Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder Class Reference
Inheritance diagram for com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder:
com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder

Public Member Functions

Builder clear ()
 
com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams getDefaultInstanceForType ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams build ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams buildPartial ()
 
Builder mergeFrom (com.google.protobuf.Message other)
 
Builder mergeFrom (com.google.ortools.pdlp.PrimalDualHybridGradientParams other)
 
final boolean isInitialized ()
 
Builder mergeFrom (com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException
 
boolean hasTerminationCriteria ()
 
com.google.ortools.pdlp.TerminationCriteria getTerminationCriteria ()
 
Builder setTerminationCriteria (com.google.ortools.pdlp.TerminationCriteria value)
 
Builder setTerminationCriteria (com.google.ortools.pdlp.TerminationCriteria.Builder builderForValue)
 
Builder mergeTerminationCriteria (com.google.ortools.pdlp.TerminationCriteria value)
 
Builder clearTerminationCriteria ()
 
com.google.ortools.pdlp.TerminationCriteria.Builder getTerminationCriteriaBuilder ()
 
com.google.ortools.pdlp.TerminationCriteriaOrBuilder getTerminationCriteriaOrBuilder ()
 
boolean hasNumThreads ()
 
int getNumThreads ()
 
Builder setNumThreads (int value)
 
Builder clearNumThreads ()
 
boolean hasNumShards ()
 
int getNumShards ()
 
Builder setNumShards (int value)
 
Builder clearNumShards ()
 
boolean hasRecordIterationStats ()
 
boolean getRecordIterationStats ()
 
Builder setRecordIterationStats (boolean value)
 
Builder clearRecordIterationStats ()
 
boolean hasVerbosityLevel ()
 
int getVerbosityLevel ()
 
Builder setVerbosityLevel (int value)
 
Builder clearVerbosityLevel ()
 
boolean hasLogIntervalSeconds ()
 
double getLogIntervalSeconds ()
 
Builder setLogIntervalSeconds (double value)
 
Builder clearLogIntervalSeconds ()
 
boolean hasMajorIterationFrequency ()
 
int getMajorIterationFrequency ()
 
Builder setMajorIterationFrequency (int value)
 
Builder clearMajorIterationFrequency ()
 
boolean hasTerminationCheckFrequency ()
 
int getTerminationCheckFrequency ()
 
Builder setTerminationCheckFrequency (int value)
 
Builder clearTerminationCheckFrequency ()
 
boolean hasRestartStrategy ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams.RestartStrategy getRestartStrategy ()
 
Builder setRestartStrategy (com.google.ortools.pdlp.PrimalDualHybridGradientParams.RestartStrategy value)
 
Builder clearRestartStrategy ()
 
boolean hasPrimalWeightUpdateSmoothing ()
 
double getPrimalWeightUpdateSmoothing ()
 
Builder setPrimalWeightUpdateSmoothing (double value)
 
Builder clearPrimalWeightUpdateSmoothing ()
 
boolean hasInitialPrimalWeight ()
 
double getInitialPrimalWeight ()
 
Builder setInitialPrimalWeight (double value)
 
Builder clearInitialPrimalWeight ()
 
boolean hasPresolveOptions ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions getPresolveOptions ()
 
Builder setPresolveOptions (com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions value)
 
Builder setPresolveOptions (com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions.Builder builderForValue)
 
Builder mergePresolveOptions (com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions value)
 
Builder clearPresolveOptions ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions.Builder getPresolveOptionsBuilder ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptionsOrBuilder getPresolveOptionsOrBuilder ()
 
boolean hasLInfRuizIterations ()
 
int getLInfRuizIterations ()
 
Builder setLInfRuizIterations (int value)
 
Builder clearLInfRuizIterations ()
 
boolean hasL2NormRescaling ()
 
boolean getL2NormRescaling ()
 
Builder setL2NormRescaling (boolean value)
 
Builder clearL2NormRescaling ()
 
boolean hasSufficientReductionForRestart ()
 
double getSufficientReductionForRestart ()
 
Builder setSufficientReductionForRestart (double value)
 
Builder clearSufficientReductionForRestart ()
 
boolean hasNecessaryReductionForRestart ()
 
double getNecessaryReductionForRestart ()
 
Builder setNecessaryReductionForRestart (double value)
 
Builder clearNecessaryReductionForRestart ()
 
boolean hasLinesearchRule ()
 
com.google.ortools.pdlp.PrimalDualHybridGradientParams.LinesearchRule getLinesearchRule ()
 
Builder setLinesearchRule (com.google.ortools.pdlp.PrimalDualHybridGradientParams.LinesearchRule value)
 
Builder clearLinesearchRule ()
 
boolean hasAdaptiveLinesearchParameters ()
 
com.google.ortools.pdlp.AdaptiveLinesearchParams getAdaptiveLinesearchParameters ()
 
Builder setAdaptiveLinesearchParameters (com.google.ortools.pdlp.AdaptiveLinesearchParams value)
 
Builder setAdaptiveLinesearchParameters (com.google.ortools.pdlp.AdaptiveLinesearchParams.Builder builderForValue)
 
Builder mergeAdaptiveLinesearchParameters (com.google.ortools.pdlp.AdaptiveLinesearchParams value)
 
Builder clearAdaptiveLinesearchParameters ()
 
com.google.ortools.pdlp.AdaptiveLinesearchParams.Builder getAdaptiveLinesearchParametersBuilder ()
 
com.google.ortools.pdlp.AdaptiveLinesearchParamsOrBuilder getAdaptiveLinesearchParametersOrBuilder ()
 
boolean hasMalitskyPockParameters ()
 
com.google.ortools.pdlp.MalitskyPockParams getMalitskyPockParameters ()
 
Builder setMalitskyPockParameters (com.google.ortools.pdlp.MalitskyPockParams value)
 
Builder setMalitskyPockParameters (com.google.ortools.pdlp.MalitskyPockParams.Builder builderForValue)
 
Builder mergeMalitskyPockParameters (com.google.ortools.pdlp.MalitskyPockParams value)
 
Builder clearMalitskyPockParameters ()
 
com.google.ortools.pdlp.MalitskyPockParams.Builder getMalitskyPockParametersBuilder ()
 
com.google.ortools.pdlp.MalitskyPockParamsOrBuilder getMalitskyPockParametersOrBuilder ()
 
boolean hasInitialStepSizeScaling ()
 
double getInitialStepSizeScaling ()
 
Builder setInitialStepSizeScaling (double value)
 
Builder clearInitialStepSizeScaling ()
 
java.util.List< java.lang.Integer > getRandomProjectionSeedsList ()
 
int getRandomProjectionSeedsCount ()
 
int getRandomProjectionSeeds (int index)
 
Builder setRandomProjectionSeeds (int index, int value)
 
Builder addRandomProjectionSeeds (int value)
 
Builder addAllRandomProjectionSeeds (java.lang.Iterable<? extends java.lang.Integer > values)
 
Builder clearRandomProjectionSeeds ()
 
boolean hasInfiniteConstraintBoundThreshold ()
 
double getInfiniteConstraintBoundThreshold ()
 
Builder setInfiniteConstraintBoundThreshold (double value)
 
Builder clearInfiniteConstraintBoundThreshold ()
 
boolean hasHandleSomePrimalGradientsOnFiniteBoundsAsResiduals ()
 
boolean getHandleSomePrimalGradientsOnFiniteBoundsAsResiduals ()
 
Builder setHandleSomePrimalGradientsOnFiniteBoundsAsResiduals (boolean value)
 
Builder clearHandleSomePrimalGradientsOnFiniteBoundsAsResiduals ()
 
boolean hasUseDiagonalQpTrustRegionSolver ()
 
boolean getUseDiagonalQpTrustRegionSolver ()
 
Builder setUseDiagonalQpTrustRegionSolver (boolean value)
 
Builder clearUseDiagonalQpTrustRegionSolver ()
 
boolean hasDiagonalQpTrustRegionSolverTolerance ()
 
double getDiagonalQpTrustRegionSolverTolerance ()
 
Builder setDiagonalQpTrustRegionSolverTolerance (double value)
 
Builder clearDiagonalQpTrustRegionSolverTolerance ()
 
boolean hasUseFeasibilityPolishing ()
 
boolean getUseFeasibilityPolishing ()
 
Builder setUseFeasibilityPolishing (boolean value)
 
Builder clearUseFeasibilityPolishing ()
 
- Public Member Functions inherited from com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder

Static Public Member Functions

static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
 

Protected Member Functions

com.google.protobuf.GeneratedMessage.FieldAccessorTable internalGetFieldAccessorTable ()
 

Detailed Description

Parameters for PrimalDualHybridGradient() in primal_dual_hybrid_gradient.h.
While the defaults are generally good, it is usually worthwhile to perform a
parameter sweep to find good settings for a particular family of problems.
The following parameters should be considered for tuning:
- restart_strategy (jointly with major_iteration_frequency)
- primal_weight_update_smoothing (jointly with initial_primal_weight)
- presolve_options.use_glop
- l_inf_ruiz_iterations
- l2_norm_rescaling
In addition, tune num_threads to speed up the solve.

Protobuf type operations_research.pdlp.PrimalDualHybridGradientParams

Definition at line 2790 of file PrimalDualHybridGradientParams.java.

Member Function Documentation

◆ addAllRandomProjectionSeeds()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.addAllRandomProjectionSeeds ( java.lang.Iterable<? extends java.lang.Integer > values)
Seeds for generating (pseudo-)random projections of iterates during
termination checks. For each seed, the projection of the primal and dual
solutions onto random planes in primal and dual space will be computed and
added the IterationStats if record_iteration_stats is true. The random
planes generated will be determined by the seeds, the primal and dual
dimensions, and num_threads.

repeated int32 random_projection_seeds = 28 [packed = true];

Parameters
valuesThe randomProjectionSeeds to add.
Returns
This builder for chaining.

Definition at line 5067 of file PrimalDualHybridGradientParams.java.

◆ addRandomProjectionSeeds()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.addRandomProjectionSeeds ( int value)
Seeds for generating (pseudo-)random projections of iterates during
termination checks. For each seed, the projection of the primal and dual
solutions onto random planes in primal and dual space will be computed and
added the IterationStats if record_iteration_stats is true. The random
planes generated will be determined by the seeds, the primal and dual
dimensions, and num_threads.

repeated int32 random_projection_seeds = 28 [packed = true];

Parameters
valueThe randomProjectionSeeds to add.
Returns
This builder for chaining.

Definition at line 5045 of file PrimalDualHybridGradientParams.java.

◆ build()

com.google.ortools.pdlp.PrimalDualHybridGradientParams com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.build ( )

Definition at line 2887 of file PrimalDualHybridGradientParams.java.

◆ buildPartial()

com.google.ortools.pdlp.PrimalDualHybridGradientParams com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.buildPartial ( )

Definition at line 2896 of file PrimalDualHybridGradientParams.java.

◆ clear()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clear ( )

Definition at line 2827 of file PrimalDualHybridGradientParams.java.

◆ clearAdaptiveLinesearchParameters()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearAdaptiveLinesearchParameters ( )

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Definition at line 4722 of file PrimalDualHybridGradientParams.java.

◆ clearDiagonalQpTrustRegionSolverTolerance()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearDiagonalQpTrustRegionSolverTolerance ( )
The solve tolerance of the experimental trust region solver for diagonal
QPs, controlling the accuracy of binary search over a one-dimensional
scaling parameter. Smaller values imply smaller relative error of the final
solution vector.
TODO(user): Find an expression for the final relative error.

optional double diagonal_qp_trust_region_solver_tolerance = 24 [default = 1e-08];

Returns
This builder for chaining.

Definition at line 5377 of file PrimalDualHybridGradientParams.java.

◆ clearHandleSomePrimalGradientsOnFiniteBoundsAsResiduals()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearHandleSomePrimalGradientsOnFiniteBoundsAsResiduals ( )
See
https://developers.google.com/optimization/lp/pdlp_math#treating_some_variable_bounds_as_infinite
for a description of this flag.

optional bool handle_some_primal_gradients_on_finite_bounds_as_residuals = 29 [default = true];

Returns
This builder for chaining.

Definition at line 5229 of file PrimalDualHybridGradientParams.java.

◆ clearInfiniteConstraintBoundThreshold()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearInfiniteConstraintBoundThreshold ( )
Constraint bounds with absolute value at least this threshold are replaced
with infinities.
NOTE: This primarily affects the relative convergence criteria. A smaller
value makes the relative convergence criteria stronger. It also affects the
problem statistics LOG()ed at the start of the run, and the default initial
primal weight, since that is based on the norm of the bounds.

optional double infinite_constraint_bound_threshold = 22 [default = inf];

Returns
This builder for chaining.

Definition at line 5165 of file PrimalDualHybridGradientParams.java.

◆ clearInitialPrimalWeight()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearInitialPrimalWeight ( )
The initial value of the primal weight (i.e., the ratio of primal and dual
step sizes). The primal weight remains fixed throughout the solve if
primal_weight_update_smoothing = 0.0. If unset, the default is the ratio of
the norm of the objective vector to the L2 norm of the combined constraint
bounds vector (as defined above). If this ratio is not finite and positive,
then the default is 1.0 instead. For tuning, try powers of 10, for example,
from 10^{-6} to 10^6.

optional double initial_primal_weight = 8;

Returns
This builder for chaining.

Definition at line 4201 of file PrimalDualHybridGradientParams.java.

◆ clearInitialStepSizeScaling()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearInitialStepSizeScaling ( )
Scaling factor applied to the initial step size (all step sizes if
linesearch_rule == CONSTANT_STEP_SIZE_RULE).

optional double initial_step_size_scaling = 25 [default = 1];

Returns
This builder for chaining.

Definition at line 4942 of file PrimalDualHybridGradientParams.java.

◆ clearL2NormRescaling()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearL2NormRescaling ( )
If true, applies L_2 norm rescaling after the Ruiz rescaling. Heuristically
this has been found to help convergence.

optional bool l2_norm_rescaling = 10 [default = true];

Returns
This builder for chaining.

Definition at line 4446 of file PrimalDualHybridGradientParams.java.

◆ clearLinesearchRule()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearLinesearchRule ( )
Linesearch rule applied at each major iteration.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.LinesearchRule linesearch_rule = 12 [default = ADAPTIVE_LINESEARCH_RULE];

Returns
This builder for chaining.

Definition at line 4640 of file PrimalDualHybridGradientParams.java.

◆ clearLInfRuizIterations()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearLInfRuizIterations ( )
Number of L_infinity Ruiz rescaling iterations to apply to the constraint
matrix. Zero disables this rescaling pass. Recommended values to try when
tuning are 0, 5, and 10.

optional int32 l_inf_ruiz_iterations = 9 [default = 5];

Returns
This builder for chaining.

Definition at line 4386 of file PrimalDualHybridGradientParams.java.

◆ clearLogIntervalSeconds()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearLogIntervalSeconds ( )
Time between iteration-level statistics logging (if `verbosity_level > 1`).
Since iteration-level statistics are only generated when performing
termination checks, logs will be generated from next termination check
after `log_interval_seconds` have elapsed. Should be >= 0.0. 0.0 (the
default) means log statistics at every termination check.

optional double log_interval_seconds = 31 [default = 0];

Returns
This builder for chaining.

Definition at line 3831 of file PrimalDualHybridGradientParams.java.

◆ clearMajorIterationFrequency()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearMajorIterationFrequency ( )
The frequency at which extra work is performed to make major algorithmic
decisions, e.g., performing restarts and updating the primal weight. Major
iterations also trigger a termination check. For best performance using the
NO_RESTARTS or EVERY_MAJOR_ITERATION rule, one should perform a log-scale
grid search over this parameter, for example, over powers of two.
ADAPTIVE_HEURISTIC is mostly insensitive to this value.

optional int32 major_iteration_frequency = 4 [default = 64];

Returns
This builder for chaining.

Definition at line 3907 of file PrimalDualHybridGradientParams.java.

◆ clearMalitskyPockParameters()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearMalitskyPockParameters ( )

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Definition at line 4843 of file PrimalDualHybridGradientParams.java.

◆ clearNecessaryReductionForRestart()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearNecessaryReductionForRestart ( )
For ADAPTIVE_HEURISTIC only: A relative reduction in the potential function
by this amount triggers a restart if, additionally, the quality of the
iterates appears to be getting worse. The value must be in the interval
[sufficient_reduction_for_restart, 1). Smaller values make restarts less
frequent, and larger values make them more frequent.

optional double necessary_reduction_for_restart = 17 [default = 0.9];

Returns
This builder for chaining.

Definition at line 4582 of file PrimalDualHybridGradientParams.java.

◆ clearNumShards()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearNumShards ( )
For more efficient parallel computation, the matrices and vectors are
divided (virtually) into num_shards shards. Results are computed
independently for each shard and then combined. As a consequence, the order
of computation, and hence floating point roundoff, depends on the number of
shards so reproducible results require using the same value for num_shards.
However, for efficiency num_shards should a be at least num_threads, and
preferably at least 4*num_threads to allow better load balancing. If
num_shards is positive, the computation will use that many shards.
Otherwise a default that depends on num_threads will be used.

optional int32 num_shards = 27 [default = 0];

Returns
This builder for chaining.

Definition at line 3595 of file PrimalDualHybridGradientParams.java.

◆ clearNumThreads()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearNumThreads ( )
The number of threads to use. Must be positive.
Try various values of num_threads, up to the number of physical cores.
Performance may not be monotonically increasing with the number of threads
because of memory bandwidth limitations.

optional int32 num_threads = 2 [default = 1];

Returns
This builder for chaining.

Definition at line 3507 of file PrimalDualHybridGradientParams.java.

◆ clearPresolveOptions()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearPresolveOptions ( )

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Definition at line 4283 of file PrimalDualHybridGradientParams.java.

◆ clearPrimalWeightUpdateSmoothing()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearPrimalWeightUpdateSmoothing ( )
This parameter controls exponential smoothing of log(primal_weight) when a
primal weight update occurs (i.e., when the ratio of primal and dual step
sizes is adjusted). At 0.0, the primal weight will be frozen at its initial
value and there will be no dynamic updates in the algorithm. At 1.0, there
is no smoothing in the updates. The default of 0.5 generally performs well,
but has been observed on occasion to trigger unstable swings in the primal
weight. We recommend also trying 0.0 (disabling primal weight updates), in
which case you must also tune initial_primal_weight.

optional double primal_weight_update_smoothing = 7 [default = 0.5];

Returns
This builder for chaining.

Definition at line 4121 of file PrimalDualHybridGradientParams.java.

◆ clearRandomProjectionSeeds()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearRandomProjectionSeeds ( )
Seeds for generating (pseudo-)random projections of iterates during
termination checks. For each seed, the projection of the primal and dual
solutions onto random planes in primal and dual space will be computed and
added the IterationStats if record_iteration_stats is true. The random
planes generated will be determined by the seeds, the primal and dual
dimensions, and num_threads.

repeated int32 random_projection_seeds = 28 [packed = true];

Returns
This builder for chaining.

Definition at line 5089 of file PrimalDualHybridGradientParams.java.

◆ clearRecordIterationStats()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearRecordIterationStats ( )
If true, the iteration_stats field of the SolveLog output will be populated
at every iteration. Note that we only compute solution statistics at
termination checks. Setting this parameter to true may substantially
increase the size of the output.

optional bool record_iteration_stats = 3;

Returns
This builder for chaining.

Definition at line 3663 of file PrimalDualHybridGradientParams.java.

◆ clearRestartStrategy()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearRestartStrategy ( )
NO_RESTARTS and EVERY_MAJOR_ITERATION occasionally outperform the default.
If using a strategy other than ADAPTIVE_HEURISTIC, you must also tune
major_iteration_frequency.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.RestartStrategy restart_strategy = 6 [default = ADAPTIVE_HEURISTIC];

Returns
This builder for chaining.

Definition at line 4037 of file PrimalDualHybridGradientParams.java.

◆ clearSufficientReductionForRestart()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearSufficientReductionForRestart ( )
For ADAPTIVE_HEURISTIC and ADAPTIVE_DISTANCE_BASED only: A relative
reduction in the potential function by this amount always triggers a
restart. Must be between 0.0 and 1.0.

optional double sufficient_reduction_for_restart = 11 [default = 0.1];

Returns
This builder for chaining.

Definition at line 4510 of file PrimalDualHybridGradientParams.java.

◆ clearTerminationCheckFrequency()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearTerminationCheckFrequency ( )
The frequency (based on a counter reset every major iteration) to check for
termination (involves extra work) and log iteration stats. Termination
checks do not affect algorithmic progress unless termination is triggered.

optional int32 termination_check_frequency = 5 [default = 64];

Returns
This builder for chaining.

Definition at line 3971 of file PrimalDualHybridGradientParams.java.

◆ clearTerminationCriteria()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearTerminationCriteria ( )

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Definition at line 3400 of file PrimalDualHybridGradientParams.java.

◆ clearUseDiagonalQpTrustRegionSolver()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearUseDiagonalQpTrustRegionSolver ( )
When solving QPs with diagonal objective matrices, this option can be
turned on to enable an experimental solver that avoids linearization of the
quadratic term. The `diagonal_qp_solver_accuracy` parameter controls the
solve accuracy.
TODO(user): Turn this option on by default for quadratic
programs after numerical evaluation.

optional bool use_diagonal_qp_trust_region_solver = 23 [default = false];

Returns
This builder for chaining.

Definition at line 5305 of file PrimalDualHybridGradientParams.java.

◆ clearUseFeasibilityPolishing()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearUseFeasibilityPolishing ( )
If true, periodically runs feasibility polishing, which attempts to move
from latest average iterate to one that is closer to feasibility (i.e., has
smaller primal and dual residuals) while probably increasing the objective
gap. This is useful primarily when the feasibility tolerances are fairly
tight and the objective gap tolerance is somewhat looser. Note that this
does not change the termination criteria, but rather can help achieve the
termination criteria more quickly when the objective gap is not as
important as feasibility.

`use_feasibility_polishing` cannot be used with glop presolve, and requires
`handle_some_primal_gradients_on_finite_bounds_as_residuals == false`.
`use_feasibility_polishing` can only be used with linear programs.

Feasibility polishing runs two separate phases, primal feasibility and dual
feasibility. The primal feasibility phase runs PDHG on the primal
feasibility problem (obtained by changing the objective vector to all
zeros), using the average primal iterate and zero dual (which is optimal
for the primal feasibility problem) as the initial solution. The dual
feasibility phase runs PDHG on the dual feasibility problem (obtained by
changing all finite variable and constraint bounds to zero), using the
average dual iterate and zero primal (which is optimal for the dual
feasibility problem) as the initial solution. The primal solution from the
primal feasibility phase and dual solution from the dual feasibility phase
are then combined (forming a solution of type
`POINT_TYPE_FEASIBILITY_POLISHING_SOLUTION`) and checked against the
termination criteria.

optional bool use_feasibility_polishing = 30 [default = false];

Returns
This builder for chaining.

Definition at line 5533 of file PrimalDualHybridGradientParams.java.

◆ clearVerbosityLevel()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.clearVerbosityLevel ( )
The verbosity of logging.
0: No informational logging. (Errors are logged.)
1: Summary statistics only. No iteration-level details.
2: A table of iteration-level statistics is logged.
(See ToShortString() in primal_dual_hybrid_gradient.cc).
3: A more detailed table of iteration-level statistics is logged.
(See ToString() in primal_dual_hybrid_gradient.cc).
4: For iteration-level details, prints the statistics of both the average
(prefixed with A) and the current iterate (prefixed with C). Also prints
internal algorithmic state and details.
Logging at levels 2-4 also includes messages from level 1.

optional int32 verbosity_level = 26 [default = 0];

Returns
This builder for chaining.

Definition at line 3759 of file PrimalDualHybridGradientParams.java.

◆ getAdaptiveLinesearchParameters()

com.google.ortools.pdlp.AdaptiveLinesearchParams com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getAdaptiveLinesearchParameters ( )

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Returns
The adaptiveLinesearchParameters.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4661 of file PrimalDualHybridGradientParams.java.

◆ getAdaptiveLinesearchParametersBuilder()

com.google.ortools.pdlp.AdaptiveLinesearchParams.Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getAdaptiveLinesearchParametersBuilder ( )

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Definition at line 4735 of file PrimalDualHybridGradientParams.java.

◆ getAdaptiveLinesearchParametersOrBuilder()

com.google.ortools.pdlp.AdaptiveLinesearchParamsOrBuilder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getAdaptiveLinesearchParametersOrBuilder ( )

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4743 of file PrimalDualHybridGradientParams.java.

◆ getDefaultInstanceForType()

com.google.ortools.pdlp.PrimalDualHybridGradientParams com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getDefaultInstanceForType ( )

Definition at line 2882 of file PrimalDualHybridGradientParams.java.

◆ getDescriptor()

static final com.google.protobuf.Descriptors.Descriptor com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getDescriptor ( )
static

Definition at line 2795 of file PrimalDualHybridGradientParams.java.

◆ getDescriptorForType()

com.google.protobuf.Descriptors.Descriptor com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getDescriptorForType ( )

Definition at line 2877 of file PrimalDualHybridGradientParams.java.

◆ getDiagonalQpTrustRegionSolverTolerance()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getDiagonalQpTrustRegionSolverTolerance ( )
The solve tolerance of the experimental trust region solver for diagonal
QPs, controlling the accuracy of binary search over a one-dimensional
scaling parameter. Smaller values imply smaller relative error of the final
solution vector.
TODO(user): Find an expression for the final relative error.

optional double diagonal_qp_trust_region_solver_tolerance = 24 [default = 1e-08];

Returns
The diagonalQpTrustRegionSolverTolerance.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5342 of file PrimalDualHybridGradientParams.java.

◆ getHandleSomePrimalGradientsOnFiniteBoundsAsResiduals()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getHandleSomePrimalGradientsOnFiniteBoundsAsResiduals ( )
See
https://developers.google.com/optimization/lp/pdlp_math#treating_some_variable_bounds_as_infinite
for a description of this flag.

optional bool handle_some_primal_gradients_on_finite_bounds_as_residuals = 29 [default = true];

Returns
The handleSomePrimalGradientsOnFiniteBoundsAsResiduals.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5198 of file PrimalDualHybridGradientParams.java.

◆ getInfiniteConstraintBoundThreshold()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getInfiniteConstraintBoundThreshold ( )
Constraint bounds with absolute value at least this threshold are replaced
with infinities.
NOTE: This primarily affects the relative convergence criteria. A smaller
value makes the relative convergence criteria stronger. It also affects the
problem statistics LOG()ed at the start of the run, and the default initial
primal weight, since that is based on the norm of the bounds.

optional double infinite_constraint_bound_threshold = 22 [default = inf];

Returns
The infiniteConstraintBoundThreshold.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5128 of file PrimalDualHybridGradientParams.java.

◆ getInitialPrimalWeight()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getInitialPrimalWeight ( )
The initial value of the primal weight (i.e., the ratio of primal and dual
step sizes). The primal weight remains fixed throughout the solve if
primal_weight_update_smoothing = 0.0. If unset, the default is the ratio of
the norm of the objective vector to the L2 norm of the combined constraint
bounds vector (as defined above). If this ratio is not finite and positive,
then the default is 1.0 instead. For tuning, try powers of 10, for example,
from 10^{-6} to 10^6.

optional double initial_primal_weight = 8;

Returns
The initialPrimalWeight.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4162 of file PrimalDualHybridGradientParams.java.

◆ getInitialStepSizeScaling()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getInitialStepSizeScaling ( )
Scaling factor applied to the initial step size (all step sizes if
linesearch_rule == CONSTANT_STEP_SIZE_RULE).

optional double initial_step_size_scaling = 25 [default = 1];

Returns
The initialStepSizeScaling.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4913 of file PrimalDualHybridGradientParams.java.

◆ getL2NormRescaling()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getL2NormRescaling ( )
If true, applies L_2 norm rescaling after the Ruiz rescaling. Heuristically
this has been found to help convergence.

optional bool l2_norm_rescaling = 10 [default = true];

Returns
The l2NormRescaling.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4417 of file PrimalDualHybridGradientParams.java.

◆ getLinesearchRule()

com.google.ortools.pdlp.PrimalDualHybridGradientParams.LinesearchRule com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getLinesearchRule ( )
Linesearch rule applied at each major iteration.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.LinesearchRule linesearch_rule = 12 [default = ADAPTIVE_LINESEARCH_RULE];

Returns
The linesearchRule.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4610 of file PrimalDualHybridGradientParams.java.

◆ getLInfRuizIterations()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getLInfRuizIterations ( )
Number of L_infinity Ruiz rescaling iterations to apply to the constraint
matrix. Zero disables this rescaling pass. Recommended values to try when
tuning are 0, 5, and 10.

optional int32 l_inf_ruiz_iterations = 9 [default = 5];

Returns
The lInfRuizIterations.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4355 of file PrimalDualHybridGradientParams.java.

◆ getLogIntervalSeconds()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getLogIntervalSeconds ( )
Time between iteration-level statistics logging (if `verbosity_level > 1`).
Since iteration-level statistics are only generated when performing
termination checks, logs will be generated from next termination check
after `log_interval_seconds` have elapsed. Should be >= 0.0. 0.0 (the
default) means log statistics at every termination check.

optional double log_interval_seconds = 31 [default = 0];

Returns
The logIntervalSeconds.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3796 of file PrimalDualHybridGradientParams.java.

◆ getMajorIterationFrequency()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getMajorIterationFrequency ( )
The frequency at which extra work is performed to make major algorithmic
decisions, e.g., performing restarts and updating the primal weight. Major
iterations also trigger a termination check. For best performance using the
NO_RESTARTS or EVERY_MAJOR_ITERATION rule, one should perform a log-scale
grid search over this parameter, for example, over powers of two.
ADAPTIVE_HEURISTIC is mostly insensitive to this value.

optional int32 major_iteration_frequency = 4 [default = 64];

Returns
The majorIterationFrequency.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3870 of file PrimalDualHybridGradientParams.java.

◆ getMalitskyPockParameters()

com.google.ortools.pdlp.MalitskyPockParams com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getMalitskyPockParameters ( )

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Returns
The malitskyPockParameters.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4782 of file PrimalDualHybridGradientParams.java.

◆ getMalitskyPockParametersBuilder()

com.google.ortools.pdlp.MalitskyPockParams.Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getMalitskyPockParametersBuilder ( )

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Definition at line 4856 of file PrimalDualHybridGradientParams.java.

◆ getMalitskyPockParametersOrBuilder()

com.google.ortools.pdlp.MalitskyPockParamsOrBuilder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getMalitskyPockParametersOrBuilder ( )

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4864 of file PrimalDualHybridGradientParams.java.

◆ getNecessaryReductionForRestart()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getNecessaryReductionForRestart ( )
For ADAPTIVE_HEURISTIC only: A relative reduction in the potential function
by this amount triggers a restart if, additionally, the quality of the
iterates appears to be getting worse. The value must be in the interval
[sufficient_reduction_for_restart, 1). Smaller values make restarts less
frequent, and larger values make them more frequent.

optional double necessary_reduction_for_restart = 17 [default = 0.9];

Returns
The necessaryReductionForRestart.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4547 of file PrimalDualHybridGradientParams.java.

◆ getNumShards()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getNumShards ( )
For more efficient parallel computation, the matrices and vectors are
divided (virtually) into num_shards shards. Results are computed
independently for each shard and then combined. As a consequence, the order
of computation, and hence floating point roundoff, depends on the number of
shards so reproducible results require using the same value for num_shards.
However, for efficiency num_shards should a be at least num_threads, and
preferably at least 4*num_threads to allow better load balancing. If
num_shards is positive, the computation will use that many shards.
Otherwise a default that depends on num_threads will be used.

optional int32 num_shards = 27 [default = 0];

Returns
The numShards.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3552 of file PrimalDualHybridGradientParams.java.

◆ getNumThreads()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getNumThreads ( )
The number of threads to use. Must be positive.
Try various values of num_threads, up to the number of physical cores.
Performance may not be monotonically increasing with the number of threads
because of memory bandwidth limitations.

optional int32 num_threads = 2 [default = 1];

Returns
The numThreads.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3474 of file PrimalDualHybridGradientParams.java.

◆ getPresolveOptions()

com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getPresolveOptions ( )

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Returns
The presolveOptions.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4222 of file PrimalDualHybridGradientParams.java.

◆ getPresolveOptionsBuilder()

com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions.Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getPresolveOptionsBuilder ( )

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Definition at line 4296 of file PrimalDualHybridGradientParams.java.

◆ getPresolveOptionsOrBuilder()

com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptionsOrBuilder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getPresolveOptionsOrBuilder ( )

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4304 of file PrimalDualHybridGradientParams.java.

◆ getPrimalWeightUpdateSmoothing()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getPrimalWeightUpdateSmoothing ( )
This parameter controls exponential smoothing of log(primal_weight) when a
primal weight update occurs (i.e., when the ratio of primal and dual step
sizes is adjusted). At 0.0, the primal weight will be frozen at its initial
value and there will be no dynamic updates in the algorithm. At 1.0, there
is no smoothing in the updates. The default of 0.5 generally performs well,
but has been observed on occasion to trigger unstable swings in the primal
weight. We recommend also trying 0.0 (disabling primal weight updates), in
which case you must also tune initial_primal_weight.

optional double primal_weight_update_smoothing = 7 [default = 0.5];

Returns
The primalWeightUpdateSmoothing.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4080 of file PrimalDualHybridGradientParams.java.

◆ getRandomProjectionSeeds()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getRandomProjectionSeeds ( int index)
Seeds for generating (pseudo-)random projections of iterates during
termination checks. For each seed, the projection of the primal and dual
solutions onto random planes in primal and dual space will be computed and
added the IterationStats if record_iteration_stats is true. The random
planes generated will be determined by the seeds, the primal and dual
dimensions, and num_threads.

repeated int32 random_projection_seeds = 28 [packed = true];

Parameters
indexThe index of the element to return.
Returns
The randomProjectionSeeds at the given index.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5004 of file PrimalDualHybridGradientParams.java.

◆ getRandomProjectionSeedsCount()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getRandomProjectionSeedsCount ( )
Seeds for generating (pseudo-)random projections of iterates during
termination checks. For each seed, the projection of the primal and dual
solutions onto random planes in primal and dual space will be computed and
added the IterationStats if record_iteration_stats is true. The random
planes generated will be determined by the seeds, the primal and dual
dimensions, and num_threads.

repeated int32 random_projection_seeds = 28 [packed = true];

Returns
The count of randomProjectionSeeds.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4987 of file PrimalDualHybridGradientParams.java.

◆ getRandomProjectionSeedsList()

java.util.List< java.lang.Integer > com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getRandomProjectionSeedsList ( )
Seeds for generating (pseudo-)random projections of iterates during
termination checks. For each seed, the projection of the primal and dual
solutions onto random planes in primal and dual space will be computed and
added the IterationStats if record_iteration_stats is true. The random
planes generated will be determined by the seeds, the primal and dual
dimensions, and num_threads.

repeated int32 random_projection_seeds = 28 [packed = true];

Returns
A list containing the randomProjectionSeeds.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4970 of file PrimalDualHybridGradientParams.java.

◆ getRecordIterationStats()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getRecordIterationStats ( )
If true, the iteration_stats field of the SolveLog output will be populated
at every iteration. Note that we only compute solution statistics at
termination checks. Setting this parameter to true may substantially
increase the size of the output.

optional bool record_iteration_stats = 3;

Returns
The recordIterationStats.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3630 of file PrimalDualHybridGradientParams.java.

◆ getRestartStrategy()

com.google.ortools.pdlp.PrimalDualHybridGradientParams.RestartStrategy com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getRestartStrategy ( )
NO_RESTARTS and EVERY_MAJOR_ITERATION occasionally outperform the default.
If using a strategy other than ADAPTIVE_HEURISTIC, you must also tune
major_iteration_frequency.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.RestartStrategy restart_strategy = 6 [default = ADAPTIVE_HEURISTIC];

Returns
The restartStrategy.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4003 of file PrimalDualHybridGradientParams.java.

◆ getSufficientReductionForRestart()

double com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getSufficientReductionForRestart ( )
For ADAPTIVE_HEURISTIC and ADAPTIVE_DISTANCE_BASED only: A relative
reduction in the potential function by this amount always triggers a
restart. Must be between 0.0 and 1.0.

optional double sufficient_reduction_for_restart = 11 [default = 0.1];

Returns
The sufficientReductionForRestart.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4479 of file PrimalDualHybridGradientParams.java.

◆ getTerminationCheckFrequency()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getTerminationCheckFrequency ( )
The frequency (based on a counter reset every major iteration) to check for
termination (involves extra work) and log iteration stats. Termination
checks do not affect algorithmic progress unless termination is triggered.

optional int32 termination_check_frequency = 5 [default = 64];

Returns
The terminationCheckFrequency.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3940 of file PrimalDualHybridGradientParams.java.

◆ getTerminationCriteria()

com.google.ortools.pdlp.TerminationCriteria com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getTerminationCriteria ( )

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Returns
The terminationCriteria.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3339 of file PrimalDualHybridGradientParams.java.

◆ getTerminationCriteriaBuilder()

com.google.ortools.pdlp.TerminationCriteria.Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getTerminationCriteriaBuilder ( )

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Definition at line 3413 of file PrimalDualHybridGradientParams.java.

◆ getTerminationCriteriaOrBuilder()

com.google.ortools.pdlp.TerminationCriteriaOrBuilder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getTerminationCriteriaOrBuilder ( )

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3421 of file PrimalDualHybridGradientParams.java.

◆ getUseDiagonalQpTrustRegionSolver()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getUseDiagonalQpTrustRegionSolver ( )
When solving QPs with diagonal objective matrices, this option can be
turned on to enable an experimental solver that avoids linearization of the
quadratic term. The `diagonal_qp_solver_accuracy` parameter controls the
solve accuracy.
TODO(user): Turn this option on by default for quadratic
programs after numerical evaluation.

optional bool use_diagonal_qp_trust_region_solver = 23 [default = false];

Returns
The useDiagonalQpTrustRegionSolver.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5268 of file PrimalDualHybridGradientParams.java.

◆ getUseFeasibilityPolishing()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getUseFeasibilityPolishing ( )
If true, periodically runs feasibility polishing, which attempts to move
from latest average iterate to one that is closer to feasibility (i.e., has
smaller primal and dual residuals) while probably increasing the objective
gap. This is useful primarily when the feasibility tolerances are fairly
tight and the objective gap tolerance is somewhat looser. Note that this
does not change the termination criteria, but rather can help achieve the
termination criteria more quickly when the objective gap is not as
important as feasibility.

`use_feasibility_polishing` cannot be used with glop presolve, and requires
`handle_some_primal_gradients_on_finite_bounds_as_residuals == false`.
`use_feasibility_polishing` can only be used with linear programs.

Feasibility polishing runs two separate phases, primal feasibility and dual
feasibility. The primal feasibility phase runs PDHG on the primal
feasibility problem (obtained by changing the objective vector to all
zeros), using the average primal iterate and zero dual (which is optimal
for the primal feasibility problem) as the initial solution. The dual
feasibility phase runs PDHG on the dual feasibility problem (obtained by
changing all finite variable and constraint bounds to zero), using the
average dual iterate and zero primal (which is optimal for the dual
feasibility problem) as the initial solution. The primal solution from the
primal feasibility phase and dual solution from the dual feasibility phase
are then combined (forming a solution of type
`POINT_TYPE_FEASIBILITY_POLISHING_SOLUTION`) and checked against the
termination criteria.

optional bool use_feasibility_polishing = 30 [default = false];

Returns
The useFeasibilityPolishing.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5456 of file PrimalDualHybridGradientParams.java.

◆ getVerbosityLevel()

int com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.getVerbosityLevel ( )
The verbosity of logging.
0: No informational logging. (Errors are logged.)
1: Summary statistics only. No iteration-level details.
2: A table of iteration-level statistics is logged.
(See ToShortString() in primal_dual_hybrid_gradient.cc).
3: A more detailed table of iteration-level statistics is logged.
(See ToString() in primal_dual_hybrid_gradient.cc).
4: For iteration-level details, prints the statistics of both the average
(prefixed with A) and the current iterate (prefixed with C). Also prints
internal algorithmic state and details.
Logging at levels 2-4 also includes messages from level 1.

optional int32 verbosity_level = 26 [default = 0];

Returns
The verbosityLevel.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3712 of file PrimalDualHybridGradientParams.java.

◆ hasAdaptiveLinesearchParameters()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasAdaptiveLinesearchParameters ( )

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Returns
Whether the adaptiveLinesearchParameters field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4654 of file PrimalDualHybridGradientParams.java.

◆ hasDiagonalQpTrustRegionSolverTolerance()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasDiagonalQpTrustRegionSolverTolerance ( )
The solve tolerance of the experimental trust region solver for diagonal
QPs, controlling the accuracy of binary search over a one-dimensional
scaling parameter. Smaller values imply smaller relative error of the final
solution vector.
TODO(user): Find an expression for the final relative error.

optional double diagonal_qp_trust_region_solver_tolerance = 24 [default = 1e-08];

Returns
Whether the diagonalQpTrustRegionSolverTolerance field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5326 of file PrimalDualHybridGradientParams.java.

◆ hasHandleSomePrimalGradientsOnFiniteBoundsAsResiduals()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasHandleSomePrimalGradientsOnFiniteBoundsAsResiduals ( )
See
https://developers.google.com/optimization/lp/pdlp_math#treating_some_variable_bounds_as_infinite
for a description of this flag.

optional bool handle_some_primal_gradients_on_finite_bounds_as_residuals = 29 [default = true];

Returns
Whether the handleSomePrimalGradientsOnFiniteBoundsAsResiduals field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5184 of file PrimalDualHybridGradientParams.java.

◆ hasInfiniteConstraintBoundThreshold()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasInfiniteConstraintBoundThreshold ( )
Constraint bounds with absolute value at least this threshold are replaced
with infinities.
NOTE: This primarily affects the relative convergence criteria. A smaller
value makes the relative convergence criteria stronger. It also affects the
problem statistics LOG()ed at the start of the run, and the default initial
primal weight, since that is based on the norm of the bounds.

optional double infinite_constraint_bound_threshold = 22 [default = inf];

Returns
Whether the infiniteConstraintBoundThreshold field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5111 of file PrimalDualHybridGradientParams.java.

◆ hasInitialPrimalWeight()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasInitialPrimalWeight ( )
The initial value of the primal weight (i.e., the ratio of primal and dual
step sizes). The primal weight remains fixed throughout the solve if
primal_weight_update_smoothing = 0.0. If unset, the default is the ratio of
the norm of the objective vector to the L2 norm of the combined constraint
bounds vector (as defined above). If this ratio is not finite and positive,
then the default is 1.0 instead. For tuning, try powers of 10, for example,
from 10^{-6} to 10^6.

optional double initial_primal_weight = 8;

Returns
Whether the initialPrimalWeight field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4144 of file PrimalDualHybridGradientParams.java.

◆ hasInitialStepSizeScaling()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasInitialStepSizeScaling ( )
Scaling factor applied to the initial step size (all step sizes if
linesearch_rule == CONSTANT_STEP_SIZE_RULE).

optional double initial_step_size_scaling = 25 [default = 1];

Returns
Whether the initialStepSizeScaling field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4900 of file PrimalDualHybridGradientParams.java.

◆ hasL2NormRescaling()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasL2NormRescaling ( )
If true, applies L_2 norm rescaling after the Ruiz rescaling. Heuristically
this has been found to help convergence.

optional bool l2_norm_rescaling = 10 [default = true];

Returns
Whether the l2NormRescaling field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4404 of file PrimalDualHybridGradientParams.java.

◆ hasLinesearchRule()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasLinesearchRule ( )
Linesearch rule applied at each major iteration.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.LinesearchRule linesearch_rule = 12 [default = ADAPTIVE_LINESEARCH_RULE];

Returns
Whether the linesearchRule field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4598 of file PrimalDualHybridGradientParams.java.

◆ hasLInfRuizIterations()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasLInfRuizIterations ( )
Number of L_infinity Ruiz rescaling iterations to apply to the constraint
matrix. Zero disables this rescaling pass. Recommended values to try when
tuning are 0, 5, and 10.

optional int32 l_inf_ruiz_iterations = 9 [default = 5];

Returns
Whether the lInfRuizIterations field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4341 of file PrimalDualHybridGradientParams.java.

◆ hasLogIntervalSeconds()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasLogIntervalSeconds ( )
Time between iteration-level statistics logging (if `verbosity_level > 1`).
Since iteration-level statistics are only generated when performing
termination checks, logs will be generated from next termination check
after `log_interval_seconds` have elapsed. Should be >= 0.0. 0.0 (the
default) means log statistics at every termination check.

optional double log_interval_seconds = 31 [default = 0];

Returns
Whether the logIntervalSeconds field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3780 of file PrimalDualHybridGradientParams.java.

◆ hasMajorIterationFrequency()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasMajorIterationFrequency ( )
The frequency at which extra work is performed to make major algorithmic
decisions, e.g., performing restarts and updating the primal weight. Major
iterations also trigger a termination check. For best performance using the
NO_RESTARTS or EVERY_MAJOR_ITERATION rule, one should perform a log-scale
grid search over this parameter, for example, over powers of two.
ADAPTIVE_HEURISTIC is mostly insensitive to this value.

optional int32 major_iteration_frequency = 4 [default = 64];

Returns
Whether the majorIterationFrequency field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3853 of file PrimalDualHybridGradientParams.java.

◆ hasMalitskyPockParameters()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasMalitskyPockParameters ( )

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Returns
Whether the malitskyPockParameters field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4775 of file PrimalDualHybridGradientParams.java.

◆ hasNecessaryReductionForRestart()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasNecessaryReductionForRestart ( )
For ADAPTIVE_HEURISTIC only: A relative reduction in the potential function
by this amount triggers a restart if, additionally, the quality of the
iterates appears to be getting worse. The value must be in the interval
[sufficient_reduction_for_restart, 1). Smaller values make restarts less
frequent, and larger values make them more frequent.

optional double necessary_reduction_for_restart = 17 [default = 0.9];

Returns
Whether the necessaryReductionForRestart field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4531 of file PrimalDualHybridGradientParams.java.

◆ hasNumShards()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasNumShards ( )
For more efficient parallel computation, the matrices and vectors are
divided (virtually) into num_shards shards. Results are computed
independently for each shard and then combined. As a consequence, the order
of computation, and hence floating point roundoff, depends on the number of
shards so reproducible results require using the same value for num_shards.
However, for efficiency num_shards should a be at least num_threads, and
preferably at least 4*num_threads to allow better load balancing. If
num_shards is positive, the computation will use that many shards.
Otherwise a default that depends on num_threads will be used.

optional int32 num_shards = 27 [default = 0];

Returns
Whether the numShards field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3532 of file PrimalDualHybridGradientParams.java.

◆ hasNumThreads()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasNumThreads ( )
The number of threads to use. Must be positive.
Try various values of num_threads, up to the number of physical cores.
Performance may not be monotonically increasing with the number of threads
because of memory bandwidth limitations.

optional int32 num_threads = 2 [default = 1];

Returns
Whether the numThreads field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3459 of file PrimalDualHybridGradientParams.java.

◆ hasPresolveOptions()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasPresolveOptions ( )

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Returns
Whether the presolveOptions field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4215 of file PrimalDualHybridGradientParams.java.

◆ hasPrimalWeightUpdateSmoothing()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasPrimalWeightUpdateSmoothing ( )
This parameter controls exponential smoothing of log(primal_weight) when a
primal weight update occurs (i.e., when the ratio of primal and dual step
sizes is adjusted). At 0.0, the primal weight will be frozen at its initial
value and there will be no dynamic updates in the algorithm. At 1.0, there
is no smoothing in the updates. The default of 0.5 generally performs well,
but has been observed on occasion to trigger unstable swings in the primal
weight. We recommend also trying 0.0 (disabling primal weight updates), in
which case you must also tune initial_primal_weight.

optional double primal_weight_update_smoothing = 7 [default = 0.5];

Returns
Whether the primalWeightUpdateSmoothing field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4061 of file PrimalDualHybridGradientParams.java.

◆ hasRecordIterationStats()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasRecordIterationStats ( )
If true, the iteration_stats field of the SolveLog output will be populated
at every iteration. Note that we only compute solution statistics at
termination checks. Setting this parameter to true may substantially
increase the size of the output.

optional bool record_iteration_stats = 3;

Returns
Whether the recordIterationStats field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3615 of file PrimalDualHybridGradientParams.java.

◆ hasRestartStrategy()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasRestartStrategy ( )
NO_RESTARTS and EVERY_MAJOR_ITERATION occasionally outperform the default.
If using a strategy other than ADAPTIVE_HEURISTIC, you must also tune
major_iteration_frequency.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.RestartStrategy restart_strategy = 6 [default = ADAPTIVE_HEURISTIC];

Returns
Whether the restartStrategy field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3989 of file PrimalDualHybridGradientParams.java.

◆ hasSufficientReductionForRestart()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasSufficientReductionForRestart ( )
For ADAPTIVE_HEURISTIC and ADAPTIVE_DISTANCE_BASED only: A relative
reduction in the potential function by this amount always triggers a
restart. Must be between 0.0 and 1.0.

optional double sufficient_reduction_for_restart = 11 [default = 0.1];

Returns
Whether the sufficientReductionForRestart field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 4465 of file PrimalDualHybridGradientParams.java.

◆ hasTerminationCheckFrequency()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasTerminationCheckFrequency ( )
The frequency (based on a counter reset every major iteration) to check for
termination (involves extra work) and log iteration stats. Termination
checks do not affect algorithmic progress unless termination is triggered.

optional int32 termination_check_frequency = 5 [default = 64];

Returns
Whether the terminationCheckFrequency field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3926 of file PrimalDualHybridGradientParams.java.

◆ hasTerminationCriteria()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasTerminationCriteria ( )

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Returns
Whether the terminationCriteria field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3332 of file PrimalDualHybridGradientParams.java.

◆ hasUseDiagonalQpTrustRegionSolver()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasUseDiagonalQpTrustRegionSolver ( )
When solving QPs with diagonal objective matrices, this option can be
turned on to enable an experimental solver that avoids linearization of the
quadratic term. The `diagonal_qp_solver_accuracy` parameter controls the
solve accuracy.
TODO(user): Turn this option on by default for quadratic
programs after numerical evaluation.

optional bool use_diagonal_qp_trust_region_solver = 23 [default = false];

Returns
Whether the useDiagonalQpTrustRegionSolver field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5251 of file PrimalDualHybridGradientParams.java.

◆ hasUseFeasibilityPolishing()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasUseFeasibilityPolishing ( )
If true, periodically runs feasibility polishing, which attempts to move
from latest average iterate to one that is closer to feasibility (i.e., has
smaller primal and dual residuals) while probably increasing the objective
gap. This is useful primarily when the feasibility tolerances are fairly
tight and the objective gap tolerance is somewhat looser. Note that this
does not change the termination criteria, but rather can help achieve the
termination criteria more quickly when the objective gap is not as
important as feasibility.

`use_feasibility_polishing` cannot be used with glop presolve, and requires
`handle_some_primal_gradients_on_finite_bounds_as_residuals == false`.
`use_feasibility_polishing` can only be used with linear programs.

Feasibility polishing runs two separate phases, primal feasibility and dual
feasibility. The primal feasibility phase runs PDHG on the primal
feasibility problem (obtained by changing the objective vector to all
zeros), using the average primal iterate and zero dual (which is optimal
for the primal feasibility problem) as the initial solution. The dual
feasibility phase runs PDHG on the dual feasibility problem (obtained by
changing all finite variable and constraint bounds to zero), using the
average dual iterate and zero primal (which is optimal for the dual
feasibility problem) as the initial solution. The primal solution from the
primal feasibility phase and dual solution from the dual feasibility phase
are then combined (forming a solution of type
`POINT_TYPE_FEASIBILITY_POLISHING_SOLUTION`) and checked against the
termination criteria.

optional bool use_feasibility_polishing = 30 [default = false];

Returns
Whether the useFeasibilityPolishing field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 5419 of file PrimalDualHybridGradientParams.java.

◆ hasVerbosityLevel()

boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.hasVerbosityLevel ( )
The verbosity of logging.
0: No informational logging. (Errors are logged.)
1: Summary statistics only. No iteration-level details.
2: A table of iteration-level statistics is logged.
(See ToShortString() in primal_dual_hybrid_gradient.cc).
3: A more detailed table of iteration-level statistics is logged.
(See ToString() in primal_dual_hybrid_gradient.cc).
4: For iteration-level details, prints the statistics of both the average
(prefixed with A) and the current iterate (prefixed with C). Also prints
internal algorithmic state and details.
Logging at levels 2-4 also includes messages from level 1.

optional int32 verbosity_level = 26 [default = 0];

Returns
Whether the verbosityLevel field is set.

Implements com.google.ortools.pdlp.PrimalDualHybridGradientParamsOrBuilder.

Definition at line 3690 of file PrimalDualHybridGradientParams.java.

◆ internalGetFieldAccessorTable()

com.google.protobuf.GeneratedMessage.FieldAccessorTable com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.internalGetFieldAccessorTable ( )
protected

Definition at line 2801 of file PrimalDualHybridGradientParams.java.

◆ isInitialized()

final boolean com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.isInitialized ( )

Definition at line 3125 of file PrimalDualHybridGradientParams.java.

◆ mergeAdaptiveLinesearchParameters()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.mergeAdaptiveLinesearchParameters ( com.google.ortools.pdlp.AdaptiveLinesearchParams value)

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Definition at line 4701 of file PrimalDualHybridGradientParams.java.

◆ mergeFrom() [1/3]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.mergeFrom ( com.google.ortools.pdlp.PrimalDualHybridGradientParams other)

Definition at line 3031 of file PrimalDualHybridGradientParams.java.

◆ mergeFrom() [2/3]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.mergeFrom ( com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry ) throws java.io.IOException

Definition at line 3130 of file PrimalDualHybridGradientParams.java.

◆ mergeFrom() [3/3]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.mergeFrom ( com.google.protobuf.Message other)

Definition at line 3022 of file PrimalDualHybridGradientParams.java.

◆ mergeMalitskyPockParameters()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.mergeMalitskyPockParameters ( com.google.ortools.pdlp.MalitskyPockParams value)

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Definition at line 4822 of file PrimalDualHybridGradientParams.java.

◆ mergePresolveOptions()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.mergePresolveOptions ( com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions value)

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Definition at line 4262 of file PrimalDualHybridGradientParams.java.

◆ mergeTerminationCriteria()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.mergeTerminationCriteria ( com.google.ortools.pdlp.TerminationCriteria value)

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Definition at line 3379 of file PrimalDualHybridGradientParams.java.

◆ setAdaptiveLinesearchParameters() [1/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setAdaptiveLinesearchParameters ( com.google.ortools.pdlp.AdaptiveLinesearchParams value)

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Definition at line 4671 of file PrimalDualHybridGradientParams.java.

◆ setAdaptiveLinesearchParameters() [2/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setAdaptiveLinesearchParameters ( com.google.ortools.pdlp.AdaptiveLinesearchParams.Builder builderForValue)

optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18;

Definition at line 4687 of file PrimalDualHybridGradientParams.java.

◆ setDiagonalQpTrustRegionSolverTolerance()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setDiagonalQpTrustRegionSolverTolerance ( double value)
The solve tolerance of the experimental trust region solver for diagonal
QPs, controlling the accuracy of binary search over a one-dimensional
scaling parameter. Smaller values imply smaller relative error of the final
solution vector.
TODO(user): Find an expression for the final relative error.

optional double diagonal_qp_trust_region_solver_tolerance = 24 [default = 1e-08];

Parameters
valueThe diagonalQpTrustRegionSolverTolerance to set.
Returns
This builder for chaining.

Definition at line 5358 of file PrimalDualHybridGradientParams.java.

◆ setHandleSomePrimalGradientsOnFiniteBoundsAsResiduals()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setHandleSomePrimalGradientsOnFiniteBoundsAsResiduals ( boolean value)
See
https://developers.google.com/optimization/lp/pdlp_math#treating_some_variable_bounds_as_infinite
for a description of this flag.

optional bool handle_some_primal_gradients_on_finite_bounds_as_residuals = 29 [default = true];

Parameters
valueThe handleSomePrimalGradientsOnFiniteBoundsAsResiduals to set.
Returns
This builder for chaining.

Definition at line 5212 of file PrimalDualHybridGradientParams.java.

◆ setInfiniteConstraintBoundThreshold()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setInfiniteConstraintBoundThreshold ( double value)
Constraint bounds with absolute value at least this threshold are replaced
with infinities.
NOTE: This primarily affects the relative convergence criteria. A smaller
value makes the relative convergence criteria stronger. It also affects the
problem statistics LOG()ed at the start of the run, and the default initial
primal weight, since that is based on the norm of the bounds.

optional double infinite_constraint_bound_threshold = 22 [default = inf];

Parameters
valueThe infiniteConstraintBoundThreshold to set.
Returns
This builder for chaining.

Definition at line 5145 of file PrimalDualHybridGradientParams.java.

◆ setInitialPrimalWeight()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setInitialPrimalWeight ( double value)
The initial value of the primal weight (i.e., the ratio of primal and dual
step sizes). The primal weight remains fixed throughout the solve if
primal_weight_update_smoothing = 0.0. If unset, the default is the ratio of
the norm of the objective vector to the L2 norm of the combined constraint
bounds vector (as defined above). If this ratio is not finite and positive,
then the default is 1.0 instead. For tuning, try powers of 10, for example,
from 10^{-6} to 10^6.

optional double initial_primal_weight = 8;

Parameters
valueThe initialPrimalWeight to set.
Returns
This builder for chaining.

Definition at line 4180 of file PrimalDualHybridGradientParams.java.

◆ setInitialStepSizeScaling()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setInitialStepSizeScaling ( double value)
Scaling factor applied to the initial step size (all step sizes if
linesearch_rule == CONSTANT_STEP_SIZE_RULE).

optional double initial_step_size_scaling = 25 [default = 1];

Parameters
valueThe initialStepSizeScaling to set.
Returns
This builder for chaining.

Definition at line 4926 of file PrimalDualHybridGradientParams.java.

◆ setL2NormRescaling()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setL2NormRescaling ( boolean value)
If true, applies L_2 norm rescaling after the Ruiz rescaling. Heuristically
this has been found to help convergence.

optional bool l2_norm_rescaling = 10 [default = true];

Parameters
valueThe l2NormRescaling to set.
Returns
This builder for chaining.

Definition at line 4430 of file PrimalDualHybridGradientParams.java.

◆ setLinesearchRule()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setLinesearchRule ( com.google.ortools.pdlp.PrimalDualHybridGradientParams.LinesearchRule value)
Linesearch rule applied at each major iteration.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.LinesearchRule linesearch_rule = 12 [default = ADAPTIVE_LINESEARCH_RULE];

Parameters
valueThe linesearchRule to set.
Returns
This builder for chaining.

Definition at line 4623 of file PrimalDualHybridGradientParams.java.

◆ setLInfRuizIterations()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setLInfRuizIterations ( int value)
Number of L_infinity Ruiz rescaling iterations to apply to the constraint
matrix. Zero disables this rescaling pass. Recommended values to try when
tuning are 0, 5, and 10.

optional int32 l_inf_ruiz_iterations = 9 [default = 5];

Parameters
valueThe lInfRuizIterations to set.
Returns
This builder for chaining.

Definition at line 4369 of file PrimalDualHybridGradientParams.java.

◆ setLogIntervalSeconds()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setLogIntervalSeconds ( double value)
Time between iteration-level statistics logging (if `verbosity_level > 1`).
Since iteration-level statistics are only generated when performing
termination checks, logs will be generated from next termination check
after `log_interval_seconds` have elapsed. Should be >= 0.0. 0.0 (the
default) means log statistics at every termination check.

optional double log_interval_seconds = 31 [default = 0];

Parameters
valueThe logIntervalSeconds to set.
Returns
This builder for chaining.

Definition at line 3812 of file PrimalDualHybridGradientParams.java.

◆ setMajorIterationFrequency()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setMajorIterationFrequency ( int value)
The frequency at which extra work is performed to make major algorithmic
decisions, e.g., performing restarts and updating the primal weight. Major
iterations also trigger a termination check. For best performance using the
NO_RESTARTS or EVERY_MAJOR_ITERATION rule, one should perform a log-scale
grid search over this parameter, for example, over powers of two.
ADAPTIVE_HEURISTIC is mostly insensitive to this value.

optional int32 major_iteration_frequency = 4 [default = 64];

Parameters
valueThe majorIterationFrequency to set.
Returns
This builder for chaining.

Definition at line 3887 of file PrimalDualHybridGradientParams.java.

◆ setMalitskyPockParameters() [1/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setMalitskyPockParameters ( com.google.ortools.pdlp.MalitskyPockParams value)

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Definition at line 4792 of file PrimalDualHybridGradientParams.java.

◆ setMalitskyPockParameters() [2/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setMalitskyPockParameters ( com.google.ortools.pdlp.MalitskyPockParams.Builder builderForValue)

optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19;

Definition at line 4808 of file PrimalDualHybridGradientParams.java.

◆ setNecessaryReductionForRestart()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setNecessaryReductionForRestart ( double value)
For ADAPTIVE_HEURISTIC only: A relative reduction in the potential function
by this amount triggers a restart if, additionally, the quality of the
iterates appears to be getting worse. The value must be in the interval
[sufficient_reduction_for_restart, 1). Smaller values make restarts less
frequent, and larger values make them more frequent.

optional double necessary_reduction_for_restart = 17 [default = 0.9];

Parameters
valueThe necessaryReductionForRestart to set.
Returns
This builder for chaining.

Definition at line 4563 of file PrimalDualHybridGradientParams.java.

◆ setNumShards()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setNumShards ( int value)
For more efficient parallel computation, the matrices and vectors are
divided (virtually) into num_shards shards. Results are computed
independently for each shard and then combined. As a consequence, the order
of computation, and hence floating point roundoff, depends on the number of
shards so reproducible results require using the same value for num_shards.
However, for efficiency num_shards should a be at least num_threads, and
preferably at least 4*num_threads to allow better load balancing. If
num_shards is positive, the computation will use that many shards.
Otherwise a default that depends on num_threads will be used.

optional int32 num_shards = 27 [default = 0];

Parameters
valueThe numShards to set.
Returns
This builder for chaining.

Definition at line 3572 of file PrimalDualHybridGradientParams.java.

◆ setNumThreads()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setNumThreads ( int value)
The number of threads to use. Must be positive.
Try various values of num_threads, up to the number of physical cores.
Performance may not be monotonically increasing with the number of threads
because of memory bandwidth limitations.

optional int32 num_threads = 2 [default = 1];

Parameters
valueThe numThreads to set.
Returns
This builder for chaining.

Definition at line 3489 of file PrimalDualHybridGradientParams.java.

◆ setPresolveOptions() [1/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setPresolveOptions ( com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions value)

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Definition at line 4232 of file PrimalDualHybridGradientParams.java.

◆ setPresolveOptions() [2/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setPresolveOptions ( com.google.ortools.pdlp.PrimalDualHybridGradientParams.PresolveOptions.Builder builderForValue)

optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16;

Definition at line 4248 of file PrimalDualHybridGradientParams.java.

◆ setPrimalWeightUpdateSmoothing()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setPrimalWeightUpdateSmoothing ( double value)
This parameter controls exponential smoothing of log(primal_weight) when a
primal weight update occurs (i.e., when the ratio of primal and dual step
sizes is adjusted). At 0.0, the primal weight will be frozen at its initial
value and there will be no dynamic updates in the algorithm. At 1.0, there
is no smoothing in the updates. The default of 0.5 generally performs well,
but has been observed on occasion to trigger unstable swings in the primal
weight. We recommend also trying 0.0 (disabling primal weight updates), in
which case you must also tune initial_primal_weight.

optional double primal_weight_update_smoothing = 7 [default = 0.5];

Parameters
valueThe primalWeightUpdateSmoothing to set.
Returns
This builder for chaining.

Definition at line 4099 of file PrimalDualHybridGradientParams.java.

◆ setRandomProjectionSeeds()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setRandomProjectionSeeds ( int index,
int value )
Seeds for generating (pseudo-)random projections of iterates during
termination checks. For each seed, the projection of the primal and dual
solutions onto random planes in primal and dual space will be computed and
added the IterationStats if record_iteration_stats is true. The random
planes generated will be determined by the seeds, the primal and dual
dimensions, and num_threads.

repeated int32 random_projection_seeds = 28 [packed = true];

Parameters
indexThe index to set the value at.
valueThe randomProjectionSeeds to set.
Returns
This builder for chaining.

Definition at line 5022 of file PrimalDualHybridGradientParams.java.

◆ setRecordIterationStats()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setRecordIterationStats ( boolean value)
If true, the iteration_stats field of the SolveLog output will be populated
at every iteration. Note that we only compute solution statistics at
termination checks. Setting this parameter to true may substantially
increase the size of the output.

optional bool record_iteration_stats = 3;

Parameters
valueThe recordIterationStats to set.
Returns
This builder for chaining.

Definition at line 3645 of file PrimalDualHybridGradientParams.java.

◆ setRestartStrategy()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setRestartStrategy ( com.google.ortools.pdlp.PrimalDualHybridGradientParams.RestartStrategy value)
NO_RESTARTS and EVERY_MAJOR_ITERATION occasionally outperform the default.
If using a strategy other than ADAPTIVE_HEURISTIC, you must also tune
major_iteration_frequency.

optional .operations_research.pdlp.PrimalDualHybridGradientParams.RestartStrategy restart_strategy = 6 [default = ADAPTIVE_HEURISTIC];

Parameters
valueThe restartStrategy to set.
Returns
This builder for chaining.

Definition at line 4018 of file PrimalDualHybridGradientParams.java.

◆ setSufficientReductionForRestart()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setSufficientReductionForRestart ( double value)
For ADAPTIVE_HEURISTIC and ADAPTIVE_DISTANCE_BASED only: A relative
reduction in the potential function by this amount always triggers a
restart. Must be between 0.0 and 1.0.

optional double sufficient_reduction_for_restart = 11 [default = 0.1];

Parameters
valueThe sufficientReductionForRestart to set.
Returns
This builder for chaining.

Definition at line 4493 of file PrimalDualHybridGradientParams.java.

◆ setTerminationCheckFrequency()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setTerminationCheckFrequency ( int value)
The frequency (based on a counter reset every major iteration) to check for
termination (involves extra work) and log iteration stats. Termination
checks do not affect algorithmic progress unless termination is triggered.

optional int32 termination_check_frequency = 5 [default = 64];

Parameters
valueThe terminationCheckFrequency to set.
Returns
This builder for chaining.

Definition at line 3954 of file PrimalDualHybridGradientParams.java.

◆ setTerminationCriteria() [1/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setTerminationCriteria ( com.google.ortools.pdlp.TerminationCriteria value)

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Definition at line 3349 of file PrimalDualHybridGradientParams.java.

◆ setTerminationCriteria() [2/2]

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setTerminationCriteria ( com.google.ortools.pdlp.TerminationCriteria.Builder builderForValue)

optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1;

Definition at line 3365 of file PrimalDualHybridGradientParams.java.

◆ setUseDiagonalQpTrustRegionSolver()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setUseDiagonalQpTrustRegionSolver ( boolean value)
When solving QPs with diagonal objective matrices, this option can be
turned on to enable an experimental solver that avoids linearization of the
quadratic term. The `diagonal_qp_solver_accuracy` parameter controls the
solve accuracy.
TODO(user): Turn this option on by default for quadratic
programs after numerical evaluation.

optional bool use_diagonal_qp_trust_region_solver = 23 [default = false];

Parameters
valueThe useDiagonalQpTrustRegionSolver to set.
Returns
This builder for chaining.

Definition at line 5285 of file PrimalDualHybridGradientParams.java.

◆ setUseFeasibilityPolishing()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setUseFeasibilityPolishing ( boolean value)
If true, periodically runs feasibility polishing, which attempts to move
from latest average iterate to one that is closer to feasibility (i.e., has
smaller primal and dual residuals) while probably increasing the objective
gap. This is useful primarily when the feasibility tolerances are fairly
tight and the objective gap tolerance is somewhat looser. Note that this
does not change the termination criteria, but rather can help achieve the
termination criteria more quickly when the objective gap is not as
important as feasibility.

`use_feasibility_polishing` cannot be used with glop presolve, and requires
`handle_some_primal_gradients_on_finite_bounds_as_residuals == false`.
`use_feasibility_polishing` can only be used with linear programs.

Feasibility polishing runs two separate phases, primal feasibility and dual
feasibility. The primal feasibility phase runs PDHG on the primal
feasibility problem (obtained by changing the objective vector to all
zeros), using the average primal iterate and zero dual (which is optimal
for the primal feasibility problem) as the initial solution. The dual
feasibility phase runs PDHG on the dual feasibility problem (obtained by
changing all finite variable and constraint bounds to zero), using the
average dual iterate and zero primal (which is optimal for the dual
feasibility problem) as the initial solution. The primal solution from the
primal feasibility phase and dual solution from the dual feasibility phase
are then combined (forming a solution of type
`POINT_TYPE_FEASIBILITY_POLISHING_SOLUTION`) and checked against the
termination criteria.

optional bool use_feasibility_polishing = 30 [default = false];

Parameters
valueThe useFeasibilityPolishing to set.
Returns
This builder for chaining.

Definition at line 5493 of file PrimalDualHybridGradientParams.java.

◆ setVerbosityLevel()

Builder com.google.ortools.pdlp.PrimalDualHybridGradientParams.Builder.setVerbosityLevel ( int value)
The verbosity of logging.
0: No informational logging. (Errors are logged.)
1: Summary statistics only. No iteration-level details.
2: A table of iteration-level statistics is logged.
(See ToShortString() in primal_dual_hybrid_gradient.cc).
3: A more detailed table of iteration-level statistics is logged.
(See ToString() in primal_dual_hybrid_gradient.cc).
4: For iteration-level details, prints the statistics of both the average
(prefixed with A) and the current iterate (prefixed with C). Also prints
internal algorithmic state and details.
Logging at levels 2-4 also includes messages from level 1.

optional int32 verbosity_level = 26 [default = 0];

Parameters
valueThe verbosityLevel to set.
Returns
This builder for chaining.

Definition at line 3734 of file PrimalDualHybridGradientParams.java.


The documentation for this class was generated from the following file: