Class InfeasibilityInformation.Builder

java.lang.Object
com.google.protobuf.AbstractMessageLite.Builder
com.google.protobuf.AbstractMessage.Builder<InfeasibilityInformation.Builder>
com.google.protobuf.GeneratedMessage.Builder<InfeasibilityInformation.Builder>
com.google.ortools.pdlp.InfeasibilityInformation.Builder
All Implemented Interfaces:
InfeasibilityInformationOrBuilder, com.google.protobuf.Message.Builder, com.google.protobuf.MessageLite.Builder, com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder, Cloneable
Enclosing class:
InfeasibilityInformation

public static final class InfeasibilityInformation.Builder extends com.google.protobuf.GeneratedMessage.Builder<InfeasibilityInformation.Builder> implements InfeasibilityInformationOrBuilder
 Information measuring how close a point is to establishing primal or dual
 infeasibility (i.e. has no solution); see also TerminationCriteria.
 
Protobuf type operations_research.pdlp.InfeasibilityInformation
  • Method Summary

    Modifier and Type
    Method
    Description
     
     
     
    Type of the point used to compute the InfeasibilityInformation.
    The objective of the linear program labeled (1) in the previous paragraph.
    Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable constraints) scaled such that its infinity norm is one.
    Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray is a vector that satisfies the sign constraints for a ray, scaled such that its infinity norm is one (the sign constraints are the variable bound constraints, with all finite bounds mapped to zero).
    The value of the linear part of the primal objective (ignoring additive constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective coefficient vector.
    The l_∞ norm of the vector resulting from taking the quadratic matrix from primal objective and multiplying it by the primal variables.
    Type of the point used to compute the InfeasibilityInformation.
     
    static final com.google.protobuf.Descriptors.Descriptor
     
    com.google.protobuf.Descriptors.Descriptor
     
    double
    The objective of the linear program labeled (1) in the previous paragraph.
    double
    Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable constraints) scaled such that its infinity norm is one.
    double
    Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray is a vector that satisfies the sign constraints for a ray, scaled such that its infinity norm is one (the sign constraints are the variable bound constraints, with all finite bounds mapped to zero).
    double
    The value of the linear part of the primal objective (ignoring additive constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective coefficient vector.
    double
    The l_∞ norm of the vector resulting from taking the quadratic matrix from primal objective and multiplying it by the primal variables.
    boolean
    Type of the point used to compute the InfeasibilityInformation.
    boolean
    The objective of the linear program labeled (1) in the previous paragraph.
    boolean
    Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable constraints) scaled such that its infinity norm is one.
    boolean
    Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray is a vector that satisfies the sign constraints for a ray, scaled such that its infinity norm is one (the sign constraints are the variable bound constraints, with all finite bounds mapped to zero).
    boolean
    The value of the linear part of the primal objective (ignoring additive constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective coefficient vector.
    boolean
    The l_∞ norm of the vector resulting from taking the quadratic matrix from primal objective and multiplying it by the primal variables.
    protected com.google.protobuf.GeneratedMessage.FieldAccessorTable
     
    final boolean
     
     
    mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
     
    mergeFrom(com.google.protobuf.Message other)
     
    Type of the point used to compute the InfeasibilityInformation.
    setDualRayObjective(double value)
    The objective of the linear program labeled (1) in the previous paragraph.
    Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable constraints) scaled such that its infinity norm is one.
    Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray is a vector that satisfies the sign constraints for a ray, scaled such that its infinity norm is one (the sign constraints are the variable bound constraints, with all finite bounds mapped to zero).
    The value of the linear part of the primal objective (ignoring additive constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective coefficient vector.
    The l_∞ norm of the vector resulting from taking the quadratic matrix from primal objective and multiplying it by the primal variables.

    Methods inherited from class com.google.protobuf.GeneratedMessage.Builder

    addRepeatedField, clearField, clearOneof, clone, getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMapFieldReflection, internalGetMutableMapField, internalGetMutableMapFieldReflection, isClean, markClean, mergeUnknownFields, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setField, setRepeatedField, setUnknownFields, setUnknownFieldSetBuilder, setUnknownFieldsProto3

    Methods inherited from class com.google.protobuf.AbstractMessage.Builder

    findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString

    Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder

    addAll, addAll, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, newUninitializedMessageException

    Methods inherited from class java.lang.Object

    equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

    Methods inherited from interface com.google.protobuf.Message.Builder

    mergeDelimitedFrom, mergeDelimitedFrom

    Methods inherited from interface com.google.protobuf.MessageLite.Builder

    mergeFrom

    Methods inherited from interface com.google.protobuf.MessageOrBuilder

    findInitializationErrors, getAllFields, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
  • Method Details

    • getDescriptor

      public static final com.google.protobuf.Descriptors.Descriptor getDescriptor()
    • internalGetFieldAccessorTable

      protected com.google.protobuf.GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable()
      Specified by:
      internalGetFieldAccessorTable in class com.google.protobuf.GeneratedMessage.Builder<InfeasibilityInformation.Builder>
    • clear

      Specified by:
      clear in interface com.google.protobuf.Message.Builder
      Specified by:
      clear in interface com.google.protobuf.MessageLite.Builder
      Overrides:
      clear in class com.google.protobuf.GeneratedMessage.Builder<InfeasibilityInformation.Builder>
    • getDescriptorForType

      public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()
      Specified by:
      getDescriptorForType in interface com.google.protobuf.Message.Builder
      Specified by:
      getDescriptorForType in interface com.google.protobuf.MessageOrBuilder
      Overrides:
      getDescriptorForType in class com.google.protobuf.GeneratedMessage.Builder<InfeasibilityInformation.Builder>
    • getDefaultInstanceForType

      public InfeasibilityInformation getDefaultInstanceForType()
      Specified by:
      getDefaultInstanceForType in interface com.google.protobuf.MessageLiteOrBuilder
      Specified by:
      getDefaultInstanceForType in interface com.google.protobuf.MessageOrBuilder
    • build

      public InfeasibilityInformation build()
      Specified by:
      build in interface com.google.protobuf.Message.Builder
      Specified by:
      build in interface com.google.protobuf.MessageLite.Builder
    • buildPartial

      public InfeasibilityInformation buildPartial()
      Specified by:
      buildPartial in interface com.google.protobuf.Message.Builder
      Specified by:
      buildPartial in interface com.google.protobuf.MessageLite.Builder
    • mergeFrom

      public InfeasibilityInformation.Builder mergeFrom(com.google.protobuf.Message other)
      Specified by:
      mergeFrom in interface com.google.protobuf.Message.Builder
      Overrides:
      mergeFrom in class com.google.protobuf.AbstractMessage.Builder<InfeasibilityInformation.Builder>
    • mergeFrom

    • isInitialized

      public final boolean isInitialized()
      Specified by:
      isInitialized in interface com.google.protobuf.MessageLiteOrBuilder
      Overrides:
      isInitialized in class com.google.protobuf.GeneratedMessage.Builder<InfeasibilityInformation.Builder>
    • mergeFrom

      public InfeasibilityInformation.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException
      Specified by:
      mergeFrom in interface com.google.protobuf.Message.Builder
      Specified by:
      mergeFrom in interface com.google.protobuf.MessageLite.Builder
      Overrides:
      mergeFrom in class com.google.protobuf.AbstractMessage.Builder<InfeasibilityInformation.Builder>
      Throws:
      IOException
    • hasMaxPrimalRayInfeasibility

      public boolean hasMaxPrimalRayInfeasibility()
       Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray
       is a vector that satisfies the sign constraints for a ray, scaled such that
       its infinity norm is one (the sign constraints are the variable bound
       constraints, with all finite bounds mapped to zero). A simple and typical
       choice of x_ray is x_ray = x / | x |_∞ where x is the current primal
       iterate projected onto the primal ray sign constraints. For this value
       compute the maximum absolute error in the primal linear program with the
       right hand side set to zero.
       
      optional double max_primal_ray_infeasibility = 1;
      Specified by:
      hasMaxPrimalRayInfeasibility in interface InfeasibilityInformationOrBuilder
      Returns:
      Whether the maxPrimalRayInfeasibility field is set.
    • getMaxPrimalRayInfeasibility

      public double getMaxPrimalRayInfeasibility()
       Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray
       is a vector that satisfies the sign constraints for a ray, scaled such that
       its infinity norm is one (the sign constraints are the variable bound
       constraints, with all finite bounds mapped to zero). A simple and typical
       choice of x_ray is x_ray = x / | x |_∞ where x is the current primal
       iterate projected onto the primal ray sign constraints. For this value
       compute the maximum absolute error in the primal linear program with the
       right hand side set to zero.
       
      optional double max_primal_ray_infeasibility = 1;
      Specified by:
      getMaxPrimalRayInfeasibility in interface InfeasibilityInformationOrBuilder
      Returns:
      The maxPrimalRayInfeasibility.
    • setMaxPrimalRayInfeasibility

      public InfeasibilityInformation.Builder setMaxPrimalRayInfeasibility(double value)
       Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray
       is a vector that satisfies the sign constraints for a ray, scaled such that
       its infinity norm is one (the sign constraints are the variable bound
       constraints, with all finite bounds mapped to zero). A simple and typical
       choice of x_ray is x_ray = x / | x |_∞ where x is the current primal
       iterate projected onto the primal ray sign constraints. For this value
       compute the maximum absolute error in the primal linear program with the
       right hand side set to zero.
       
      optional double max_primal_ray_infeasibility = 1;
      Parameters:
      value - The maxPrimalRayInfeasibility to set.
      Returns:
      This builder for chaining.
    • clearMaxPrimalRayInfeasibility

      public InfeasibilityInformation.Builder clearMaxPrimalRayInfeasibility()
       Let x_ray be the algorithm's estimate of the primal extreme ray where x_ray
       is a vector that satisfies the sign constraints for a ray, scaled such that
       its infinity norm is one (the sign constraints are the variable bound
       constraints, with all finite bounds mapped to zero). A simple and typical
       choice of x_ray is x_ray = x / | x |_∞ where x is the current primal
       iterate projected onto the primal ray sign constraints. For this value
       compute the maximum absolute error in the primal linear program with the
       right hand side set to zero.
       
      optional double max_primal_ray_infeasibility = 1;
      Returns:
      This builder for chaining.
    • hasPrimalRayLinearObjective

      public boolean hasPrimalRayLinearObjective()
       The value of the linear part of the primal objective (ignoring additive
       constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective
       coefficient vector.
       
      optional double primal_ray_linear_objective = 2;
      Specified by:
      hasPrimalRayLinearObjective in interface InfeasibilityInformationOrBuilder
      Returns:
      Whether the primalRayLinearObjective field is set.
    • getPrimalRayLinearObjective

      public double getPrimalRayLinearObjective()
       The value of the linear part of the primal objective (ignoring additive
       constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective
       coefficient vector.
       
      optional double primal_ray_linear_objective = 2;
      Specified by:
      getPrimalRayLinearObjective in interface InfeasibilityInformationOrBuilder
      Returns:
      The primalRayLinearObjective.
    • setPrimalRayLinearObjective

      public InfeasibilityInformation.Builder setPrimalRayLinearObjective(double value)
       The value of the linear part of the primal objective (ignoring additive
       constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective
       coefficient vector.
       
      optional double primal_ray_linear_objective = 2;
      Parameters:
      value - The primalRayLinearObjective to set.
      Returns:
      This builder for chaining.
    • clearPrimalRayLinearObjective

      public InfeasibilityInformation.Builder clearPrimalRayLinearObjective()
       The value of the linear part of the primal objective (ignoring additive
       constants) evaluated at x_ray, i.e., c' * x_ray where c is the objective
       coefficient vector.
       
      optional double primal_ray_linear_objective = 2;
      Returns:
      This builder for chaining.
    • hasPrimalRayQuadraticNorm

      public boolean hasPrimalRayQuadraticNorm()
       The l_∞ norm of the vector resulting from taking the quadratic matrix from
       primal objective and multiplying it by the primal variables. For linear
       programming problems this is zero.
       
      optional double primal_ray_quadratic_norm = 3;
      Specified by:
      hasPrimalRayQuadraticNorm in interface InfeasibilityInformationOrBuilder
      Returns:
      Whether the primalRayQuadraticNorm field is set.
    • getPrimalRayQuadraticNorm

      public double getPrimalRayQuadraticNorm()
       The l_∞ norm of the vector resulting from taking the quadratic matrix from
       primal objective and multiplying it by the primal variables. For linear
       programming problems this is zero.
       
      optional double primal_ray_quadratic_norm = 3;
      Specified by:
      getPrimalRayQuadraticNorm in interface InfeasibilityInformationOrBuilder
      Returns:
      The primalRayQuadraticNorm.
    • setPrimalRayQuadraticNorm

      public InfeasibilityInformation.Builder setPrimalRayQuadraticNorm(double value)
       The l_∞ norm of the vector resulting from taking the quadratic matrix from
       primal objective and multiplying it by the primal variables. For linear
       programming problems this is zero.
       
      optional double primal_ray_quadratic_norm = 3;
      Parameters:
      value - The primalRayQuadraticNorm to set.
      Returns:
      This builder for chaining.
    • clearPrimalRayQuadraticNorm

      public InfeasibilityInformation.Builder clearPrimalRayQuadraticNorm()
       The l_∞ norm of the vector resulting from taking the quadratic matrix from
       primal objective and multiplying it by the primal variables. For linear
       programming problems this is zero.
       
      optional double primal_ray_quadratic_norm = 3;
      Returns:
      This builder for chaining.
    • hasMaxDualRayInfeasibility

      public boolean hasMaxDualRayInfeasibility()
       Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost
       extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable
       constraints) scaled such that its infinity norm is one. A simple and
       typical choice of y_ray is (y_ray, r_ray) = (y, r) / max(| y |_∞, | r |_∞)
       where y is the current dual iterate and r is the current dual reduced
       costs. Consider the quadratic program we are solving but with the objective
       (both quadratic and linear terms) set to zero. This forms a linear program
       (label this linear program (1)) with no objective. Take the dual of (1) and
       compute the maximum absolute value of the constraint error for
       (y_ray, r_ray) to obtain the value of max_dual_ray_infeasibility.
       
      optional double max_dual_ray_infeasibility = 4;
      Specified by:
      hasMaxDualRayInfeasibility in interface InfeasibilityInformationOrBuilder
      Returns:
      Whether the maxDualRayInfeasibility field is set.
    • getMaxDualRayInfeasibility

      public double getMaxDualRayInfeasibility()
       Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost
       extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable
       constraints) scaled such that its infinity norm is one. A simple and
       typical choice of y_ray is (y_ray, r_ray) = (y, r) / max(| y |_∞, | r |_∞)
       where y is the current dual iterate and r is the current dual reduced
       costs. Consider the quadratic program we are solving but with the objective
       (both quadratic and linear terms) set to zero. This forms a linear program
       (label this linear program (1)) with no objective. Take the dual of (1) and
       compute the maximum absolute value of the constraint error for
       (y_ray, r_ray) to obtain the value of max_dual_ray_infeasibility.
       
      optional double max_dual_ray_infeasibility = 4;
      Specified by:
      getMaxDualRayInfeasibility in interface InfeasibilityInformationOrBuilder
      Returns:
      The maxDualRayInfeasibility.
    • setMaxDualRayInfeasibility

      public InfeasibilityInformation.Builder setMaxDualRayInfeasibility(double value)
       Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost
       extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable
       constraints) scaled such that its infinity norm is one. A simple and
       typical choice of y_ray is (y_ray, r_ray) = (y, r) / max(| y |_∞, | r |_∞)
       where y is the current dual iterate and r is the current dual reduced
       costs. Consider the quadratic program we are solving but with the objective
       (both quadratic and linear terms) set to zero. This forms a linear program
       (label this linear program (1)) with no objective. Take the dual of (1) and
       compute the maximum absolute value of the constraint error for
       (y_ray, r_ray) to obtain the value of max_dual_ray_infeasibility.
       
      optional double max_dual_ray_infeasibility = 4;
      Parameters:
      value - The maxDualRayInfeasibility to set.
      Returns:
      This builder for chaining.
    • clearMaxDualRayInfeasibility

      public InfeasibilityInformation.Builder clearMaxDualRayInfeasibility()
       Let (y_ray, r_ray) be the algorithm's estimate of the dual and reduced cost
       extreme ray where (y_ray, r_ray) is a vector (satisfying the dual variable
       constraints) scaled such that its infinity norm is one. A simple and
       typical choice of y_ray is (y_ray, r_ray) = (y, r) / max(| y |_∞, | r |_∞)
       where y is the current dual iterate and r is the current dual reduced
       costs. Consider the quadratic program we are solving but with the objective
       (both quadratic and linear terms) set to zero. This forms a linear program
       (label this linear program (1)) with no objective. Take the dual of (1) and
       compute the maximum absolute value of the constraint error for
       (y_ray, r_ray) to obtain the value of max_dual_ray_infeasibility.
       
      optional double max_dual_ray_infeasibility = 4;
      Returns:
      This builder for chaining.
    • hasDualRayObjective

      public boolean hasDualRayObjective()
       The objective of the linear program labeled (1) in the previous paragraph.
       
      optional double dual_ray_objective = 5;
      Specified by:
      hasDualRayObjective in interface InfeasibilityInformationOrBuilder
      Returns:
      Whether the dualRayObjective field is set.
    • getDualRayObjective

      public double getDualRayObjective()
       The objective of the linear program labeled (1) in the previous paragraph.
       
      optional double dual_ray_objective = 5;
      Specified by:
      getDualRayObjective in interface InfeasibilityInformationOrBuilder
      Returns:
      The dualRayObjective.
    • setDualRayObjective

      public InfeasibilityInformation.Builder setDualRayObjective(double value)
       The objective of the linear program labeled (1) in the previous paragraph.
       
      optional double dual_ray_objective = 5;
      Parameters:
      value - The dualRayObjective to set.
      Returns:
      This builder for chaining.
    • clearDualRayObjective

      public InfeasibilityInformation.Builder clearDualRayObjective()
       The objective of the linear program labeled (1) in the previous paragraph.
       
      optional double dual_ray_objective = 5;
      Returns:
      This builder for chaining.
    • hasCandidateType

      public boolean hasCandidateType()
       Type of the point used to compute the InfeasibilityInformation.
       
      optional .operations_research.pdlp.PointType candidate_type = 6;
      Specified by:
      hasCandidateType in interface InfeasibilityInformationOrBuilder
      Returns:
      Whether the candidateType field is set.
    • getCandidateType

      public PointType getCandidateType()
       Type of the point used to compute the InfeasibilityInformation.
       
      optional .operations_research.pdlp.PointType candidate_type = 6;
      Specified by:
      getCandidateType in interface InfeasibilityInformationOrBuilder
      Returns:
      The candidateType.
    • setCandidateType

      public InfeasibilityInformation.Builder setCandidateType(PointType value)
       Type of the point used to compute the InfeasibilityInformation.
       
      optional .operations_research.pdlp.PointType candidate_type = 6;
      Parameters:
      value - The candidateType to set.
      Returns:
      This builder for chaining.
    • clearCandidateType

      public InfeasibilityInformation.Builder clearCandidateType()
       Type of the point used to compute the InfeasibilityInformation.
       
      optional .operations_research.pdlp.PointType candidate_type = 6;
      Returns:
      This builder for chaining.