Class SymmetryProto.Builder
java.lang.Object
com.google.protobuf.AbstractMessageLite.Builder
com.google.protobuf.AbstractMessage.Builder<SymmetryProto.Builder>
com.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
com.google.ortools.sat.SymmetryProto.Builder
- All Implemented Interfaces:
SymmetryProtoOrBuilder,com.google.protobuf.Message.Builder,com.google.protobuf.MessageLite.Builder,com.google.protobuf.MessageLiteOrBuilder,com.google.protobuf.MessageOrBuilder,Cloneable
- Enclosing class:
SymmetryProto
public static final class SymmetryProto.Builder
extends com.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
implements SymmetryProtoOrBuilder
EXPERIMENTAL. For now, this is meant to be used by the solver and not filled by clients. Hold symmetry information about the set of feasible solutions. If we permute the variable values of any feasible solution using one of the permutation described here, we should always get another feasible solution. We usually also enforce that the objective of the new solution is the same. The group of permutations encoded here is usually computed from the encoding of the model, so it is not meant to be a complete representation of the feasible solution symmetries, just a valid subgroup.Protobuf type
operations_research.sat.SymmetryProto-
Method Summary
Modifier and TypeMethodDescriptionaddAllOrbitopes(Iterable<? extends DenseMatrixProto> values) An orbitope is a special symmetry structure of the solution space.addAllPermutations(Iterable<? extends SparsePermutationProto> values) A list of variable indices permutations that leave the feasible space of solution invariant.addOrbitopes(int index, DenseMatrixProto value) An orbitope is a special symmetry structure of the solution space.addOrbitopes(int index, DenseMatrixProto.Builder builderForValue) An orbitope is a special symmetry structure of the solution space.addOrbitopes(DenseMatrixProto value) An orbitope is a special symmetry structure of the solution space.addOrbitopes(DenseMatrixProto.Builder builderForValue) An orbitope is a special symmetry structure of the solution space.An orbitope is a special symmetry structure of the solution space.addOrbitopesBuilder(int index) An orbitope is a special symmetry structure of the solution space.addPermutations(int index, SparsePermutationProto value) A list of variable indices permutations that leave the feasible space of solution invariant.addPermutations(int index, SparsePermutationProto.Builder builderForValue) A list of variable indices permutations that leave the feasible space of solution invariant.A list of variable indices permutations that leave the feasible space of solution invariant.addPermutations(SparsePermutationProto.Builder builderForValue) A list of variable indices permutations that leave the feasible space of solution invariant.A list of variable indices permutations that leave the feasible space of solution invariant.addPermutationsBuilder(int index) A list of variable indices permutations that leave the feasible space of solution invariant.build()clear()An orbitope is a special symmetry structure of the solution space.A list of variable indices permutations that leave the feasible space of solution invariant.static final com.google.protobuf.Descriptors.Descriptorcom.google.protobuf.Descriptors.DescriptorgetOrbitopes(int index) An orbitope is a special symmetry structure of the solution space.getOrbitopesBuilder(int index) An orbitope is a special symmetry structure of the solution space.An orbitope is a special symmetry structure of the solution space.intAn orbitope is a special symmetry structure of the solution space.An orbitope is a special symmetry structure of the solution space.getOrbitopesOrBuilder(int index) An orbitope is a special symmetry structure of the solution space.List<? extends DenseMatrixProtoOrBuilder> An orbitope is a special symmetry structure of the solution space.getPermutations(int index) A list of variable indices permutations that leave the feasible space of solution invariant.getPermutationsBuilder(int index) A list of variable indices permutations that leave the feasible space of solution invariant.A list of variable indices permutations that leave the feasible space of solution invariant.intA list of variable indices permutations that leave the feasible space of solution invariant.A list of variable indices permutations that leave the feasible space of solution invariant.getPermutationsOrBuilder(int index) A list of variable indices permutations that leave the feasible space of solution invariant.List<? extends SparsePermutationProtoOrBuilder> A list of variable indices permutations that leave the feasible space of solution invariant.protected com.google.protobuf.GeneratedMessage.FieldAccessorTablefinal booleanmergeFrom(SymmetryProto other) mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) mergeFrom(com.google.protobuf.Message other) removeOrbitopes(int index) An orbitope is a special symmetry structure of the solution space.removePermutations(int index) A list of variable indices permutations that leave the feasible space of solution invariant.setOrbitopes(int index, DenseMatrixProto value) An orbitope is a special symmetry structure of the solution space.setOrbitopes(int index, DenseMatrixProto.Builder builderForValue) An orbitope is a special symmetry structure of the solution space.setPermutations(int index, SparsePermutationProto value) A list of variable indices permutations that leave the feasible space of solution invariant.setPermutations(int index, SparsePermutationProto.Builder builderForValue) A list of variable indices permutations that leave the feasible space of solution invariant.Methods inherited from class com.google.protobuf.GeneratedMessage.Builder
addRepeatedField, clearField, clearOneof, clone, getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMapFieldReflection, internalGetMutableMapField, internalGetMutableMapFieldReflection, isClean, markClean, mergeUnknownFields, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setField, setRepeatedField, setUnknownFields, setUnknownFieldSetBuilder, setUnknownFieldsProto3Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toStringMethods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageExceptionMethods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface com.google.protobuf.Message.Builder
mergeDelimitedFrom, mergeDelimitedFromMethods inherited from interface com.google.protobuf.MessageLite.Builder
mergeFromMethods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
Method Details
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() -
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable()- Specified by:
internalGetFieldAccessorTablein classcom.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
-
clear
- Specified by:
clearin interfacecom.google.protobuf.Message.Builder- Specified by:
clearin interfacecom.google.protobuf.MessageLite.Builder- Overrides:
clearin classcom.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()- Specified by:
getDescriptorForTypein interfacecom.google.protobuf.Message.Builder- Specified by:
getDescriptorForTypein interfacecom.google.protobuf.MessageOrBuilder- Overrides:
getDescriptorForTypein classcom.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
-
getDefaultInstanceForType
- Specified by:
getDefaultInstanceForTypein interfacecom.google.protobuf.MessageLiteOrBuilder- Specified by:
getDefaultInstanceForTypein interfacecom.google.protobuf.MessageOrBuilder
-
build
- Specified by:
buildin interfacecom.google.protobuf.Message.Builder- Specified by:
buildin interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
- Specified by:
buildPartialin interfacecom.google.protobuf.Message.Builder- Specified by:
buildPartialin interfacecom.google.protobuf.MessageLite.Builder
-
mergeFrom
- Specified by:
mergeFromin interfacecom.google.protobuf.Message.Builder- Overrides:
mergeFromin classcom.google.protobuf.AbstractMessage.Builder<SymmetryProto.Builder>
-
mergeFrom
-
isInitialized
public final boolean isInitialized()- Specified by:
isInitializedin interfacecom.google.protobuf.MessageLiteOrBuilder- Overrides:
isInitializedin classcom.google.protobuf.GeneratedMessage.Builder<SymmetryProto.Builder>
-
mergeFrom
public SymmetryProto.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException - Specified by:
mergeFromin interfacecom.google.protobuf.Message.Builder- Specified by:
mergeFromin interfacecom.google.protobuf.MessageLite.Builder- Overrides:
mergeFromin classcom.google.protobuf.AbstractMessage.Builder<SymmetryProto.Builder>- Throws:
IOException
-
getPermutationsList
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;- Specified by:
getPermutationsListin interfaceSymmetryProtoOrBuilder
-
getPermutationsCount
public int getPermutationsCount()A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;- Specified by:
getPermutationsCountin interfaceSymmetryProtoOrBuilder
-
getPermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;- Specified by:
getPermutationsin interfaceSymmetryProtoOrBuilder
-
setPermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
setPermutations
public SymmetryProto.Builder setPermutations(int index, SparsePermutationProto.Builder builderForValue) A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
addPermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
addPermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
addPermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
addPermutations
public SymmetryProto.Builder addPermutations(int index, SparsePermutationProto.Builder builderForValue) A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
addAllPermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
clearPermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
removePermutations
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
getPermutationsBuilder
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
getPermutationsOrBuilder
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;- Specified by:
getPermutationsOrBuilderin interfaceSymmetryProtoOrBuilder
-
getPermutationsOrBuilderList
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1;- Specified by:
getPermutationsOrBuilderListin interfaceSymmetryProtoOrBuilder
-
addPermutationsBuilder
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
addPermutationsBuilder
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
getPermutationsBuilderList
A list of variable indices permutations that leave the feasible space of solution invariant. Usually, we only encode a set of generators of the group.
repeated .operations_research.sat.SparsePermutationProto permutations = 1; -
getOrbitopesList
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;- Specified by:
getOrbitopesListin interfaceSymmetryProtoOrBuilder
-
getOrbitopesCount
public int getOrbitopesCount()An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;- Specified by:
getOrbitopesCountin interfaceSymmetryProtoOrBuilder
-
getOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;- Specified by:
getOrbitopesin interfaceSymmetryProtoOrBuilder
-
setOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
setOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
addOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
addOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
addOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
addOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
addAllOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
clearOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
removeOrbitopes
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
getOrbitopesBuilder
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
getOrbitopesOrBuilder
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;- Specified by:
getOrbitopesOrBuilderin interfaceSymmetryProtoOrBuilder
-
getOrbitopesOrBuilderList
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;- Specified by:
getOrbitopesOrBuilderListin interfaceSymmetryProtoOrBuilder
-
addOrbitopesBuilder
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
addOrbitopesBuilder
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2; -
getOrbitopesBuilderList
An orbitope is a special symmetry structure of the solution space. If the variable indices are arranged in a matrix (with no duplicates), then any permutation of the columns will be a valid permutation of the feasible space. This arise quite often. The typical example is a graph coloring problem where for each node i, you have j booleans to indicate its color. If the variables color_of_i_is_j are arranged in a matrix[i][j], then any columns permutations leave the problem invariant.
repeated .operations_research.sat.DenseMatrixProto orbitopes = 2;
-