForType
in interface com.google.protobuf.Message.Builder
getDescriptorForType
in interface com.google.protobuf.MessageOrBuilder
getDescriptorForType
in class com.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
public SymmetryProto getDefaultInstanceForType()
getDefaultInstanceForType
in interface com.google.protobuf.MessageLiteOrBuilder
getDefaultInstanceForType
in interface com.google.protobuf.MessageOrBuilder
public SymmetryProto build()
build
in interface com.google.protobuf.Message.Builder
build
in interface com.google.protobuf.MessageLite.Builder
public SymmetryProto buildPartial()
buildPartial
in interface com.google.protobuf.Message.Builder
buildPartial
in interface com.google.protobuf.MessageLite.Builder
public SymmetryProto.Builder mergeFrom(com.google.protobuf.Message other)
mergeFrom
in interface com.google.protobuf.Message.Builder
mergeFrom
in class com.google.protobuf.AbstractMessage.Builder<SymmetryProto.Builder>
public SymmetryProto.Builder mergeFrom(SymmetryProto other)
public final boolean isInitialized()
isInitialized
in interface com.google.protobuf.MessageLiteOrBuilder
isInitialized
in class com.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
public SymmetryProto.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException
mergeFrom
in interface com.google.protobuf.Message.Builder
mergeFrom
in interface com.google.protobuf.MessageLite.Builder
mergeFrom
in class com.google.protobuf.AbstractMessage.Builder<SymmetryProto.Builder>
java.io.IOException
public java.util.List<SparsePermutationProto> getPermutationsList()
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
getPermutationsList
in interface SymmetryProtoOrBuilder
public int getPermutationsCount()
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
getPermutationsCount
in interface SymmetryProtoOrBuilder
public SparsePermutationProto getPermutations(int index)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
getPermutations
in interface SymmetryProtoOrBuilder
public SymmetryProto.Builder setPermutations(int index, SparsePermutationProto value)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder setPermutations(int index, SparsePermutationProto.Builder builderForValue)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder addPermutations(SparsePermutationProto value)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder addPermutations(int index, SparsePermutationProto value)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder addPermutations(SparsePermutationProto.Builder builderForValue)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder addPermutations(int index, SparsePermutationProto.Builder builderForValue)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder addAllPermutations(java.lang.Iterable<? extends SparsePermutationProto> values)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder clearPermutations()
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SymmetryProto.Builder removePermutations(int index)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SparsePermutationProto.Builder getPermutationsBuilder(int index)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SparsePermutationProtoOrBuilder getPermutationsOrBuilder(int index)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
getPermutationsOrBuilder
in interface SymmetryProtoOrBuilder
public java.util.List<? extends SparsePermutationProtoOrBuilder> getPermutationsOrBuilderList()
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
getPermutationsOrBuilderList
in interface SymmetryProtoOrBuilder
public SparsePermutationProto.Builder addPermutationsBuilder()
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public SparsePermutationProto.Builder addPermutationsBuilder(int index)
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public java.util.List<SparsePermutationProto.Builder> getPermutationsBuilderList()
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;
public java.util.List<DenseMatrixProto> getOrbitopesList()
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
getOrbitopesList
in interface SymmetryProtoOrBuilder
public int getOrbitopesCount()
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
getOrbitopesCount
in interface SymmetryProtoOrBuilder
public DenseMatrixProto getOrbitopes(int index)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
getOrbitopes
in interface SymmetryProtoOrBuilder
public SymmetryProto.Builder setOrbitopes(int index, DenseMatrixProto value)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder setOrbitopes(int index, DenseMatrixProto.Builder builderForValue)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder addOrbitopes(DenseMatrixProto value)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder addOrbitopes(int index, DenseMatrixProto value)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder addOrbitopes(DenseMatrixProto.Builder builderForValue)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder addOrbitopes(int index, DenseMatrixProto.Builder builderForValue)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder addAllOrbitopes(java.lang.Iterable<? extends DenseMatrixProto> values)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder clearOrbitopes()
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public SymmetryProto.Builder removeOrbitopes(int index)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public DenseMatrixProto.Builder getOrbitopesBuilder(int index)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public DenseMatrixProtoOrBuilder getOrbitopesOrBuilder(int index)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
getOrbitopesOrBuilder
in interface SymmetryProtoOrBuilder
public java.util.List<? extends DenseMatrixProtoOrBuilder> getOrbitopesOrBuilderList()
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
getOrbitopesOrBuilderList
in interface SymmetryProtoOrBuilder
public DenseMatrixProto.Builder addOrbitopesBuilder()
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public DenseMatrixProto.Builder addOrbitopesBuilder(int index)
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
public java.util.List<DenseMatrixProto.Builder> getOrbitopesBuilderList()
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
Copyright © 2025. All rights reserved.