Interface RoutingSearchParametersOrBuilder

All Superinterfaces:
com.google.protobuf.MessageLiteOrBuilder, com.google.protobuf.MessageOrBuilder
All Known Implementing Classes:
RoutingSearchParameters, RoutingSearchParameters.Builder

@Generated public interface RoutingSearchParametersOrBuilder extends com.google.protobuf.MessageOrBuilder
  • Method Details

    • getFirstSolutionStrategyValue

      int getFirstSolutionStrategyValue()
       First solution strategies, used as starting point of local search.
       
      .operations_research.FirstSolutionStrategy.Value first_solution_strategy = 1;
      Returns:
      The enum numeric value on the wire for firstSolutionStrategy.
    • getFirstSolutionStrategy

      FirstSolutionStrategy.Value getFirstSolutionStrategy()
       First solution strategies, used as starting point of local search.
       
      .operations_research.FirstSolutionStrategy.Value first_solution_strategy = 1;
      Returns:
      The firstSolutionStrategy.
    • getUseUnfilteredFirstSolutionStrategy

      boolean getUseUnfilteredFirstSolutionStrategy()
       --- Advanced first solutions strategy settings ---
       Don't touch these unless you know what you are doing.
      
       Use filtered version of first solution strategy if available.
       
      bool use_unfiltered_first_solution_strategy = 2;
      Returns:
      The useUnfilteredFirstSolutionStrategy.
    • getSavingsNeighborsRatio

      double getSavingsNeighborsRatio()
       Parameters specific to the Savings first solution heuristic.
       Ratio (in ]0, 1]) of neighbors to consider for each node when constructing
       the savings. If unspecified, its value is considered to be 1.0.
       
      double savings_neighbors_ratio = 14;
      Returns:
      The savingsNeighborsRatio.
    • getSavingsMaxMemoryUsageBytes

      double getSavingsMaxMemoryUsageBytes()
       The number of neighbors considered for each node in the Savings heuristic
       is chosen so that the space used to store the savings doesn't exceed
       savings_max_memory_usage_bytes, which must be in ]0, 1e10].
       NOTE: If both savings_neighbors_ratio and savings_max_memory_usage_bytes
       are specified, the number of neighbors considered for each node will be the
       minimum of the two numbers determined by these parameters.
       
      double savings_max_memory_usage_bytes = 23;
      Returns:
      The savingsMaxMemoryUsageBytes.
    • getSavingsAddReverseArcs

      boolean getSavingsAddReverseArcs()
       Add savings related to reverse arcs when finding the nearest neighbors
       of the nodes.
       
      bool savings_add_reverse_arcs = 15;
      Returns:
      The savingsAddReverseArcs.
    • getSavingsArcCoefficient

      double getSavingsArcCoefficient()
       Coefficient of the cost of the arc for which the saving value is being
       computed:
       Saving(a-->b) = Cost(a-->end) + Cost(start-->b)
       - savings_arc_coefficient * Cost(a-->b)
       This parameter must be greater than 0, and its default value is 1.
       
      double savings_arc_coefficient = 18;
      Returns:
      The savingsArcCoefficient.
    • getCheapestInsertionFarthestSeedsRatio

      double getCheapestInsertionFarthestSeedsRatio()
       Ratio (between 0 and 1) of available vehicles in the model on which
       farthest nodes of the model are inserted as seeds in the
       GlobalCheapestInsertion first solution heuristic.
       
      double cheapest_insertion_farthest_seeds_ratio = 16;
      Returns:
      The cheapestInsertionFarthestSeedsRatio.
    • getCheapestInsertionFirstSolutionNeighborsRatio

      double getCheapestInsertionFirstSolutionNeighborsRatio()
       Ratio (in ]0, 1]) of closest non start/end nodes to consider as neighbors
       for each node when creating new insertions in the parallel/sequential
       cheapest insertion heuristic.
       If not overridden, its default value is 1, meaning all neighbors will be
       considered.
       The neighborhood ratio is coupled with the corresponding min_neighbors
       integer, indicating the minimum number of neighbors to consider for each
       node:
       num_closest_neighbors =
       max(min_neighbors, neighbors_ratio * NUM_NON_START_END_NODES)
       This minimum number of neighbors must be greater or equal to 1, its
       default value.
      
       Neighbors ratio and minimum number of neighbors for the first solution
       heuristic.
       
      double cheapest_insertion_first_solution_neighbors_ratio = 21;
      Returns:
      The cheapestInsertionFirstSolutionNeighborsRatio.
    • getCheapestInsertionFirstSolutionMinNeighbors

      int getCheapestInsertionFirstSolutionMinNeighbors()
      int32 cheapest_insertion_first_solution_min_neighbors = 44;
      Returns:
      The cheapestInsertionFirstSolutionMinNeighbors.
    • getCheapestInsertionLsOperatorNeighborsRatio

      double getCheapestInsertionLsOperatorNeighborsRatio()
       Neighbors ratio and minimum number of neighbors for the heuristic when used
       in a local search operator (see
       local_search_operators.use_global_cheapest_insertion_path_lns and
       local_search_operators.use_global_cheapest_insertion_chain_lns below).
       
      double cheapest_insertion_ls_operator_neighbors_ratio = 31;
      Returns:
      The cheapestInsertionLsOperatorNeighborsRatio.
    • getCheapestInsertionLsOperatorMinNeighbors

      int getCheapestInsertionLsOperatorMinNeighbors()
      int32 cheapest_insertion_ls_operator_min_neighbors = 45;
      Returns:
      The cheapestInsertionLsOperatorMinNeighbors.
    • getCheapestInsertionFirstSolutionUseNeighborsRatioForInitialization

      boolean getCheapestInsertionFirstSolutionUseNeighborsRatioForInitialization()
       Whether or not to only consider closest neighbors when initializing the
       assignment for the first solution.
       
      bool cheapest_insertion_first_solution_use_neighbors_ratio_for_initialization = 46;
      Returns:
      The cheapestInsertionFirstSolutionUseNeighborsRatioForInitialization.
    • getCheapestInsertionAddUnperformedEntries

      boolean getCheapestInsertionAddUnperformedEntries()
       Whether or not to consider entries making the nodes/pairs unperformed in
       the GlobalCheapestInsertion heuristic.
       
      bool cheapest_insertion_add_unperformed_entries = 40;
      Returns:
      The cheapestInsertionAddUnperformedEntries.
    • getLocalCheapestInsertionPickupDeliveryStrategyValue

      int getLocalCheapestInsertionPickupDeliveryStrategyValue()
       Choice of insertion strategy for pickup/delivery pairs, used in local
       cheapest insertion, both first solution heuristic and LNS.
       
      .operations_research.RoutingSearchParameters.PairInsertionStrategy local_cheapest_insertion_pickup_delivery_strategy = 49;
      Returns:
      The enum numeric value on the wire for localCheapestInsertionPickupDeliveryStrategy.
    • getLocalCheapestInsertionPickupDeliveryStrategy

      RoutingSearchParameters.PairInsertionStrategy getLocalCheapestInsertionPickupDeliveryStrategy()
       Choice of insertion strategy for pickup/delivery pairs, used in local
       cheapest insertion, both first solution heuristic and LNS.
       
      .operations_research.RoutingSearchParameters.PairInsertionStrategy local_cheapest_insertion_pickup_delivery_strategy = 49;
      Returns:
      The localCheapestInsertionPickupDeliveryStrategy.
    • getLocalCheapestCostInsertionPickupDeliveryStrategyValue

      int getLocalCheapestCostInsertionPickupDeliveryStrategyValue()
       Choice of insertion strategy for pickup/delivery pairs, used in local
       cheapest cost insertion, both first solution heuristic and LNS.
       
      .operations_research.RoutingSearchParameters.PairInsertionStrategy local_cheapest_cost_insertion_pickup_delivery_strategy = 55;
      Returns:
      The enum numeric value on the wire for localCheapestCostInsertionPickupDeliveryStrategy.
    • getLocalCheapestCostInsertionPickupDeliveryStrategy

      RoutingSearchParameters.PairInsertionStrategy getLocalCheapestCostInsertionPickupDeliveryStrategy()
       Choice of insertion strategy for pickup/delivery pairs, used in local
       cheapest cost insertion, both first solution heuristic and LNS.
       
      .operations_research.RoutingSearchParameters.PairInsertionStrategy local_cheapest_cost_insertion_pickup_delivery_strategy = 55;
      Returns:
      The localCheapestCostInsertionPickupDeliveryStrategy.
    • getLocalCheapestInsertionSortingPropertiesList

      List<RoutingSearchParameters.InsertionSortingProperty> getLocalCheapestInsertionSortingPropertiesList()
       The properties used to sort insertion entries in the local cheapest
       insertion heuristic, in *decreasing* order of priority. The properties
       listed here are applied hierarchically, from highest to lowest priority.
       When no properties are provided
       (SORTING_PROPERTY_ALLOWED_VEHICLES, SORTING_PROPERTY_PENALTY)
       is used by default.
       
      repeated .operations_research.RoutingSearchParameters.InsertionSortingProperty local_cheapest_insertion_sorting_properties = 67;
      Returns:
      A list containing the localCheapestInsertionSortingProperties.
    • getLocalCheapestInsertionSortingPropertiesCount

      int getLocalCheapestInsertionSortingPropertiesCount()
       The properties used to sort insertion entries in the local cheapest
       insertion heuristic, in *decreasing* order of priority. The properties
       listed here are applied hierarchically, from highest to lowest priority.
       When no properties are provided
       (SORTING_PROPERTY_ALLOWED_VEHICLES, SORTING_PROPERTY_PENALTY)
       is used by default.
       
      repeated .operations_research.RoutingSearchParameters.InsertionSortingProperty local_cheapest_insertion_sorting_properties = 67;
      Returns:
      The count of localCheapestInsertionSortingProperties.
    • getLocalCheapestInsertionSortingProperties

      RoutingSearchParameters.InsertionSortingProperty getLocalCheapestInsertionSortingProperties(int index)
       The properties used to sort insertion entries in the local cheapest
       insertion heuristic, in *decreasing* order of priority. The properties
       listed here are applied hierarchically, from highest to lowest priority.
       When no properties are provided
       (SORTING_PROPERTY_ALLOWED_VEHICLES, SORTING_PROPERTY_PENALTY)
       is used by default.
       
      repeated .operations_research.RoutingSearchParameters.InsertionSortingProperty local_cheapest_insertion_sorting_properties = 67;
      Parameters:
      index - The index of the element to return.
      Returns:
      The localCheapestInsertionSortingProperties at the given index.
    • getLocalCheapestInsertionSortingPropertiesValueList

      List<Integer> getLocalCheapestInsertionSortingPropertiesValueList()
       The properties used to sort insertion entries in the local cheapest
       insertion heuristic, in *decreasing* order of priority. The properties
       listed here are applied hierarchically, from highest to lowest priority.
       When no properties are provided
       (SORTING_PROPERTY_ALLOWED_VEHICLES, SORTING_PROPERTY_PENALTY)
       is used by default.
       
      repeated .operations_research.RoutingSearchParameters.InsertionSortingProperty local_cheapest_insertion_sorting_properties = 67;
      Returns:
      A list containing the enum numeric values on the wire for localCheapestInsertionSortingProperties.
    • getLocalCheapestInsertionSortingPropertiesValue

      int getLocalCheapestInsertionSortingPropertiesValue(int index)
       The properties used to sort insertion entries in the local cheapest
       insertion heuristic, in *decreasing* order of priority. The properties
       listed here are applied hierarchically, from highest to lowest priority.
       When no properties are provided
       (SORTING_PROPERTY_ALLOWED_VEHICLES, SORTING_PROPERTY_PENALTY)
       is used by default.
       
      repeated .operations_research.RoutingSearchParameters.InsertionSortingProperty local_cheapest_insertion_sorting_properties = 67;
      Parameters:
      index - The index of the value to return.
      Returns:
      The enum numeric value on the wire of localCheapestInsertionSortingProperties at the given index.
    • getChristofidesUseMinimumMatching

      boolean getChristofidesUseMinimumMatching()
       If true use minimum matching instead of minimal matching in the
       Christofides algorithm.
       
      bool christofides_use_minimum_matching = 30;
      Returns:
      The christofidesUseMinimumMatching.
    • getFirstSolutionOptimizationPeriod

      int getFirstSolutionOptimizationPeriod()
       If non zero, a period p indicates that every p node insertions or additions
       to a path, an optimization of the current partial solution will be
       performed. As of 12/2023:
       - this requires that a secondary routing model has been passed to the main
       one,
       - this is only supported by LOCAL_CHEAPEST_INSERTION and
       LOCAL_CHEAPEST_COST_INSERTION.
       
      int32 first_solution_optimization_period = 59;
      Returns:
      The firstSolutionOptimizationPeriod.
    • hasLocalSearchOperators

      boolean hasLocalSearchOperators()
      .operations_research.RoutingSearchParameters.LocalSearchNeighborhoodOperators local_search_operators = 3;
      Returns:
      Whether the localSearchOperators field is set.
    • getLocalSearchOperators

      .operations_research.RoutingSearchParameters.LocalSearchNeighborhoodOperators local_search_operators = 3;
      Returns:
      The localSearchOperators.
    • getLocalSearchOperatorsOrBuilder

      .operations_research.RoutingSearchParameters.LocalSearchNeighborhoodOperators local_search_operators = 3;
    • getLsOperatorNeighborsRatio

      double getLsOperatorNeighborsRatio()
       Neighbors ratio and minimum number of neighbors considered in local
       search operators (see cheapest_insertion_first_solution_neighbors_ratio
       and cheapest_insertion_first_solution_min_neighbors for more information).
       
      double ls_operator_neighbors_ratio = 53;
      Returns:
      The lsOperatorNeighborsRatio.
    • getLsOperatorMinNeighbors

      int getLsOperatorMinNeighbors()
      int32 ls_operator_min_neighbors = 54;
      Returns:
      The lsOperatorMinNeighbors.
    • getUseMultiArmedBanditConcatenateOperators

      boolean getUseMultiArmedBanditConcatenateOperators()
       If true, the solver will use multi-armed bandit concatenate operators. It
       dynamically chooses the next neighbor operator in order to get the best
       objective improvement.
       
      bool use_multi_armed_bandit_concatenate_operators = 41;
      Returns:
      The useMultiArmedBanditConcatenateOperators.
    • getMultiArmedBanditCompoundOperatorMemoryCoefficient

      double getMultiArmedBanditCompoundOperatorMemoryCoefficient()
       Memory coefficient related to the multi-armed bandit compound operator.
       Sets how much the objective improvement of previous accepted neighbors
       influence the current average improvement.
       This parameter should be between 0 and 1.
       
      double multi_armed_bandit_compound_operator_memory_coefficient = 42;
      Returns:
      The multiArmedBanditCompoundOperatorMemoryCoefficient.
    • getMultiArmedBanditCompoundOperatorExplorationCoefficient

      double getMultiArmedBanditCompoundOperatorExplorationCoefficient()
       Positive parameter defining the exploration coefficient of the multi-armed
       bandit compound operator. Sets how often we explore rarely used and
       unsuccessful in the past operators
       
      double multi_armed_bandit_compound_operator_exploration_coefficient = 43;
      Returns:
      The multiArmedBanditCompoundOperatorExplorationCoefficient.
    • getMaxSwapActiveChainSize

      int getMaxSwapActiveChainSize()
       Maximum size of the chain to make inactive in SwapActiveChainOperator.
       
      int32 max_swap_active_chain_size = 66;
      Returns:
      The maxSwapActiveChainSize.
    • getRelocateExpensiveChainNumArcsToConsider

      int getRelocateExpensiveChainNumArcsToConsider()
       Number of expensive arcs to consider cutting in the RelocateExpensiveChain
       neighborhood operator (see
       LocalSearchNeighborhoodOperators.use_relocate_expensive_chain()).
       This parameter must be greater than 2.
       NOTE(user): The number of neighbors generated by the operator for
       relocate_expensive_chain_num_arcs_to_consider = K is around
       K*(K-1)/2 * number_of_routes * number_of_nodes.
       
      int32 relocate_expensive_chain_num_arcs_to_consider = 20;
      Returns:
      The relocateExpensiveChainNumArcsToConsider.
    • getHeuristicExpensiveChainLnsNumArcsToConsider

      int getHeuristicExpensiveChainLnsNumArcsToConsider()
       Number of expensive arcs to consider cutting in the
       FilteredHeuristicExpensiveChainLNSOperator operator.
       
      int32 heuristic_expensive_chain_lns_num_arcs_to_consider = 32;
      Returns:
      The heuristicExpensiveChainLnsNumArcsToConsider.
    • getHeuristicCloseNodesLnsNumNodes

      int getHeuristicCloseNodesLnsNumNodes()
       Number of closest nodes to consider for each node during the destruction
       phase of the FilteredHeuristicCloseNodesLNSOperator.
       
      int32 heuristic_close_nodes_lns_num_nodes = 35;
      Returns:
      The heuristicCloseNodesLnsNumNodes.
    • getLocalSearchMetaheuristicValue

      int getLocalSearchMetaheuristicValue()
       Local search metaheuristics used to guide the search.
       
      .operations_research.LocalSearchMetaheuristic.Value local_search_metaheuristic = 4;
      Returns:
      The enum numeric value on the wire for localSearchMetaheuristic.
    • getLocalSearchMetaheuristic

      LocalSearchMetaheuristic.Value getLocalSearchMetaheuristic()
       Local search metaheuristics used to guide the search.
       
      .operations_research.LocalSearchMetaheuristic.Value local_search_metaheuristic = 4;
      Returns:
      The localSearchMetaheuristic.
    • getLocalSearchMetaheuristicsList

      List<LocalSearchMetaheuristic.Value> getLocalSearchMetaheuristicsList()
       Local search metaheuristics alternatively used to guide the search. Every
       num_max_local_optima_before_metaheuristic_switch local minima found by a
       metaheurisitic, the solver will switch to the next metaheuristic. Cannot be
       defined if local_search_metaheuristic is different from UNSET or AUTOMATIC.
       
      repeated .operations_research.LocalSearchMetaheuristic.Value local_search_metaheuristics = 63;
      Returns:
      A list containing the localSearchMetaheuristics.
    • getLocalSearchMetaheuristicsCount

      int getLocalSearchMetaheuristicsCount()
       Local search metaheuristics alternatively used to guide the search. Every
       num_max_local_optima_before_metaheuristic_switch local minima found by a
       metaheurisitic, the solver will switch to the next metaheuristic. Cannot be
       defined if local_search_metaheuristic is different from UNSET or AUTOMATIC.
       
      repeated .operations_research.LocalSearchMetaheuristic.Value local_search_metaheuristics = 63;
      Returns:
      The count of localSearchMetaheuristics.
    • getLocalSearchMetaheuristics

      LocalSearchMetaheuristic.Value getLocalSearchMetaheuristics(int index)
       Local search metaheuristics alternatively used to guide the search. Every
       num_max_local_optima_before_metaheuristic_switch local minima found by a
       metaheurisitic, the solver will switch to the next metaheuristic. Cannot be
       defined if local_search_metaheuristic is different from UNSET or AUTOMATIC.
       
      repeated .operations_research.LocalSearchMetaheuristic.Value local_search_metaheuristics = 63;
      Parameters:
      index - The index of the element to return.
      Returns:
      The localSearchMetaheuristics at the given index.
    • getLocalSearchMetaheuristicsValueList

      List<Integer> getLocalSearchMetaheuristicsValueList()
       Local search metaheuristics alternatively used to guide the search. Every
       num_max_local_optima_before_metaheuristic_switch local minima found by a
       metaheurisitic, the solver will switch to the next metaheuristic. Cannot be
       defined if local_search_metaheuristic is different from UNSET or AUTOMATIC.
       
      repeated .operations_research.LocalSearchMetaheuristic.Value local_search_metaheuristics = 63;
      Returns:
      A list containing the enum numeric values on the wire for localSearchMetaheuristics.
    • getLocalSearchMetaheuristicsValue

      int getLocalSearchMetaheuristicsValue(int index)
       Local search metaheuristics alternatively used to guide the search. Every
       num_max_local_optima_before_metaheuristic_switch local minima found by a
       metaheurisitic, the solver will switch to the next metaheuristic. Cannot be
       defined if local_search_metaheuristic is different from UNSET or AUTOMATIC.
       
      repeated .operations_research.LocalSearchMetaheuristic.Value local_search_metaheuristics = 63;
      Parameters:
      index - The index of the value to return.
      Returns:
      The enum numeric value on the wire of localSearchMetaheuristics at the given index.
    • getNumMaxLocalOptimaBeforeMetaheuristicSwitch

      int getNumMaxLocalOptimaBeforeMetaheuristicSwitch()
      int32 num_max_local_optima_before_metaheuristic_switch = 64;
      Returns:
      The numMaxLocalOptimaBeforeMetaheuristicSwitch.
    • getGuidedLocalSearchLambdaCoefficient

      double getGuidedLocalSearchLambdaCoefficient()
       These are advanced settings which should not be modified unless you know
       what you are doing.
       Lambda coefficient used to penalize arc costs when GUIDED_LOCAL_SEARCH is
       used. Must be positive.
       
      double guided_local_search_lambda_coefficient = 5;
      Returns:
      The guidedLocalSearchLambdaCoefficient.
    • getGuidedLocalSearchResetPenaltiesOnNewBestSolution

      boolean getGuidedLocalSearchResetPenaltiesOnNewBestSolution()
       Whether to reset penalties when a new best solution is found. The effect is
       that a greedy descent is started before the next penalization phase.
       
      bool guided_local_search_reset_penalties_on_new_best_solution = 51;
      Returns:
      The guidedLocalSearchResetPenaltiesOnNewBestSolution.
    • getGuidedLocalSearchPenalizeWithVehicleClasses

      boolean getGuidedLocalSearchPenalizeWithVehicleClasses()
       When an arc leaving a vehicle start or arriving at a vehicle end is
       penalized, this field controls whether to penalize all other equivalent
       arcs with starts or ends in the same vehicle class.
       
      bool guided_local_search_penalize_with_vehicle_classes = 61;
      Returns:
      The guidedLocalSearchPenalizeWithVehicleClasses.
    • getUseGuidedLocalSearchPenaltiesInLocalSearchOperators

      boolean getUseGuidedLocalSearchPenaltiesInLocalSearchOperators()
       Whether to consider arc penalties in cost functions used in local search
       operators using arc costs.
       
      bool use_guided_local_search_penalties_in_local_search_operators = 62;
      Returns:
      The useGuidedLocalSearchPenaltiesInLocalSearchOperators.
    • getUseDepthFirstSearch

      boolean getUseDepthFirstSearch()
       --- Search control ---
      
       If true, the solver should use depth-first search rather than local search
       to solve the problem.
       
      bool use_depth_first_search = 6;
      Returns:
      The useDepthFirstSearch.
    • getUseCpValue

      int getUseCpValue()
       If true, use the CP solver to find a solution. Either local or depth-first
       search will be used depending on the value of use_depth_first_search. Will
       be run before the CP-SAT solver (cf. use_cp_sat).
       
      .operations_research.OptionalBoolean use_cp = 28;
      Returns:
      The enum numeric value on the wire for useCp.
    • getUseCp

      OptionalBoolean getUseCp()
       If true, use the CP solver to find a solution. Either local or depth-first
       search will be used depending on the value of use_depth_first_search. Will
       be run before the CP-SAT solver (cf. use_cp_sat).
       
      .operations_research.OptionalBoolean use_cp = 28;
      Returns:
      The useCp.
    • getUseCpSatValue

      int getUseCpSatValue()
       If true, use the CP-SAT solver to find a solution. If use_cp is also true,
       the CP-SAT solver will be run after the CP solver if there is time
       remaining and will use the CP solution as a hint for the CP-SAT search.
       As of 5/2019, only TSP models can be solved.
       
      .operations_research.OptionalBoolean use_cp_sat = 27;
      Returns:
      The enum numeric value on the wire for useCpSat.
    • getUseCpSat

      OptionalBoolean getUseCpSat()
       If true, use the CP-SAT solver to find a solution. If use_cp is also true,
       the CP-SAT solver will be run after the CP solver if there is time
       remaining and will use the CP solution as a hint for the CP-SAT search.
       As of 5/2019, only TSP models can be solved.
       
      .operations_research.OptionalBoolean use_cp_sat = 27;
      Returns:
      The useCpSat.
    • getUseGeneralizedCpSatValue

      int getUseGeneralizedCpSatValue()
       If true, use the CP-SAT solver to find a solution on generalized routing
       model. If use_cp is also true, the CP-SAT solver will be run after the CP
       solver if there is time remaining and will use the CP solution as a hint
       for the CP-SAT search.
       
      .operations_research.OptionalBoolean use_generalized_cp_sat = 47;
      Returns:
      The enum numeric value on the wire for useGeneralizedCpSat.
    • getUseGeneralizedCpSat

      OptionalBoolean getUseGeneralizedCpSat()
       If true, use the CP-SAT solver to find a solution on generalized routing
       model. If use_cp is also true, the CP-SAT solver will be run after the CP
       solver if there is time remaining and will use the CP solution as a hint
       for the CP-SAT search.
       
      .operations_research.OptionalBoolean use_generalized_cp_sat = 47;
      Returns:
      The useGeneralizedCpSat.
    • hasSatParameters

      boolean hasSatParameters()
       If use_cp_sat or use_generalized_cp_sat is true, contains the SAT algorithm
       parameters which will be used.
       
      .operations_research.sat.SatParameters sat_parameters = 48;
      Returns:
      Whether the satParameters field is set.
    • getSatParameters

      SatParameters getSatParameters()
       If use_cp_sat or use_generalized_cp_sat is true, contains the SAT algorithm
       parameters which will be used.
       
      .operations_research.sat.SatParameters sat_parameters = 48;
      Returns:
      The satParameters.
    • getSatParametersOrBuilder

      SatParametersOrBuilder getSatParametersOrBuilder()
       If use_cp_sat or use_generalized_cp_sat is true, contains the SAT algorithm
       parameters which will be used.
       
      .operations_research.sat.SatParameters sat_parameters = 48;
    • getReportIntermediateCpSatSolutions

      boolean getReportIntermediateCpSatSolutions()
       If use_cp_sat or use_generalized_cp_sat is true, will report intermediate
       solutions found by CP-SAT to solution listeners.
       
      bool report_intermediate_cp_sat_solutions = 56;
      Returns:
      The reportIntermediateCpSatSolutions.
    • getFallbackToCpSatSizeThreshold

      int getFallbackToCpSatSizeThreshold()
       If model.Size() is less than the threshold and that no solution has been
       found, attempt a pass with CP-SAT.
       
      int32 fallback_to_cp_sat_size_threshold = 52;
      Returns:
      The fallbackToCpSatSizeThreshold.
    • getContinuousSchedulingSolverValue

      int getContinuousSchedulingSolverValue()
      .operations_research.RoutingSearchParameters.SchedulingSolver continuous_scheduling_solver = 33;
      Returns:
      The enum numeric value on the wire for continuousSchedulingSolver.
    • getContinuousSchedulingSolver

      RoutingSearchParameters.SchedulingSolver getContinuousSchedulingSolver()
      .operations_research.RoutingSearchParameters.SchedulingSolver continuous_scheduling_solver = 33;
      Returns:
      The continuousSchedulingSolver.
    • getMixedIntegerSchedulingSolverValue

      int getMixedIntegerSchedulingSolverValue()
      .operations_research.RoutingSearchParameters.SchedulingSolver mixed_integer_scheduling_solver = 34;
      Returns:
      The enum numeric value on the wire for mixedIntegerSchedulingSolver.
    • getMixedIntegerSchedulingSolver

      RoutingSearchParameters.SchedulingSolver getMixedIntegerSchedulingSolver()
      .operations_research.RoutingSearchParameters.SchedulingSolver mixed_integer_scheduling_solver = 34;
      Returns:
      The mixedIntegerSchedulingSolver.
    • hasDisableSchedulingBewareThisMayDegradePerformance

      boolean hasDisableSchedulingBewareThisMayDegradePerformance()
       Setting this to true completely disables the LP and MIP scheduling in the
       solver. This overrides the 2 SchedulingSolver options above.
       
      optional bool disable_scheduling_beware_this_may_degrade_performance = 50;
      Returns:
      Whether the disableSchedulingBewareThisMayDegradePerformance field is set.
    • getDisableSchedulingBewareThisMayDegradePerformance

      boolean getDisableSchedulingBewareThisMayDegradePerformance()
       Setting this to true completely disables the LP and MIP scheduling in the
       solver. This overrides the 2 SchedulingSolver options above.
       
      optional bool disable_scheduling_beware_this_may_degrade_performance = 50;
      Returns:
      The disableSchedulingBewareThisMayDegradePerformance.
    • getOptimizationStep

      double getOptimizationStep()
       Minimum step by which the solution must be improved in local search. 0
       means "unspecified". If this value is fractional, it will get rounded to
       the nearest integer.
       
      double optimization_step = 7;
      Returns:
      The optimizationStep.
    • getNumberOfSolutionsToCollect

      int getNumberOfSolutionsToCollect()
       Number of solutions to collect during the search. Corresponds to the best
       solutions found during the search. 0 means "unspecified".
       
      int32 number_of_solutions_to_collect = 17;
      Returns:
      The numberOfSolutionsToCollect.
    • getSolutionLimit

      long getSolutionLimit()
       -- Search limits --
       Limit to the number of solutions generated during the search. 0 means
       "unspecified".
       
      int64 solution_limit = 8;
      Returns:
      The solutionLimit.
    • hasTimeLimit

      boolean hasTimeLimit()
       Limit to the time spent in the search.
       
      .google.protobuf.Duration time_limit = 9;
      Returns:
      Whether the timeLimit field is set.
    • getTimeLimit

      com.google.protobuf.Duration getTimeLimit()
       Limit to the time spent in the search.
       
      .google.protobuf.Duration time_limit = 9;
      Returns:
      The timeLimit.
    • getTimeLimitOrBuilder

      com.google.protobuf.DurationOrBuilder getTimeLimitOrBuilder()
       Limit to the time spent in the search.
       
      .google.protobuf.Duration time_limit = 9;
    • hasLnsTimeLimit

      boolean hasLnsTimeLimit()
       Limit to the time spent in the completion search for each local search
       neighbor.
       
      .google.protobuf.Duration lns_time_limit = 10;
      Returns:
      Whether the lnsTimeLimit field is set.
    • getLnsTimeLimit

      com.google.protobuf.Duration getLnsTimeLimit()
       Limit to the time spent in the completion search for each local search
       neighbor.
       
      .google.protobuf.Duration lns_time_limit = 10;
      Returns:
      The lnsTimeLimit.
    • getLnsTimeLimitOrBuilder

      com.google.protobuf.DurationOrBuilder getLnsTimeLimitOrBuilder()
       Limit to the time spent in the completion search for each local search
       neighbor.
       
      .google.protobuf.Duration lns_time_limit = 10;
    • getSecondaryLsTimeLimitRatio

      double getSecondaryLsTimeLimitRatio()
       Ratio of the overall time limit spent in a secondary LS phase with only
       intra-route and insertion operators, meant to "cleanup" the current
       solution before stopping the search.
       TODO(user): Since these operators are very fast, add a parameter to cap
       the max time allocated for this second phase (e.g.
       Duration max_secondary_ls_time_limit).
       
      double secondary_ls_time_limit_ratio = 57;
      Returns:
      The secondaryLsTimeLimitRatio.
    • hasImprovementLimitParameters

      boolean hasImprovementLimitParameters()
       The improvement search limit is added to the solver if the following
       parameters are set.
       
      .operations_research.RoutingSearchParameters.ImprovementSearchLimitParameters improvement_limit_parameters = 37;
      Returns:
      Whether the improvementLimitParameters field is set.
    • getImprovementLimitParameters

       The improvement search limit is added to the solver if the following
       parameters are set.
       
      .operations_research.RoutingSearchParameters.ImprovementSearchLimitParameters improvement_limit_parameters = 37;
      Returns:
      The improvementLimitParameters.
    • getImprovementLimitParametersOrBuilder

       The improvement search limit is added to the solver if the following
       parameters are set.
       
      .operations_research.RoutingSearchParameters.ImprovementSearchLimitParameters improvement_limit_parameters = 37;
    • getUseFullPropagation

      boolean getUseFullPropagation()
       --- Propagation control ---
       These are advanced settings which should not be modified unless you know
       what you are doing.
      
       Use constraints with full propagation in routing model (instead of 'light'
       propagation only). Full propagation is only necessary when using
       depth-first search or for models which require strong propagation to
       finalize the value of secondary variables.
       Changing this setting to true will slow down the search in most cases and
       increase memory consumption in all cases.
       
      bool use_full_propagation = 11;
      Returns:
      The useFullPropagation.
    • getLogSearch

      boolean getLogSearch()
       --- Miscellaneous ---
       Some of these are advanced settings which should not be modified unless you
       know what you are doing.
      
       Activates search logging. For each solution found during the search, the
       following will be displayed: its objective value, the maximum objective
       value since the beginning of the search, the elapsed time since the
       beginning of the search, the number of branches explored in the search
       tree, the number of failures in the search tree, the depth of the search
       tree, the number of local search neighbors explored, the number of local
       search neighbors filtered by local search filters, the number of local
       search neighbors accepted, the total memory used and the percentage of the
       search done.
       
      bool log_search = 13;
      Returns:
      The logSearch.
    • getLogCostScalingFactor

      double getLogCostScalingFactor()
       In logs, cost values will be scaled and offset by the given values in the
       following way: log_cost_scaling_factor * (cost + log_cost_offset)
       
      double log_cost_scaling_factor = 22;
      Returns:
      The logCostScalingFactor.
    • getLogCostOffset

      double getLogCostOffset()
      double log_cost_offset = 29;
      Returns:
      The logCostOffset.
    • getLogTag

      String getLogTag()
       In logs, this tag will be appended to each line corresponding to a new
       solution. Useful to sort out logs when several solves are run in parallel.
       
      string log_tag = 36;
      Returns:
      The logTag.
    • getLogTagBytes

      com.google.protobuf.ByteString getLogTagBytes()
       In logs, this tag will be appended to each line corresponding to a new
       solution. Useful to sort out logs when several solves are run in parallel.
       
      string log_tag = 36;
      Returns:
      The bytes for logTag.
    • getUseIteratedLocalSearch

      boolean getUseIteratedLocalSearch()
       Whether the solver should use an Iterated Local Search approach to solve
       the problem.
       
      bool use_iterated_local_search = 58;
      Returns:
      The useIteratedLocalSearch.
    • hasIteratedLocalSearchParameters

      boolean hasIteratedLocalSearchParameters()
       Iterated Local Search parameters.
       
      .operations_research.IteratedLocalSearchParameters iterated_local_search_parameters = 60;
      Returns:
      Whether the iteratedLocalSearchParameters field is set.
    • getIteratedLocalSearchParameters

      IteratedLocalSearchParameters getIteratedLocalSearchParameters()
       Iterated Local Search parameters.
       
      .operations_research.IteratedLocalSearchParameters iterated_local_search_parameters = 60;
      Returns:
      The iteratedLocalSearchParameters.
    • getIteratedLocalSearchParametersOrBuilder

      IteratedLocalSearchParametersOrBuilder getIteratedLocalSearchParametersOrBuilder()
       Iterated Local Search parameters.
       
      .operations_research.IteratedLocalSearchParameters iterated_local_search_parameters = 60;