public interface QuadraticProgramStatsOrBuilder
extends com.google.protobuf.MessageOrBuilder
Modifier and Type | Method and Description |
---|---|
double |
getCombinedBoundsAvg()
optional double combined_bounds_avg = 11; |
double |
getCombinedBoundsL2Norm()
optional double combined_bounds_l2_norm = 24; |
double |
getCombinedBoundsMax()
Statistics of the combined vector of the constraint lower and upper bounds.
|
double |
getCombinedBoundsMin()
optional double combined_bounds_min = 10; |
double |
getCombinedVariableBoundsAvg()
optional double combined_variable_bounds_avg = 30; |
double |
getCombinedVariableBoundsL2Norm()
optional double combined_variable_bounds_l2_norm = 31; |
double |
getCombinedVariableBoundsMax()
Statistics of the combined vector of the variable lower and upper bounds.
|
double |
getCombinedVariableBoundsMin()
optional double combined_variable_bounds_min = 29; |
double |
getConstraintMatrixAbsAvg()
optional double constraint_matrix_abs_avg = 8; |
double |
getConstraintMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of (finite) elements in constraint
matrix.
|
double |
getConstraintMatrixAbsMin()
optional double constraint_matrix_abs_min = 7; |
double |
getConstraintMatrixColMinLInfNorm()
Minimum row and column infinity norms of the constraint matrix.
|
double |
getConstraintMatrixL2Norm()
optional double constraint_matrix_l2_norm = 25; |
long |
getConstraintMatrixNumNonzeros()
The number of (finite) nonzero entries in the constraint matrix.
|
double |
getConstraintMatrixRowMinLInfNorm()
optional double constraint_matrix_row_min_l_inf_norm = 4; |
long |
getNumConstraints()
optional int64 num_constraints = 2; |
long |
getNumVariables()
optional int64 num_variables = 1; |
double |
getObjectiveMatrixAbsAvg()
optional double objective_matrix_abs_avg = 22; |
double |
getObjectiveMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of elements of the objective
matrix.
|
double |
getObjectiveMatrixAbsMin()
optional double objective_matrix_abs_min = 21; |
double |
getObjectiveMatrixL2Norm()
optional double objective_matrix_l2_norm = 27; |
long |
getObjectiveMatrixNumNonzeros()
optional int64 objective_matrix_num_nonzeros = 19; |
double |
getObjectiveVectorAbsAvg()
optional double objective_vector_abs_avg = 18; |
double |
getObjectiveVectorAbsMax()
Statistics of the objective vector.
|
double |
getObjectiveVectorAbsMin()
optional double objective_vector_abs_min = 17; |
double |
getObjectiveVectorL2Norm()
optional double objective_vector_l2_norm = 23; |
double |
getVariableBoundGapsAvg()
optional double variable_bound_gaps_avg = 15; |
double |
getVariableBoundGapsL2Norm()
optional double variable_bound_gaps_l2_norm = 26; |
double |
getVariableBoundGapsMax()
Max/min/mean/l2_norm over all finite variable bound gaps.
|
double |
getVariableBoundGapsMin()
optional double variable_bound_gaps_min = 14; |
long |
getVariableBoundGapsNumFinite()
Number of finite variable bound gaps, which are the elementwise difference
between the upper and lower bounds on primal feasible solutions.
|
boolean |
hasCombinedBoundsAvg()
optional double combined_bounds_avg = 11; |
boolean |
hasCombinedBoundsL2Norm()
optional double combined_bounds_l2_norm = 24; |
boolean |
hasCombinedBoundsMax()
Statistics of the combined vector of the constraint lower and upper bounds.
|
boolean |
hasCombinedBoundsMin()
optional double combined_bounds_min = 10; |
boolean |
hasCombinedVariableBoundsAvg()
optional double combined_variable_bounds_avg = 30; |
boolean |
hasCombinedVariableBoundsL2Norm()
optional double combined_variable_bounds_l2_norm = 31; |
boolean |
hasCombinedVariableBoundsMax()
Statistics of the combined vector of the variable lower and upper bounds.
|
boolean |
hasCombinedVariableBoundsMin()
optional double combined_variable_bounds_min = 29; |
boolean |
hasConstraintMatrixAbsAvg()
optional double constraint_matrix_abs_avg = 8; |
boolean |
hasConstraintMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of (finite) elements in constraint
matrix.
|
boolean |
hasConstraintMatrixAbsMin()
optional double constraint_matrix_abs_min = 7; |
boolean |
hasConstraintMatrixColMinLInfNorm()
Minimum row and column infinity norms of the constraint matrix.
|
boolean |
hasConstraintMatrixL2Norm()
optional double constraint_matrix_l2_norm = 25; |
boolean |
hasConstraintMatrixNumNonzeros()
The number of (finite) nonzero entries in the constraint matrix.
|
boolean |
hasConstraintMatrixRowMinLInfNorm()
optional double constraint_matrix_row_min_l_inf_norm = 4; |
boolean |
hasNumConstraints()
optional int64 num_constraints = 2; |
boolean |
hasNumVariables()
optional int64 num_variables = 1; |
boolean |
hasObjectiveMatrixAbsAvg()
optional double objective_matrix_abs_avg = 22; |
boolean |
hasObjectiveMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of elements of the objective
matrix.
|
boolean |
hasObjectiveMatrixAbsMin()
optional double objective_matrix_abs_min = 21; |
boolean |
hasObjectiveMatrixL2Norm()
optional double objective_matrix_l2_norm = 27; |
boolean |
hasObjectiveMatrixNumNonzeros()
optional int64 objective_matrix_num_nonzeros = 19; |
boolean |
hasObjectiveVectorAbsAvg()
optional double objective_vector_abs_avg = 18; |
boolean |
hasObjectiveVectorAbsMax()
Statistics of the objective vector.
|
boolean |
hasObjectiveVectorAbsMin()
optional double objective_vector_abs_min = 17; |
boolean |
hasObjectiveVectorL2Norm()
optional double objective_vector_l2_norm = 23; |
boolean |
hasVariableBoundGapsAvg()
optional double variable_bound_gaps_avg = 15; |
boolean |
hasVariableBoundGapsL2Norm()
optional double variable_bound_gaps_l2_norm = 26; |
boolean |
hasVariableBoundGapsMax()
Max/min/mean/l2_norm over all finite variable bound gaps.
|
boolean |
hasVariableBoundGapsMin()
optional double variable_bound_gaps_min = 14; |
boolean |
hasVariableBoundGapsNumFinite()
Number of finite variable bound gaps, which are the elementwise difference
between the upper and lower bounds on primal feasible solutions.
|
findInitializationErrors, getAllFields, getDefaultInstanceForType, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
boolean hasNumVariables()
optional int64 num_variables = 1;
long getNumVariables()
optional int64 num_variables = 1;
boolean hasNumConstraints()
optional int64 num_constraints = 2;
long getNumConstraints()
optional int64 num_constraints = 2;
boolean hasConstraintMatrixColMinLInfNorm()
Minimum row and column infinity norms of the constraint matrix. All-zero rows and columns are excluded. If the constraint matrix contains no nonzero entries, the values returned are 0.0.
optional double constraint_matrix_col_min_l_inf_norm = 3;
double getConstraintMatrixColMinLInfNorm()
Minimum row and column infinity norms of the constraint matrix. All-zero rows and columns are excluded. If the constraint matrix contains no nonzero entries, the values returned are 0.0.
optional double constraint_matrix_col_min_l_inf_norm = 3;
boolean hasConstraintMatrixRowMinLInfNorm()
optional double constraint_matrix_row_min_l_inf_norm = 4;
double getConstraintMatrixRowMinLInfNorm()
optional double constraint_matrix_row_min_l_inf_norm = 4;
boolean hasConstraintMatrixNumNonzeros()
The number of (finite) nonzero entries in the constraint matrix.
optional int64 constraint_matrix_num_nonzeros = 5;
long getConstraintMatrixNumNonzeros()
The number of (finite) nonzero entries in the constraint matrix.
optional int64 constraint_matrix_num_nonzeros = 5;
boolean hasConstraintMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of (finite) elements in constraint matrix. Explicit zeros are included in the mean, but excluded from the min. Note that the maximum absolute value is also equal to the maximal row and column infinity norms of the constraint matrix. If the constraint matrix is empty, the values returned are 0.0 for the maximum, minimum, and l2_norm, and NaN for the average.
optional double constraint_matrix_abs_max = 6;
double getConstraintMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of (finite) elements in constraint matrix. Explicit zeros are included in the mean, but excluded from the min. Note that the maximum absolute value is also equal to the maximal row and column infinity norms of the constraint matrix. If the constraint matrix is empty, the values returned are 0.0 for the maximum, minimum, and l2_norm, and NaN for the average.
optional double constraint_matrix_abs_max = 6;
boolean hasConstraintMatrixAbsMin()
optional double constraint_matrix_abs_min = 7;
double getConstraintMatrixAbsMin()
optional double constraint_matrix_abs_min = 7;
boolean hasConstraintMatrixAbsAvg()
optional double constraint_matrix_abs_avg = 8;
double getConstraintMatrixAbsAvg()
optional double constraint_matrix_abs_avg = 8;
boolean hasConstraintMatrixL2Norm()
optional double constraint_matrix_l2_norm = 25;
double getConstraintMatrixL2Norm()
optional double constraint_matrix_l2_norm = 25;
boolean hasCombinedBoundsMax()
Statistics of the combined vector of the constraint lower and upper bounds. Given parallel lower and upper bounds vectors, the "combined bounds" vector takes the maximum absolute value of each pair of bounds, ignoring all non- finite values. The comment in solvers.proto:TerminationCriteria provides an example of the combined bounds vector. The min is over the nonzero combined bounds. If there are no constraints, the values returned are 0 for the maximum, minimum, and l2 norm and NaN for the average.
optional double combined_bounds_max = 9;
double getCombinedBoundsMax()
Statistics of the combined vector of the constraint lower and upper bounds. Given parallel lower and upper bounds vectors, the "combined bounds" vector takes the maximum absolute value of each pair of bounds, ignoring all non- finite values. The comment in solvers.proto:TerminationCriteria provides an example of the combined bounds vector. The min is over the nonzero combined bounds. If there are no constraints, the values returned are 0 for the maximum, minimum, and l2 norm and NaN for the average.
optional double combined_bounds_max = 9;
boolean hasCombinedBoundsMin()
optional double combined_bounds_min = 10;
double getCombinedBoundsMin()
optional double combined_bounds_min = 10;
boolean hasCombinedBoundsAvg()
optional double combined_bounds_avg = 11;
double getCombinedBoundsAvg()
optional double combined_bounds_avg = 11;
boolean hasCombinedBoundsL2Norm()
optional double combined_bounds_l2_norm = 24;
double getCombinedBoundsL2Norm()
optional double combined_bounds_l2_norm = 24;
boolean hasCombinedVariableBoundsMax()
Statistics of the combined vector of the variable lower and upper bounds. See the comment before `combined_bounds_max` for a description of the "combined bounds" vector. The min is over the nonzero combined bounds. If there are no variables, the values returned are 0 for the maximum, minimum, and l2 norm and NaN for the average.
optional double combined_variable_bounds_max = 28;
double getCombinedVariableBoundsMax()
Statistics of the combined vector of the variable lower and upper bounds. See the comment before `combined_bounds_max` for a description of the "combined bounds" vector. The min is over the nonzero combined bounds. If there are no variables, the values returned are 0 for the maximum, minimum, and l2 norm and NaN for the average.
optional double combined_variable_bounds_max = 28;
boolean hasCombinedVariableBoundsMin()
optional double combined_variable_bounds_min = 29;
double getCombinedVariableBoundsMin()
optional double combined_variable_bounds_min = 29;
boolean hasCombinedVariableBoundsAvg()
optional double combined_variable_bounds_avg = 30;
double getCombinedVariableBoundsAvg()
optional double combined_variable_bounds_avg = 30;
boolean hasCombinedVariableBoundsL2Norm()
optional double combined_variable_bounds_l2_norm = 31;
double getCombinedVariableBoundsL2Norm()
optional double combined_variable_bounds_l2_norm = 31;
boolean hasVariableBoundGapsNumFinite()
Number of finite variable bound gaps, which are the elementwise difference between the upper and lower bounds on primal feasible solutions.
optional int64 variable_bound_gaps_num_finite = 12;
long getVariableBoundGapsNumFinite()
Number of finite variable bound gaps, which are the elementwise difference between the upper and lower bounds on primal feasible solutions.
optional int64 variable_bound_gaps_num_finite = 12;
boolean hasVariableBoundGapsMax()
Max/min/mean/l2_norm over all finite variable bound gaps. The min excludes zero bound gaps (i.e., fixed variables). When there are no finite gaps, the values returned are 0 for the maximum, minimum, and l2_norm, and NaN for the average.
optional double variable_bound_gaps_max = 13;
double getVariableBoundGapsMax()
Max/min/mean/l2_norm over all finite variable bound gaps. The min excludes zero bound gaps (i.e., fixed variables). When there are no finite gaps, the values returned are 0 for the maximum, minimum, and l2_norm, and NaN for the average.
optional double variable_bound_gaps_max = 13;
boolean hasVariableBoundGapsMin()
optional double variable_bound_gaps_min = 14;
double getVariableBoundGapsMin()
optional double variable_bound_gaps_min = 14;
boolean hasVariableBoundGapsAvg()
optional double variable_bound_gaps_avg = 15;
double getVariableBoundGapsAvg()
optional double variable_bound_gaps_avg = 15;
boolean hasVariableBoundGapsL2Norm()
optional double variable_bound_gaps_l2_norm = 26;
double getVariableBoundGapsL2Norm()
optional double variable_bound_gaps_l2_norm = 26;
boolean hasObjectiveVectorAbsMax()
Statistics of the objective vector. The min is over the nonzero terms.
optional double objective_vector_abs_max = 16;
double getObjectiveVectorAbsMax()
Statistics of the objective vector. The min is over the nonzero terms.
optional double objective_vector_abs_max = 16;
boolean hasObjectiveVectorAbsMin()
optional double objective_vector_abs_min = 17;
double getObjectiveVectorAbsMin()
optional double objective_vector_abs_min = 17;
boolean hasObjectiveVectorAbsAvg()
optional double objective_vector_abs_avg = 18;
double getObjectiveVectorAbsAvg()
optional double objective_vector_abs_avg = 18;
boolean hasObjectiveVectorL2Norm()
optional double objective_vector_l2_norm = 23;
double getObjectiveVectorL2Norm()
optional double objective_vector_l2_norm = 23;
boolean hasObjectiveMatrixNumNonzeros()
optional int64 objective_matrix_num_nonzeros = 19;
long getObjectiveMatrixNumNonzeros()
optional int64 objective_matrix_num_nonzeros = 19;
boolean hasObjectiveMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of elements of the objective matrix. The min is over nonzero terms. If the objective matrix is empty, the returned values are 0.0, 0.0, NaN, and 0.0 respectively.
optional double objective_matrix_abs_max = 20;
double getObjectiveMatrixAbsMax()
Max/min/mean/l2_norm of absolute values of elements of the objective matrix. The min is over nonzero terms. If the objective matrix is empty, the returned values are 0.0, 0.0, NaN, and 0.0 respectively.
optional double objective_matrix_abs_max = 20;
boolean hasObjectiveMatrixAbsMin()
optional double objective_matrix_abs_min = 21;
double getObjectiveMatrixAbsMin()
optional double objective_matrix_abs_min = 21;
boolean hasObjectiveMatrixAbsAvg()
optional double objective_matrix_abs_avg = 22;
double getObjectiveMatrixAbsAvg()
optional double objective_matrix_abs_avg = 22;
boolean hasObjectiveMatrixL2Norm()
optional double objective_matrix_l2_norm = 27;
double getObjectiveMatrixL2Norm()
optional double objective_matrix_l2_norm = 27;
Copyright © 2025. All rights reserved.