Class ConstraintProto

java.lang.Object
com.google.protobuf.AbstractMessageLite
com.google.protobuf.AbstractMessage
com.google.protobuf.GeneratedMessage
com.google.ortools.sat.ConstraintProto
All Implemented Interfaces:
ConstraintProtoOrBuilder, com.google.protobuf.Message, com.google.protobuf.MessageLite, com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder, Serializable

@Generated public final class ConstraintProto extends com.google.protobuf.GeneratedMessage implements ConstraintProtoOrBuilder
 Next id: 31
 
Protobuf type operations_research.sat.ConstraintProto
See Also:
  • Field Details

  • Method Details

    • getDescriptor

      public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
    • internalGetFieldAccessorTable

      protected com.google.protobuf.GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable()
      Specified by:
      internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessage
    • getConstraintCase

      public ConstraintProto.ConstraintCase getConstraintCase()
      Specified by:
      getConstraintCase in interface ConstraintProtoOrBuilder
    • getName

      public String getName()
       For debug/logging only. Can be empty.
       
      string name = 1;
      Specified by:
      getName in interface ConstraintProtoOrBuilder
      Returns:
      The name.
    • getNameBytes

      public com.google.protobuf.ByteString getNameBytes()
       For debug/logging only. Can be empty.
       
      string name = 1;
      Specified by:
      getNameBytes in interface ConstraintProtoOrBuilder
      Returns:
      The bytes for name.
    • getEnforcementLiteralList

      public List<Integer> getEnforcementLiteralList()
       The constraint will be enforced iff all literals listed here are true. If
       this is empty, then the constraint will always be enforced. An enforced
       constraint must be satisfied, and an un-enforced one will simply be
       ignored.
      
       This is also called half-reification. To have an equivalence between a
       literal and a constraint (full reification), one must add both a constraint
       (controlled by a literal l) and its negation (controlled by the negation of
       l).
      
       Important: as of September 2018, only a few constraint support enforcement:
       - bool_or, bool_and, linear: fully supported.
       - interval: only support a single enforcement literal.
       - other: no support (but can be added on a per-demand basis).
       
      repeated int32 enforcement_literal = 2;
      Specified by:
      getEnforcementLiteralList in interface ConstraintProtoOrBuilder
      Returns:
      A list containing the enforcementLiteral.
    • getEnforcementLiteralCount

      public int getEnforcementLiteralCount()
       The constraint will be enforced iff all literals listed here are true. If
       this is empty, then the constraint will always be enforced. An enforced
       constraint must be satisfied, and an un-enforced one will simply be
       ignored.
      
       This is also called half-reification. To have an equivalence between a
       literal and a constraint (full reification), one must add both a constraint
       (controlled by a literal l) and its negation (controlled by the negation of
       l).
      
       Important: as of September 2018, only a few constraint support enforcement:
       - bool_or, bool_and, linear: fully supported.
       - interval: only support a single enforcement literal.
       - other: no support (but can be added on a per-demand basis).
       
      repeated int32 enforcement_literal = 2;
      Specified by:
      getEnforcementLiteralCount in interface ConstraintProtoOrBuilder
      Returns:
      The count of enforcementLiteral.
    • getEnforcementLiteral

      public int getEnforcementLiteral(int index)
       The constraint will be enforced iff all literals listed here are true. If
       this is empty, then the constraint will always be enforced. An enforced
       constraint must be satisfied, and an un-enforced one will simply be
       ignored.
      
       This is also called half-reification. To have an equivalence between a
       literal and a constraint (full reification), one must add both a constraint
       (controlled by a literal l) and its negation (controlled by the negation of
       l).
      
       Important: as of September 2018, only a few constraint support enforcement:
       - bool_or, bool_and, linear: fully supported.
       - interval: only support a single enforcement literal.
       - other: no support (but can be added on a per-demand basis).
       
      repeated int32 enforcement_literal = 2;
      Specified by:
      getEnforcementLiteral in interface ConstraintProtoOrBuilder
      Parameters:
      index - The index of the element to return.
      Returns:
      The enforcementLiteral at the given index.
    • hasBoolOr

      public boolean hasBoolOr()
       The bool_or constraint forces at least one literal to be true.
       
      .operations_research.sat.BoolArgumentProto bool_or = 3;
      Specified by:
      hasBoolOr in interface ConstraintProtoOrBuilder
      Returns:
      Whether the boolOr field is set.
    • getBoolOr

      public BoolArgumentProto getBoolOr()
       The bool_or constraint forces at least one literal to be true.
       
      .operations_research.sat.BoolArgumentProto bool_or = 3;
      Specified by:
      getBoolOr in interface ConstraintProtoOrBuilder
      Returns:
      The boolOr.
    • getBoolOrOrBuilder

      public BoolArgumentProtoOrBuilder getBoolOrOrBuilder()
       The bool_or constraint forces at least one literal to be true.
       
      .operations_research.sat.BoolArgumentProto bool_or = 3;
      Specified by:
      getBoolOrOrBuilder in interface ConstraintProtoOrBuilder
    • hasBoolAnd

      public boolean hasBoolAnd()
       The bool_and constraint forces all of the literals to be true.
      
       This is a "redundant" constraint in the sense that this can easily be
       encoded with many bool_or or at_most_one. It is just more space efficient
       and handled slightly differently internally.
       
      .operations_research.sat.BoolArgumentProto bool_and = 4;
      Specified by:
      hasBoolAnd in interface ConstraintProtoOrBuilder
      Returns:
      Whether the boolAnd field is set.
    • getBoolAnd

      public BoolArgumentProto getBoolAnd()
       The bool_and constraint forces all of the literals to be true.
      
       This is a "redundant" constraint in the sense that this can easily be
       encoded with many bool_or or at_most_one. It is just more space efficient
       and handled slightly differently internally.
       
      .operations_research.sat.BoolArgumentProto bool_and = 4;
      Specified by:
      getBoolAnd in interface ConstraintProtoOrBuilder
      Returns:
      The boolAnd.
    • getBoolAndOrBuilder

      public BoolArgumentProtoOrBuilder getBoolAndOrBuilder()
       The bool_and constraint forces all of the literals to be true.
      
       This is a "redundant" constraint in the sense that this can easily be
       encoded with many bool_or or at_most_one. It is just more space efficient
       and handled slightly differently internally.
       
      .operations_research.sat.BoolArgumentProto bool_and = 4;
      Specified by:
      getBoolAndOrBuilder in interface ConstraintProtoOrBuilder
    • hasAtMostOne

      public boolean hasAtMostOne()
       The at_most_one constraint enforces that no more than one literal is
       true at the same time.
      
       Note that an at most one constraint of length n could be encoded with n
       bool_and constraint with n-1 term on the right hand side. So in a sense,
       this constraint contribute directly to the "implication-graph" or the
       2-SAT part of the model.
      
       This constraint does not support enforcement_literal. Just use a linear
       constraint if you need to enforce it. You also do not need to use it
       directly, we will extract it from the model in most situations.
       
      .operations_research.sat.BoolArgumentProto at_most_one = 26;
      Specified by:
      hasAtMostOne in interface ConstraintProtoOrBuilder
      Returns:
      Whether the atMostOne field is set.
    • getAtMostOne

      public BoolArgumentProto getAtMostOne()
       The at_most_one constraint enforces that no more than one literal is
       true at the same time.
      
       Note that an at most one constraint of length n could be encoded with n
       bool_and constraint with n-1 term on the right hand side. So in a sense,
       this constraint contribute directly to the "implication-graph" or the
       2-SAT part of the model.
      
       This constraint does not support enforcement_literal. Just use a linear
       constraint if you need to enforce it. You also do not need to use it
       directly, we will extract it from the model in most situations.
       
      .operations_research.sat.BoolArgumentProto at_most_one = 26;
      Specified by:
      getAtMostOne in interface ConstraintProtoOrBuilder
      Returns:
      The atMostOne.
    • getAtMostOneOrBuilder

      public BoolArgumentProtoOrBuilder getAtMostOneOrBuilder()
       The at_most_one constraint enforces that no more than one literal is
       true at the same time.
      
       Note that an at most one constraint of length n could be encoded with n
       bool_and constraint with n-1 term on the right hand side. So in a sense,
       this constraint contribute directly to the "implication-graph" or the
       2-SAT part of the model.
      
       This constraint does not support enforcement_literal. Just use a linear
       constraint if you need to enforce it. You also do not need to use it
       directly, we will extract it from the model in most situations.
       
      .operations_research.sat.BoolArgumentProto at_most_one = 26;
      Specified by:
      getAtMostOneOrBuilder in interface ConstraintProtoOrBuilder
    • hasExactlyOne

      public boolean hasExactlyOne()
       The exactly_one constraint force exactly one literal to true and no more.
      
       Anytime a bool_or (it could have been called at_least_one) is included
       into an at_most_one, then the bool_or is actually an exactly one
       constraint, and the extra literal in the at_most_one can be set to false.
       So in this sense, this constraint is not really needed. it is just here
       for a better description of the problem structure and to facilitate some
       algorithm.
      
       This constraint does not support enforcement_literal. Just use a linear
       constraint if you need to enforce it. You also do not need to use it
       directly, we will extract it from the model in most situations.
       
      .operations_research.sat.BoolArgumentProto exactly_one = 29;
      Specified by:
      hasExactlyOne in interface ConstraintProtoOrBuilder
      Returns:
      Whether the exactlyOne field is set.
    • getExactlyOne

      public BoolArgumentProto getExactlyOne()
       The exactly_one constraint force exactly one literal to true and no more.
      
       Anytime a bool_or (it could have been called at_least_one) is included
       into an at_most_one, then the bool_or is actually an exactly one
       constraint, and the extra literal in the at_most_one can be set to false.
       So in this sense, this constraint is not really needed. it is just here
       for a better description of the problem structure and to facilitate some
       algorithm.
      
       This constraint does not support enforcement_literal. Just use a linear
       constraint if you need to enforce it. You also do not need to use it
       directly, we will extract it from the model in most situations.
       
      .operations_research.sat.BoolArgumentProto exactly_one = 29;
      Specified by:
      getExactlyOne in interface ConstraintProtoOrBuilder
      Returns:
      The exactlyOne.
    • getExactlyOneOrBuilder

      public BoolArgumentProtoOrBuilder getExactlyOneOrBuilder()
       The exactly_one constraint force exactly one literal to true and no more.
      
       Anytime a bool_or (it could have been called at_least_one) is included
       into an at_most_one, then the bool_or is actually an exactly one
       constraint, and the extra literal in the at_most_one can be set to false.
       So in this sense, this constraint is not really needed. it is just here
       for a better description of the problem structure and to facilitate some
       algorithm.
      
       This constraint does not support enforcement_literal. Just use a linear
       constraint if you need to enforce it. You also do not need to use it
       directly, we will extract it from the model in most situations.
       
      .operations_research.sat.BoolArgumentProto exactly_one = 29;
      Specified by:
      getExactlyOneOrBuilder in interface ConstraintProtoOrBuilder
    • hasBoolXor

      public boolean hasBoolXor()
       The bool_xor constraint forces an odd number of the literals to be true.
       
      .operations_research.sat.BoolArgumentProto bool_xor = 5;
      Specified by:
      hasBoolXor in interface ConstraintProtoOrBuilder
      Returns:
      Whether the boolXor field is set.
    • getBoolXor

      public BoolArgumentProto getBoolXor()
       The bool_xor constraint forces an odd number of the literals to be true.
       
      .operations_research.sat.BoolArgumentProto bool_xor = 5;
      Specified by:
      getBoolXor in interface ConstraintProtoOrBuilder
      Returns:
      The boolXor.
    • getBoolXorOrBuilder

      public BoolArgumentProtoOrBuilder getBoolXorOrBuilder()
       The bool_xor constraint forces an odd number of the literals to be true.
       
      .operations_research.sat.BoolArgumentProto bool_xor = 5;
      Specified by:
      getBoolXorOrBuilder in interface ConstraintProtoOrBuilder
    • hasIntDiv

      public boolean hasIntDiv()
       The int_div constraint forces the target to equal exprs[0] / exprs[1].
       The division is "rounded" towards zero, so we can have for instance
       (2 = 12 / 5) or (-3 = -10 / 3). If you only want exact integer division,
       then you should use instead of t = a / b, the int_prod constraint
       a = b * t.
      
       If 0 belongs to the domain of exprs[1], then the model is deemed invalid.
       
      .operations_research.sat.LinearArgumentProto int_div = 7;
      Specified by:
      hasIntDiv in interface ConstraintProtoOrBuilder
      Returns:
      Whether the intDiv field is set.
    • getIntDiv

      public LinearArgumentProto getIntDiv()
       The int_div constraint forces the target to equal exprs[0] / exprs[1].
       The division is "rounded" towards zero, so we can have for instance
       (2 = 12 / 5) or (-3 = -10 / 3). If you only want exact integer division,
       then you should use instead of t = a / b, the int_prod constraint
       a = b * t.
      
       If 0 belongs to the domain of exprs[1], then the model is deemed invalid.
       
      .operations_research.sat.LinearArgumentProto int_div = 7;
      Specified by:
      getIntDiv in interface ConstraintProtoOrBuilder
      Returns:
      The intDiv.
    • getIntDivOrBuilder

      public LinearArgumentProtoOrBuilder getIntDivOrBuilder()
       The int_div constraint forces the target to equal exprs[0] / exprs[1].
       The division is "rounded" towards zero, so we can have for instance
       (2 = 12 / 5) or (-3 = -10 / 3). If you only want exact integer division,
       then you should use instead of t = a / b, the int_prod constraint
       a = b * t.
      
       If 0 belongs to the domain of exprs[1], then the model is deemed invalid.
       
      .operations_research.sat.LinearArgumentProto int_div = 7;
      Specified by:
      getIntDivOrBuilder in interface ConstraintProtoOrBuilder
    • hasIntMod

      public boolean hasIntMod()
       The int_mod constraint forces the target to equal exprs[0] % exprs[1].
       The domain of exprs[1] must be strictly positive. The sign of the target
       is the same as the sign of exprs[0].
       
      .operations_research.sat.LinearArgumentProto int_mod = 8;
      Specified by:
      hasIntMod in interface ConstraintProtoOrBuilder
      Returns:
      Whether the intMod field is set.
    • getIntMod

      public LinearArgumentProto getIntMod()
       The int_mod constraint forces the target to equal exprs[0] % exprs[1].
       The domain of exprs[1] must be strictly positive. The sign of the target
       is the same as the sign of exprs[0].
       
      .operations_research.sat.LinearArgumentProto int_mod = 8;
      Specified by:
      getIntMod in interface ConstraintProtoOrBuilder
      Returns:
      The intMod.
    • getIntModOrBuilder

      public LinearArgumentProtoOrBuilder getIntModOrBuilder()
       The int_mod constraint forces the target to equal exprs[0] % exprs[1].
       The domain of exprs[1] must be strictly positive. The sign of the target
       is the same as the sign of exprs[0].
       
      .operations_research.sat.LinearArgumentProto int_mod = 8;
      Specified by:
      getIntModOrBuilder in interface ConstraintProtoOrBuilder
    • hasIntProd

      public boolean hasIntProd()
       The int_prod constraint forces the target to equal the product of all
       variables. By convention, because we can just remove term equal to one,
       the empty product forces the target to be one.
      
       Note that the solver checks for potential integer overflow. So the
       product of the maximum absolute value of all the terms (using the initial
       domain) should fit on an int64. Otherwise the model will be declared
       invalid.
       
      .operations_research.sat.LinearArgumentProto int_prod = 11;
      Specified by:
      hasIntProd in interface ConstraintProtoOrBuilder
      Returns:
      Whether the intProd field is set.
    • getIntProd

      public LinearArgumentProto getIntProd()
       The int_prod constraint forces the target to equal the product of all
       variables. By convention, because we can just remove term equal to one,
       the empty product forces the target to be one.
      
       Note that the solver checks for potential integer overflow. So the
       product of the maximum absolute value of all the terms (using the initial
       domain) should fit on an int64. Otherwise the model will be declared
       invalid.
       
      .operations_research.sat.LinearArgumentProto int_prod = 11;
      Specified by:
      getIntProd in interface ConstraintProtoOrBuilder
      Returns:
      The intProd.
    • getIntProdOrBuilder

      public LinearArgumentProtoOrBuilder getIntProdOrBuilder()
       The int_prod constraint forces the target to equal the product of all
       variables. By convention, because we can just remove term equal to one,
       the empty product forces the target to be one.
      
       Note that the solver checks for potential integer overflow. So the
       product of the maximum absolute value of all the terms (using the initial
       domain) should fit on an int64. Otherwise the model will be declared
       invalid.
       
      .operations_research.sat.LinearArgumentProto int_prod = 11;
      Specified by:
      getIntProdOrBuilder in interface ConstraintProtoOrBuilder
    • hasLinMax

      public boolean hasLinMax()
       The lin_max constraint forces the target to equal the maximum of all
       linear expressions.
       Note that this can model a minimum simply by negating all expressions.
       
      .operations_research.sat.LinearArgumentProto lin_max = 27;
      Specified by:
      hasLinMax in interface ConstraintProtoOrBuilder
      Returns:
      Whether the linMax field is set.
    • getLinMax

      public LinearArgumentProto getLinMax()
       The lin_max constraint forces the target to equal the maximum of all
       linear expressions.
       Note that this can model a minimum simply by negating all expressions.
       
      .operations_research.sat.LinearArgumentProto lin_max = 27;
      Specified by:
      getLinMax in interface ConstraintProtoOrBuilder
      Returns:
      The linMax.
    • getLinMaxOrBuilder

      public LinearArgumentProtoOrBuilder getLinMaxOrBuilder()
       The lin_max constraint forces the target to equal the maximum of all
       linear expressions.
       Note that this can model a minimum simply by negating all expressions.
       
      .operations_research.sat.LinearArgumentProto lin_max = 27;
      Specified by:
      getLinMaxOrBuilder in interface ConstraintProtoOrBuilder
    • hasLinear

      public boolean hasLinear()
       The linear constraint enforces a linear inequality among the variables,
       such as 0 <= x + 2y <= 10.
       
      .operations_research.sat.LinearConstraintProto linear = 12;
      Specified by:
      hasLinear in interface ConstraintProtoOrBuilder
      Returns:
      Whether the linear field is set.
    • getLinear

      public LinearConstraintProto getLinear()
       The linear constraint enforces a linear inequality among the variables,
       such as 0 <= x + 2y <= 10.
       
      .operations_research.sat.LinearConstraintProto linear = 12;
      Specified by:
      getLinear in interface ConstraintProtoOrBuilder
      Returns:
      The linear.
    • getLinearOrBuilder

      public LinearConstraintProtoOrBuilder getLinearOrBuilder()
       The linear constraint enforces a linear inequality among the variables,
       such as 0 <= x + 2y <= 10.
       
      .operations_research.sat.LinearConstraintProto linear = 12;
      Specified by:
      getLinearOrBuilder in interface ConstraintProtoOrBuilder
    • hasAllDiff

      public boolean hasAllDiff()
       The all_diff constraint forces all variables to take different values.
       
      .operations_research.sat.AllDifferentConstraintProto all_diff = 13;
      Specified by:
      hasAllDiff in interface ConstraintProtoOrBuilder
      Returns:
      Whether the allDiff field is set.
    • getAllDiff

      public AllDifferentConstraintProto getAllDiff()
       The all_diff constraint forces all variables to take different values.
       
      .operations_research.sat.AllDifferentConstraintProto all_diff = 13;
      Specified by:
      getAllDiff in interface ConstraintProtoOrBuilder
      Returns:
      The allDiff.
    • getAllDiffOrBuilder

      public AllDifferentConstraintProtoOrBuilder getAllDiffOrBuilder()
       The all_diff constraint forces all variables to take different values.
       
      .operations_research.sat.AllDifferentConstraintProto all_diff = 13;
      Specified by:
      getAllDiffOrBuilder in interface ConstraintProtoOrBuilder
    • hasElement

      public boolean hasElement()
       The element constraint forces the variable with the given index
       to be equal to the target.
       
      .operations_research.sat.ElementConstraintProto element = 14;
      Specified by:
      hasElement in interface ConstraintProtoOrBuilder
      Returns:
      Whether the element field is set.
    • getElement

      public ElementConstraintProto getElement()
       The element constraint forces the variable with the given index
       to be equal to the target.
       
      .operations_research.sat.ElementConstraintProto element = 14;
      Specified by:
      getElement in interface ConstraintProtoOrBuilder
      Returns:
      The element.
    • getElementOrBuilder

      public ElementConstraintProtoOrBuilder getElementOrBuilder()
       The element constraint forces the variable with the given index
       to be equal to the target.
       
      .operations_research.sat.ElementConstraintProto element = 14;
      Specified by:
      getElementOrBuilder in interface ConstraintProtoOrBuilder
    • hasCircuit

      public boolean hasCircuit()
       The circuit constraint takes a graph and forces the arcs present
       (with arc presence indicated by a literal) to form a unique cycle.
       
      .operations_research.sat.CircuitConstraintProto circuit = 15;
      Specified by:
      hasCircuit in interface ConstraintProtoOrBuilder
      Returns:
      Whether the circuit field is set.
    • getCircuit

      public CircuitConstraintProto getCircuit()
       The circuit constraint takes a graph and forces the arcs present
       (with arc presence indicated by a literal) to form a unique cycle.
       
      .operations_research.sat.CircuitConstraintProto circuit = 15;
      Specified by:
      getCircuit in interface ConstraintProtoOrBuilder
      Returns:
      The circuit.
    • getCircuitOrBuilder

      public CircuitConstraintProtoOrBuilder getCircuitOrBuilder()
       The circuit constraint takes a graph and forces the arcs present
       (with arc presence indicated by a literal) to form a unique cycle.
       
      .operations_research.sat.CircuitConstraintProto circuit = 15;
      Specified by:
      getCircuitOrBuilder in interface ConstraintProtoOrBuilder
    • hasRoutes

      public boolean hasRoutes()
       The routes constraint implements the vehicle routing problem.
       
      .operations_research.sat.RoutesConstraintProto routes = 23;
      Specified by:
      hasRoutes in interface ConstraintProtoOrBuilder
      Returns:
      Whether the routes field is set.
    • getRoutes

      public RoutesConstraintProto getRoutes()
       The routes constraint implements the vehicle routing problem.
       
      .operations_research.sat.RoutesConstraintProto routes = 23;
      Specified by:
      getRoutes in interface ConstraintProtoOrBuilder
      Returns:
      The routes.
    • getRoutesOrBuilder

      public RoutesConstraintProtoOrBuilder getRoutesOrBuilder()
       The routes constraint implements the vehicle routing problem.
       
      .operations_research.sat.RoutesConstraintProto routes = 23;
      Specified by:
      getRoutesOrBuilder in interface ConstraintProtoOrBuilder
    • hasTable

      public boolean hasTable()
       The table constraint enforces what values a tuple of variables may
       take.
       
      .operations_research.sat.TableConstraintProto table = 16;
      Specified by:
      hasTable in interface ConstraintProtoOrBuilder
      Returns:
      Whether the table field is set.
    • getTable

      public TableConstraintProto getTable()
       The table constraint enforces what values a tuple of variables may
       take.
       
      .operations_research.sat.TableConstraintProto table = 16;
      Specified by:
      getTable in interface ConstraintProtoOrBuilder
      Returns:
      The table.
    • getTableOrBuilder

      public TableConstraintProtoOrBuilder getTableOrBuilder()
       The table constraint enforces what values a tuple of variables may
       take.
       
      .operations_research.sat.TableConstraintProto table = 16;
      Specified by:
      getTableOrBuilder in interface ConstraintProtoOrBuilder
    • hasAutomaton

      public boolean hasAutomaton()
       The automaton constraint forces a sequence of variables to be accepted
       by an automaton.
       
      .operations_research.sat.AutomatonConstraintProto automaton = 17;
      Specified by:
      hasAutomaton in interface ConstraintProtoOrBuilder
      Returns:
      Whether the automaton field is set.
    • getAutomaton

      public AutomatonConstraintProto getAutomaton()
       The automaton constraint forces a sequence of variables to be accepted
       by an automaton.
       
      .operations_research.sat.AutomatonConstraintProto automaton = 17;
      Specified by:
      getAutomaton in interface ConstraintProtoOrBuilder
      Returns:
      The automaton.
    • getAutomatonOrBuilder

      public AutomatonConstraintProtoOrBuilder getAutomatonOrBuilder()
       The automaton constraint forces a sequence of variables to be accepted
       by an automaton.
       
      .operations_research.sat.AutomatonConstraintProto automaton = 17;
      Specified by:
      getAutomatonOrBuilder in interface ConstraintProtoOrBuilder
    • hasInverse

      public boolean hasInverse()
       The inverse constraint forces two arrays to be inverses of each other:
       the values of one are the indices of the other, and vice versa.
       
      .operations_research.sat.InverseConstraintProto inverse = 18;
      Specified by:
      hasInverse in interface ConstraintProtoOrBuilder
      Returns:
      Whether the inverse field is set.
    • getInverse

      public InverseConstraintProto getInverse()
       The inverse constraint forces two arrays to be inverses of each other:
       the values of one are the indices of the other, and vice versa.
       
      .operations_research.sat.InverseConstraintProto inverse = 18;
      Specified by:
      getInverse in interface ConstraintProtoOrBuilder
      Returns:
      The inverse.
    • getInverseOrBuilder

      public InverseConstraintProtoOrBuilder getInverseOrBuilder()
       The inverse constraint forces two arrays to be inverses of each other:
       the values of one are the indices of the other, and vice versa.
       
      .operations_research.sat.InverseConstraintProto inverse = 18;
      Specified by:
      getInverseOrBuilder in interface ConstraintProtoOrBuilder
    • hasReservoir

      public boolean hasReservoir()
       The reservoir constraint forces the sum of a set of active demands
       to always be between a specified minimum and maximum value during
       specific times.
       
      .operations_research.sat.ReservoirConstraintProto reservoir = 24;
      Specified by:
      hasReservoir in interface ConstraintProtoOrBuilder
      Returns:
      Whether the reservoir field is set.
    • getReservoir

      public ReservoirConstraintProto getReservoir()
       The reservoir constraint forces the sum of a set of active demands
       to always be between a specified minimum and maximum value during
       specific times.
       
      .operations_research.sat.ReservoirConstraintProto reservoir = 24;
      Specified by:
      getReservoir in interface ConstraintProtoOrBuilder
      Returns:
      The reservoir.
    • getReservoirOrBuilder

      public ReservoirConstraintProtoOrBuilder getReservoirOrBuilder()
       The reservoir constraint forces the sum of a set of active demands
       to always be between a specified minimum and maximum value during
       specific times.
       
      .operations_research.sat.ReservoirConstraintProto reservoir = 24;
      Specified by:
      getReservoirOrBuilder in interface ConstraintProtoOrBuilder
    • hasInterval

      public boolean hasInterval()
       The interval constraint takes a start, end, and size, and forces
       start + size == end.
       
      .operations_research.sat.IntervalConstraintProto interval = 19;
      Specified by:
      hasInterval in interface ConstraintProtoOrBuilder
      Returns:
      Whether the interval field is set.
    • getInterval

      public IntervalConstraintProto getInterval()
       The interval constraint takes a start, end, and size, and forces
       start + size == end.
       
      .operations_research.sat.IntervalConstraintProto interval = 19;
      Specified by:
      getInterval in interface ConstraintProtoOrBuilder
      Returns:
      The interval.
    • getIntervalOrBuilder

      public IntervalConstraintProtoOrBuilder getIntervalOrBuilder()
       The interval constraint takes a start, end, and size, and forces
       start + size == end.
       
      .operations_research.sat.IntervalConstraintProto interval = 19;
      Specified by:
      getIntervalOrBuilder in interface ConstraintProtoOrBuilder
    • hasNoOverlap

      public boolean hasNoOverlap()
       The no_overlap constraint prevents a set of intervals from
       overlapping; in scheduling, this is called a disjunctive
       constraint.
       
      .operations_research.sat.NoOverlapConstraintProto no_overlap = 20;
      Specified by:
      hasNoOverlap in interface ConstraintProtoOrBuilder
      Returns:
      Whether the noOverlap field is set.
    • getNoOverlap

      public NoOverlapConstraintProto getNoOverlap()
       The no_overlap constraint prevents a set of intervals from
       overlapping; in scheduling, this is called a disjunctive
       constraint.
       
      .operations_research.sat.NoOverlapConstraintProto no_overlap = 20;
      Specified by:
      getNoOverlap in interface ConstraintProtoOrBuilder
      Returns:
      The noOverlap.
    • getNoOverlapOrBuilder

      public NoOverlapConstraintProtoOrBuilder getNoOverlapOrBuilder()
       The no_overlap constraint prevents a set of intervals from
       overlapping; in scheduling, this is called a disjunctive
       constraint.
       
      .operations_research.sat.NoOverlapConstraintProto no_overlap = 20;
      Specified by:
      getNoOverlapOrBuilder in interface ConstraintProtoOrBuilder
    • hasNoOverlap2D

      public boolean hasNoOverlap2D()
       The no_overlap_2d constraint prevents a set of boxes from overlapping.
       
      .operations_research.sat.NoOverlap2DConstraintProto no_overlap_2d = 21;
      Specified by:
      hasNoOverlap2D in interface ConstraintProtoOrBuilder
      Returns:
      Whether the noOverlap2d field is set.
    • getNoOverlap2D

      public NoOverlap2DConstraintProto getNoOverlap2D()
       The no_overlap_2d constraint prevents a set of boxes from overlapping.
       
      .operations_research.sat.NoOverlap2DConstraintProto no_overlap_2d = 21;
      Specified by:
      getNoOverlap2D in interface ConstraintProtoOrBuilder
      Returns:
      The noOverlap2d.
    • getNoOverlap2DOrBuilder

      public NoOverlap2DConstraintProtoOrBuilder getNoOverlap2DOrBuilder()
       The no_overlap_2d constraint prevents a set of boxes from overlapping.
       
      .operations_research.sat.NoOverlap2DConstraintProto no_overlap_2d = 21;
      Specified by:
      getNoOverlap2DOrBuilder in interface ConstraintProtoOrBuilder
    • hasCumulative

      public boolean hasCumulative()
       The cumulative constraint ensures that for any integer point, the sum
       of the demands of the intervals containing that point does not exceed
       the capacity.
       
      .operations_research.sat.CumulativeConstraintProto cumulative = 22;
      Specified by:
      hasCumulative in interface ConstraintProtoOrBuilder
      Returns:
      Whether the cumulative field is set.
    • getCumulative

      public CumulativeConstraintProto getCumulative()
       The cumulative constraint ensures that for any integer point, the sum
       of the demands of the intervals containing that point does not exceed
       the capacity.
       
      .operations_research.sat.CumulativeConstraintProto cumulative = 22;
      Specified by:
      getCumulative in interface ConstraintProtoOrBuilder
      Returns:
      The cumulative.
    • getCumulativeOrBuilder

      public CumulativeConstraintProtoOrBuilder getCumulativeOrBuilder()
       The cumulative constraint ensures that for any integer point, the sum
       of the demands of the intervals containing that point does not exceed
       the capacity.
       
      .operations_research.sat.CumulativeConstraintProto cumulative = 22;
      Specified by:
      getCumulativeOrBuilder in interface ConstraintProtoOrBuilder
    • hasDummyConstraint

      public boolean hasDummyConstraint()
       This constraint is not meant to be used and will be rejected by the
       solver. It is meant to mark variable when testing the presolve code.
       
      .operations_research.sat.ListOfVariablesProto dummy_constraint = 30;
      Specified by:
      hasDummyConstraint in interface ConstraintProtoOrBuilder
      Returns:
      Whether the dummyConstraint field is set.
    • getDummyConstraint

      public ListOfVariablesProto getDummyConstraint()
       This constraint is not meant to be used and will be rejected by the
       solver. It is meant to mark variable when testing the presolve code.
       
      .operations_research.sat.ListOfVariablesProto dummy_constraint = 30;
      Specified by:
      getDummyConstraint in interface ConstraintProtoOrBuilder
      Returns:
      The dummyConstraint.
    • getDummyConstraintOrBuilder

      public ListOfVariablesProtoOrBuilder getDummyConstraintOrBuilder()
       This constraint is not meant to be used and will be rejected by the
       solver. It is meant to mark variable when testing the presolve code.
       
      .operations_research.sat.ListOfVariablesProto dummy_constraint = 30;
      Specified by:
      getDummyConstraintOrBuilder in interface ConstraintProtoOrBuilder
    • isInitialized

      public final boolean isInitialized()
      Specified by:
      isInitialized in interface com.google.protobuf.MessageLiteOrBuilder
      Overrides:
      isInitialized in class com.google.protobuf.GeneratedMessage
    • writeTo

      public void writeTo(com.google.protobuf.CodedOutputStream output) throws IOException
      Specified by:
      writeTo in interface com.google.protobuf.MessageLite
      Overrides:
      writeTo in class com.google.protobuf.GeneratedMessage
      Throws:
      IOException
    • getSerializedSize

      public int getSerializedSize()
      Specified by:
      getSerializedSize in interface com.google.protobuf.MessageLite
      Overrides:
      getSerializedSize in class com.google.protobuf.GeneratedMessage
    • equals

      public boolean equals(Object obj)
      Specified by:
      equals in interface com.google.protobuf.Message
      Overrides:
      equals in class com.google.protobuf.AbstractMessage
    • hashCode

      public int hashCode()
      Specified by:
      hashCode in interface com.google.protobuf.Message
      Overrides:
      hashCode in class com.google.protobuf.AbstractMessage
    • parseFrom

      public static ConstraintProto parseFrom(ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException
      Throws:
      com.google.protobuf.InvalidProtocolBufferException
    • parseFrom

      public static ConstraintProto parseFrom(ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException
      Throws:
      com.google.protobuf.InvalidProtocolBufferException
    • parseFrom

      public static ConstraintProto parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException
      Throws:
      com.google.protobuf.InvalidProtocolBufferException
    • parseFrom

      public static ConstraintProto parseFrom(com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException
      Throws:
      com.google.protobuf.InvalidProtocolBufferException
    • parseFrom

      public static ConstraintProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException
      Throws:
      com.google.protobuf.InvalidProtocolBufferException
    • parseFrom

      public static ConstraintProto parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException
      Throws:
      com.google.protobuf.InvalidProtocolBufferException
    • parseFrom

      public static ConstraintProto parseFrom(InputStream input) throws IOException
      Throws:
      IOException
    • parseFrom

      public static ConstraintProto parseFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
      Throws:
      IOException
    • parseDelimitedFrom

      public static ConstraintProto parseDelimitedFrom(InputStream input) throws IOException
      Throws:
      IOException
    • parseDelimitedFrom

      public static ConstraintProto parseDelimitedFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
      Throws:
      IOException
    • parseFrom

      public static ConstraintProto parseFrom(com.google.protobuf.CodedInputStream input) throws IOException
      Throws:
      IOException
    • parseFrom

      public static ConstraintProto parseFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
      Throws:
      IOException
    • newBuilderForType

      public ConstraintProto.Builder newBuilderForType()
      Specified by:
      newBuilderForType in interface com.google.protobuf.Message
      Specified by:
      newBuilderForType in interface com.google.protobuf.MessageLite
    • newBuilder

      public static ConstraintProto.Builder newBuilder()
    • newBuilder

      public static ConstraintProto.Builder newBuilder(ConstraintProto prototype)
    • toBuilder

      public ConstraintProto.Builder toBuilder()
      Specified by:
      toBuilder in interface com.google.protobuf.Message
      Specified by:
      toBuilder in interface com.google.protobuf.MessageLite
    • newBuilderForType

      protected ConstraintProto.Builder newBuilderForType(com.google.protobuf.AbstractMessage.BuilderParent parent)
      Overrides:
      newBuilderForType in class com.google.protobuf.AbstractMessage
    • getDefaultInstance

      public static ConstraintProto getDefaultInstance()
    • parser

      public static com.google.protobuf.Parser<ConstraintProto> parser()
    • getParserForType

      public com.google.protobuf.Parser<ConstraintProto> getParserForType()
      Specified by:
      getParserForType in interface com.google.protobuf.Message
      Specified by:
      getParserForType in interface com.google.protobuf.MessageLite
      Overrides:
      getParserForType in class com.google.protobuf.GeneratedMessage
    • getDefaultInstanceForType

      public ConstraintProto getDefaultInstanceForType()
      Specified by:
      getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuilder
      Specified by:
      getDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilder