Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
revised_simplex.h
Go to the documentation of this file.
1// Copyright 2010-2024 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
14// Solves a Linear Programming problem using the Revised Simplex algorithm
15// as described by G.B. Dantzig.
16// The general form is:
17// min c.x where c and x are n-vectors,
18// subject to Ax = b where A is an mxn-matrix, b an m-vector,
19// with l <= x <= u, i.e.
20// l_i <= x_i <= u_i for all i in {1 .. m}.
21//
22// c.x is called the objective function.
23// Each row a_i of A is an n-vector, and a_i.x = b_i is a linear constraint.
24// A is called the constraint matrix.
25// b is called the right hand side (rhs) of the problem.
26// The constraints l_i <= x_i <= u_i are called the generalized bounds
27// of the problem (most introductory textbooks only deal with x_i >= 0, as
28// did the first version of the Simplex algorithm). Note that l_i and u_i
29// can be -infinity and +infinity, respectively.
30//
31// To simplify the entry of data, this code actually handles problems in the
32// form:
33// min c.x where c and x are n-vectors,
34// subject to:
35// A1 x <= b1
36// A2 x >= b2
37// A3 x = b3
38// l <= x <= u
39//
40// It transforms the above problem into
41// min c.x where c and x are n-vectors,
42// subject to:
43// A1 x + s1 = b1
44// A2 x - s2 = b2
45// A3 x = b3
46// l <= x <= u
47// s1 >= 0, s2 >= 0
48// where xT = (x1, x2, x3),
49// s1 is an m1-vector (m1 being the height of A1),
50// s2 is an m2-vector (m2 being the height of A2).
51//
52// The following are very good references for terminology, data structures,
53// and algorithms. They all contain a wealth of references.
54//
55// Vasek Chvátal, "Linear Programming," W.H. Freeman, 1983. ISBN 978-0716715870.
56// http://www.amazon.com/dp/0716715872
57//
58// Robert J. Vanderbei, "Linear Programming: Foundations and Extensions,"
59// Springer, 2010, ISBN-13: 978-1441944979
60// http://www.amazon.com/dp/1441944974
61//
62// Istvan Maros, "Computational Techniques of the Simplex Method.", Springer,
63// 2002, ISBN 978-1402073328
64// http://www.amazon.com/dp/1402073321
65//
66// ===============================================
67// Short description of the dual simplex algorithm.
68//
69// The dual simplex algorithm uses the same data structure as the primal, but
70// progresses towards the optimal solution in a different way:
71// * It tries to keep the dual values dual-feasible at all time which means that
72// the reduced costs are of the correct sign depending on the bounds of the
73// non-basic variables. As a consequence the values of the basic variable are
74// out of bound until the optimal is reached.
75// * A basic leaving variable is selected first (dual pricing) and then a
76// corresponding entering variable is selected. This is done in such a way
77// that the dual objective value increases (lower bound on the optimal
78// solution).
79// * Once the basis pivot is chosen, the variable values and the reduced costs
80// are updated the same way as in the primal algorithm.
81//
82// Good references on the Dual simplex algorithm are:
83//
84// Robert Fourer, "Notes on the Dual simplex Method", March 14, 1994.
85// http://users.iems.northwestern.edu/~4er/WRITINGS/dual.pdf
86//
87// Achim Koberstein, "The dual simplex method, techniques for a fast and stable
88// implementation", PhD, Paderborn, Univ., 2005.
89// http://digital.ub.uni-paderborn.de/hs/download/pdf/3885?originalFilename=true
90
91#ifndef OR_TOOLS_GLOP_REVISED_SIMPLEX_H_
92#define OR_TOOLS_GLOP_REVISED_SIMPLEX_H_
93
94#include <cstdint>
95#include <string>
96#include <vector>
97
98#include "absl/base/attributes.h"
99#include "absl/log/die_if_null.h"
100#include "absl/random/bit_gen_ref.h"
101#include "absl/random/random.h"
102#include "ortools/base/types.h"
107#include "ortools/glop/parameters.pb.h"
108#include "ortools/glop/pricing.h"
111#include "ortools/glop/status.h"
122#include "ortools/util/logging.h"
124#include "ortools/util/stats.h"
126
127namespace operations_research {
128namespace glop {
129
130// Entry point of the revised simplex algorithm implementation.
131class RevisedSimplex {
132 public:
134
135 // This type is neither copyable nor movable.
136 RevisedSimplex(const RevisedSimplex&) = delete;
139 // Sets or gets the algorithm parameters to be used on the next Solve().
140 void SetParameters(const GlopParameters& parameters);
141 const GlopParameters& GetParameters() const { return parameters_; }
143 // Solves the given linear program.
144 //
145 // We accept two forms of LinearProgram:
146 // - The lp can be in the equations form Ax = 0 created by
147 // LinearProgram::AddSlackVariablesForAllRows(), i.e. the rightmost square
148 // submatrix of A is an identity matrix, all its columns have been marked as
149 // slack variables, and the bounds of all constraints have been set to 0.
150 // - If not, we will convert it internally while copying it to the internal
151 // structure used.
152 //
153 // By default, the algorithm tries to exploit the computation done during the
154 // last Solve() call. It will analyze the difference of the new linear program
155 // and try to use the previously computed solution as a warm-start. To disable
156 // this behavior or give explicit warm-start data, use one of the State*()
157 // functions below.
158 ABSL_MUST_USE_RESULT Status Solve(const LinearProgram& lp,
160
161 // Do not use the current solution as a warm-start for the next Solve(). The
162 // next Solve() will behave as if the class just got created.
164
165 // Uses the given state as a warm-start for the next Solve() call.
166 void LoadStateForNextSolve(const BasisState& state);
167
168 // Advanced usage. While constructing the initial basis, if this is called
169 // then we will use these values as the initial starting value for the FREE
170 // variables.
172
173 // Advanced usage. Tells the next Solve() that the matrix inside the linear
174 // program will not change compared to the one used the last time Solve() was
175 // called. This allows to bypass the somewhat costly check of comparing both
176 // matrices. Note that this call will be ignored if Solve() was never called
177 // or if ClearStateForNextSolve() was called.
180
181 // Getters to retrieve all the information computed by the last Solve().
182 RowIndex GetProblemNumRows() const;
183 ColIndex GetProblemNumCols() const;
186 int64_t GetNumberOfIterations() const;
187 Fractional GetVariableValue(ColIndex col) const;
188 Fractional GetReducedCost(ColIndex col) const;
189 const DenseRow& GetReducedCosts() const;
190 Fractional GetDualValue(RowIndex row) const;
191 Fractional GetConstraintActivity(RowIndex row) const;
192 VariableStatus GetVariableStatus(ColIndex col) const;
194 const BasisState& GetState() const;
195 double DeterministicTime() const;
196 bool objective_limit_reached() const { return objective_limit_reached_; }
198 // If the problem status is PRIMAL_UNBOUNDED (respectively DUAL_UNBOUNDED),
199 // then the solver has a corresponding primal (respectively dual) ray to show
200 // the unboundness. From a primal (respectively dual) feasible solution any
201 // positive multiple of this ray can be added to the solution and keep it
202 // feasible. Moreover, by doing so, the objective of the problem will improve
203 // and its magnitude will go to infinity.
204 //
205 // Note that when the problem is DUAL_UNBOUNDED, the dual ray is also known as
206 // the Farkas proof of infeasibility of the problem.
207 const DenseRow& GetPrimalRay() const;
208 const DenseColumn& GetDualRay() const;
209
210 // This is the "dual ray" linear combination of the matrix rows.
211 const DenseRow& GetDualRayRowCombination() const;
212
213 // Returns the index of the column in the basis and the basis factorization.
214 // Note that the order of the column in the basis is important since it is the
215 // one used by the various solve functions provided by the BasisFactorization
216 // class.
217 ColIndex GetBasis(RowIndex row) const;
218
219 const ScatteredRow& GetUnitRowLeftInverse(RowIndex row) {
221 }
222
223 // Returns a copy of basis_ vector for outside applications (like cuts) to
224 // have the correspondence between rows and columns of the dictionary.
225 RowToColMapping GetBasisVector() const { return basis_; }
228
229 // Returns statistics about this class as a string.
230 std::string StatString();
231
232 // Computes the dictionary B^-1*N on-the-fly row by row. Returns the resulting
233 // matrix as a vector of sparse rows so that it is easy to use it on the left
234 // side in the matrix multiplication. Runs in O(num_non_zeros_in_matrix).
235 // TODO(user): Use row scales as well.
236 RowMajorSparseMatrix ComputeDictionary(const DenseRow* column_scales);
237
238 // Initializes the matrix for the given 'linear_program' and 'state' and
239 // computes the variable values for basic variables using non-basic variables.
240 void ComputeBasicVariablesForState(const LinearProgram& linear_program,
241 const BasisState& state);
242
243 // This is used in a MIP context to polish the final basis. We assume that the
244 // columns for which SetIntegralityScale() has been called correspond to
245 // integral variable once multiplied by the given factor.
246 void ClearIntegralityScales() { integrality_scale_.clear(); }
247 void SetIntegralityScale(ColIndex col, Fractional scale);
248
249 void SetLogger(SolverLogger* logger) { logger_ = logger; }
251 private:
252 struct IterationStats : public StatsGroup {
253 IterationStats()
254 : StatsGroup("IterationStats"),
255 total("total", this),
256 normal("normal", this),
257 bound_flip("bound_flip", this),
258 refactorize("refactorize", this),
259 degenerate("degenerate", this),
260 num_dual_flips("num_dual_flips", this),
261 degenerate_run_size("degenerate_run_size", this) {}
262 TimeDistribution total;
263 TimeDistribution normal;
264 TimeDistribution bound_flip;
265 TimeDistribution refactorize;
266 TimeDistribution degenerate;
267 IntegerDistribution num_dual_flips;
268 IntegerDistribution degenerate_run_size;
269 };
270
271 struct RatioTestStats : public StatsGroup {
272 RatioTestStats()
273 : StatsGroup("RatioTestStats"),
274 bound_shift("bound_shift", this),
275 abs_used_pivot("abs_used_pivot", this),
276 abs_tested_pivot("abs_tested_pivot", this),
277 abs_skipped_pivot("abs_skipped_pivot", this),
278 direction_density("direction_density", this),
279 leaving_choices("leaving_choices", this),
280 num_perfect_ties("num_perfect_ties", this) {}
281 DoubleDistribution bound_shift;
282 DoubleDistribution abs_used_pivot;
283 DoubleDistribution abs_tested_pivot;
284 DoubleDistribution abs_skipped_pivot;
285 RatioDistribution direction_density;
286 IntegerDistribution leaving_choices;
287 IntegerDistribution num_perfect_ties;
288 };
289
290 enum class Phase { FEASIBILITY, OPTIMIZATION, PUSH };
291
292 enum class RefactorizationReason {
293 DEFAULT,
294 SMALL_PIVOT,
295 IMPRECISE_PIVOT,
296 NORM,
297 RC,
298 VAR_VALUES,
299 FINAL_CHECK
300 };
301
302 // Propagates parameters_ to all the other classes that need it.
303 //
304 // TODO(user): Maybe a better design is for them to have a reference to a
305 // unique parameters object? It will clutter a bit more these classes'
306 // constructor though.
307 void PropagateParameters();
308
309 // Returns a string containing the same information as with GetSolverStats,
310 // but in a much more human-readable format. For example:
311 // Problem status : Optimal
312 // Solving time : 1.843
313 // Number of iterations : 12345
314 // Time for solvability (first phase) : 1.343
315 // Number of iterations for solvability : 10000
316 // Time for optimization : 0.5
317 // Number of iterations for optimization : 2345
318 // Maximum time allowed in seconds : 6000
319 // Maximum number of iterations : 1000000
320 // Stop after first basis : 0
321 std::string GetPrettySolverStats() const;
322
323 // Returns a string containing formatted information about the variable
324 // corresponding to column col.
325 std::string SimpleVariableInfo(ColIndex col) const;
326
327 // Displays a short string with the current iteration and objective value.
328 void DisplayIterationInfo(bool primal, RefactorizationReason reason =
329 RefactorizationReason::DEFAULT);
330
331 // Displays the error bounds of the current solution.
332 void DisplayErrors();
333
334 // Displays the status of the variables.
335 void DisplayInfoOnVariables() const;
336
337 // Displays the bounds of the variables.
338 void DisplayVariableBounds();
339
340 // Displays the following information:
341 // * Linear Programming problem as a dictionary, taking into
342 // account the iterations that have been made;
343 // * Variable info;
344 // * Reduced costs;
345 // * Variable bounds.
346 // A dictionary is in the form:
347 // xB = value + sum_{j in N} pa_ij x_j
348 // z = objective_value + sum_{i in N} rc_i x_i
349 // where the pa's are the coefficients of the matrix after the pivotings
350 // and the rc's are the reduced costs, i.e. the coefficients of the objective
351 // after the pivotings.
352 // Dictionaries are the modern way of presenting the result of an iteration
353 // of the Simplex algorithm in the literature.
354 void DisplayRevisedSimplexDebugInfo();
355
356 // Displays the Linear Programming problem as it was input.
357 void DisplayProblem() const;
358
359 // Returns the current objective value. This is just the sum of the current
360 // variable values times their current cost.
361 Fractional ComputeObjectiveValue() const;
362
363 // Returns the current objective of the linear program given to Solve() using
364 // the initial costs, maximization direction, objective offset and objective
365 // scaling factor.
366 Fractional ComputeInitialProblemObjectiveValue() const;
367
368 // Assigns names to variables. Variables in the input will be named
369 // x1..., slack variables will be s1... .
370 void SetVariableNames();
371
372 // Sets the variable status and derives the variable value according to the
373 // exact status definition. This can only be called for non-basic variables
374 // because the value of a basic variable is computed from the values of the
375 // non-basic variables.
376 void SetNonBasicVariableStatusAndDeriveValue(ColIndex col,
378
379 // Checks if the basis_ and is_basic_ arrays are well formed. Also checks that
380 // the variable statuses are consistent with this basis. Returns true if this
381 // is the case. This is meant to be used in debug mode only.
382 bool BasisIsConsistent() const;
383
384 // Moves the column entering_col into the basis at position basis_row. Removes
385 // the current basis column at position basis_row from the basis and sets its
386 // status to leaving_variable_status.
387 void UpdateBasis(ColIndex entering_col, RowIndex basis_row,
388 VariableStatus leaving_variable_status);
389
390 // Initializes matrix-related internal data. Returns true if this data was
391 // unchanged. If not, also sets only_change_is_new_rows to true if compared
392 // to the current matrix, the only difference is that new rows have been
393 // added (with their corresponding extra slack variables). Similarly, sets
394 // only_change_is_new_cols to true if the only difference is that new columns
395 // have been added, in which case also sets num_new_cols to the number of
396 // new columns.
397 bool InitializeMatrixAndTestIfUnchanged(const LinearProgram& lp,
398 bool lp_is_in_equation_form,
399 bool* only_change_is_new_rows,
400 bool* only_change_is_new_cols,
401 ColIndex* num_new_cols);
402
403 // Checks if the only change to the bounds is the addition of new columns,
404 // and that the new columns have at least one bound equal to zero.
405 bool OldBoundsAreUnchangedAndNewVariablesHaveOneBoundAtZero(
406 const LinearProgram& lp, bool lp_is_in_equation_form,
407 ColIndex num_new_cols);
408
409 // Initializes objective-related internal data. Returns true if unchanged.
410 bool InitializeObjectiveAndTestIfUnchanged(const LinearProgram& lp);
411
412 // Computes the stopping criterion on the problem objective value.
413 void InitializeObjectiveLimit(const LinearProgram& lp);
414
415 // Initializes the starting basis. In most cases it starts by the all slack
416 // basis and tries to apply some heuristics to replace fixed variables.
417 ABSL_MUST_USE_RESULT Status CreateInitialBasis();
418
419 // Sets the initial basis to the given columns, try to factorize it and
420 // recompute the basic variable values.
421 ABSL_MUST_USE_RESULT Status
422 InitializeFirstBasis(const RowToColMapping& initial_basis);
423
424 // Entry point for the solver initialization.
425 ABSL_MUST_USE_RESULT Status Initialize(const LinearProgram& lp);
426
427 // Saves the current variable statuses in solution_state_.
428 void SaveState();
429
430 // Displays statistics on what kinds of variables are in the current basis.
431 void DisplayBasicVariableStatistics();
432
433 // Tries to reduce the initial infeasibility (stored in error_) by using the
434 // singleton columns present in the problem. A singleton column is a column
435 // with only one non-zero. This is used by CreateInitialBasis().
436 void UseSingletonColumnInInitialBasis(RowToColMapping* basis);
437
438 // Returns the number of empty rows in the matrix, i.e. rows where all
439 // the coefficients are zero.
440 RowIndex ComputeNumberOfEmptyRows();
441
442 // Returns the number of empty columns in the matrix, i.e. columns where all
443 // the coefficients are zero.
444 ColIndex ComputeNumberOfEmptyColumns();
445
446 // Returns the number of super-basic variables. These are non-basic variables
447 // that are not at their bounds (if they have bounds), or non-basic free
448 // variables that are not at zero.
449 int ComputeNumberOfSuperBasicVariables() const;
450
451 // This method transforms a basis for the first phase, with the optimal
452 // value at zero, into a feasible basis for the initial problem, thus
453 // preparing the execution of phase-II of the algorithm.
454 void CleanUpBasis();
455
456 // If the primal maximum residual is too large, recomputes the basic variable
457 // value from the non-basic ones. This function also perturbs the bounds
458 // during the primal simplex if too many iterations are degenerate.
459 //
460 // Only call this on a refactorized basis to have the best precision.
461 void CorrectErrorsOnVariableValues();
462
463 // Computes b - A.x in error_
464 void ComputeVariableValuesError();
465
466 // Solves the system B.d = a where a is the entering column (given by col).
467 // Known as FTRAN (Forward transformation) in FORTRAN codes.
468 // See Chvatal's book for more detail (Chapter 7).
469 void ComputeDirection(ColIndex col);
470
471 // Computes a - B.d in error_ and return the maximum std::abs() of its coeffs.
472 Fractional ComputeDirectionError(ColIndex col);
473
474 // Computes the ratio of the basic variable corresponding to 'row'. A target
475 // bound (upper or lower) is chosen depending on the sign of the entering
476 // reduced cost and the sign of the direction 'd_[row]'. The ratio is such
477 // that adding 'ratio * d_[row]' to the variable value changes it to its
478 // target bound.
479 template <bool is_entering_reduced_cost_positive>
480 Fractional GetRatio(const DenseRow& lower_bounds,
481 const DenseRow& upper_bounds, RowIndex row) const;
482
483 // First pass of the Harris ratio test. Returns the harris ratio value which
484 // is an upper bound on the ratio value that the leaving variable can take.
485 // Fills leaving_candidates with the ratio and row index of a super-set of the
486 // columns with a ratio <= harris_ratio.
487 template <bool is_entering_reduced_cost_positive>
488 Fractional ComputeHarrisRatioAndLeavingCandidates(
489 Fractional bound_flip_ratio, SparseColumn* leaving_candidates) const;
490
491 // Chooses the leaving variable, considering the entering column and its
492 // associated reduced cost. If there was a precision issue and the basis is
493 // not refactorized, set refactorize to true. Otherwise, the row number of the
494 // leaving variable is written in *leaving_row, and the step length
495 // is written in *step_length.
496 Status ChooseLeavingVariableRow(ColIndex entering_col,
497 Fractional reduced_cost, bool* refactorize,
498 RowIndex* leaving_row,
499 Fractional* step_length,
501
502 // Chooses the leaving variable for the primal phase-I algorithm. The
503 // algorithm follows more or less what is described in Istvan Maros's book in
504 // chapter 9.6 and what is done for the dual phase-I algorithm which was
505 // derived from Koberstein's PhD. Both references can be found at the top of
506 // this file.
507 void PrimalPhaseIChooseLeavingVariableRow(ColIndex entering_col,
508 Fractional reduced_cost,
509 bool* refactorize,
510 RowIndex* leaving_row,
511 Fractional* step_length,
512 Fractional* target_bound) const;
513
514 // Chooses an infeasible basic variable. The returned values are:
515 // - leaving_row: the basic index of the infeasible leaving variable
516 // or kNoLeavingVariable if no such row exists: the dual simplex algorithm
517 // has terminated and the optimal has been reached.
518 // - cost_variation: how much do we improve the objective by moving one unit
519 // along this dual edge.
520 // - target_bound: the bound at which the leaving variable should go when
521 // leaving the basis.
522 ABSL_MUST_USE_RESULT Status DualChooseLeavingVariableRow(
523 RowIndex* leaving_row, Fractional* cost_variation,
525
526 // Updates the prices used by DualChooseLeavingVariableRow() after a simplex
527 // iteration by using direction_. The prices are stored in
528 // dual_pricing_vector_. Note that this function only takes care of the
529 // entering and leaving column dual feasibility status change and that other
530 // changes will be dealt with by DualPhaseIUpdatePriceOnReducedCostsChange().
531 void DualPhaseIUpdatePrice(RowIndex leaving_row, ColIndex entering_col);
532
533 // This must be called each time the dual_pricing_vector_ is changed at
534 // position row.
535 template <bool use_dense_update = false>
536 void OnDualPriceChange(DenseColumn::ConstView squared_norms, RowIndex row,
537 VariableType type, Fractional threshold);
538
539 // Updates the prices used by DualChooseLeavingVariableRow() when the reduced
540 // costs of the given columns have changed.
541 template <typename Cols>
542 void DualPhaseIUpdatePriceOnReducedCostChange(const Cols& cols);
543
544 // Same as DualChooseLeavingVariableRow() but for the phase I of the dual
545 // simplex. Here the objective is not to minimize the primal infeasibility,
546 // but the dual one, so the variable is not chosen in the same way. See
547 // "Notes on the Dual simplex Method" or Istvan Maros, "A Piecewise Linear
548 // Dual Phase-1 Algorithm for the Simplex Method", Computational Optimization
549 // and Applications, October 2003, Volume 26, Issue 1, pp 63-81.
550 // http://rd.springer.com/article/10.1023%2FA%3A1025102305440
551 ABSL_MUST_USE_RESULT Status DualPhaseIChooseLeavingVariableRow(
552 RowIndex* leaving_row, Fractional* cost_variation,
554
555 // Makes sure the boxed variable are dual-feasible by setting them to the
556 // correct bound according to their reduced costs. This is called
557 // Dual feasibility correction in the literature.
558 //
559 // Note that this function is also used as a part of the bound flipping ratio
560 // test by flipping the boxed dual-infeasible variables at each iteration.
561 //
562 // If update_basic_values is true, the basic variable values are updated.
563 template <typename BoxedVariableCols>
564 void MakeBoxedVariableDualFeasible(const BoxedVariableCols& cols,
565 bool update_basic_values);
566
567 // Computes the step needed to move the leaving_row basic variable to the
568 // given target bound.
569 Fractional ComputeStepToMoveBasicVariableToBound(RowIndex leaving_row,
571
572 // Returns true if the basis obtained after the given pivot can be factorized.
573 bool TestPivot(ColIndex entering_col, RowIndex leaving_row);
574
575 // Gets the current LU column permutation from basis_representation,
576 // applies it to basis_ and then sets it to the identity permutation since
577 // it will no longer be needed during solves. This function also updates all
578 // the data that depends on the column order in basis_.
579 void PermuteBasis();
580
581 // Updates the system state according to the given basis pivot.
582 // Returns an error if the update could not be done because of some precision
583 // issue.
584 ABSL_MUST_USE_RESULT Status UpdateAndPivot(ColIndex entering_col,
585 RowIndex leaving_row,
587
588 // Displays all the timing stats related to the calling object.
589 void DisplayAllStats();
590
591 // Calls basis_factorization_.Refactorize() if refactorize is true, and
592 // returns its status. This also sets refactorize to false and invalidates any
593 // data structure that depends on the current factorization.
594 //
595 // The general idea is that if a refactorization is going to be needed during
596 // a simplex iteration, it is better to do it as soon as possible so that
597 // every component can take advantage of it.
598 Status RefactorizeBasisIfNeeded(bool* refactorize);
599
600 // Main iteration loop of the primal simplex.
601 ABSL_MUST_USE_RESULT Status PrimalMinimize(TimeLimit* time_limit);
602
603 // Main iteration loop of the dual simplex.
604 ABSL_MUST_USE_RESULT Status DualMinimize(bool feasibility_phase,
605 TimeLimit* time_limit);
606
607 // Pushes all super-basic variables to bounds (if applicable) or to zero (if
608 // unconstrained). This is part of a "crossover" procedure to find a vertex
609 // solution given a (near) optimal solution. Assumes that Minimize() or
610 // DualMinimize() has already run, i.e., that we are at an optimal solution
611 // within numerical tolerances.
612 ABSL_MUST_USE_RESULT Status PrimalPush(TimeLimit* time_limit);
613
614 // Experimental. This is useful in a MIP context. It performs a few degenerate
615 // pivot to try to mimize the fractionality of the optimal basis.
616 //
617 // We assume that the columns for which SetIntegralityScale() has been called
618 // correspond to integral variable once scaled by the given factor.
619 //
620 // I could only find slides for the reference of this "LP Solution Polishing
621 // to improve MIP Performance", Matthias Miltenberger, Zuse Institute Berlin.
622 ABSL_MUST_USE_RESULT Status Polish(TimeLimit* time_limit);
623
624 // Utility functions to return the current ColIndex of the slack column with
625 // given number. Note that currently, such columns are always present in the
626 // internal representation of a linear program.
627 ColIndex SlackColIndex(RowIndex row) const;
628
629 // Advances the deterministic time in time_limit with the difference between
630 // the current internal deterministic time and the internal deterministic time
631 // during the last call to this method.
632 // TODO(user): Update the internals of revised simplex so that the time
633 // limit is updated at the source and remove this method.
634 void AdvanceDeterministicTime(TimeLimit* time_limit);
635
636 // Problem status
637 ProblemStatus problem_status_;
638
639 // Current number of rows in the problem.
640 RowIndex num_rows_ = RowIndex(0);
641
642 // Current number of columns in the problem.
643 ColIndex num_cols_ = ColIndex(0);
644
645 // Index of the first slack variable in the input problem. We assume that all
646 // variables with index greater or equal to first_slack_col_ are slack
647 // variables.
648 ColIndex first_slack_col_ = ColIndex(0);
649
650 // We're using vectors after profiling and looking at the generated assembly
651 // it's as fast as std::unique_ptr as long as the size is properly reserved
652 // beforehand.
653
654 // Compact version of the matrix given to Solve().
655 CompactSparseMatrix compact_matrix_;
656
657 // The transpose of compact_matrix_, it may be empty if it is not needed.
658 CompactSparseMatrix transposed_matrix_;
659
660 // Stop the algorithm and report feasibility if:
661 // - The primal simplex is used, the problem is primal-feasible and the
662 // current objective value is strictly lower than primal_objective_limit_.
663 // - The dual simplex is used, the problem is dual-feasible and the current
664 // objective value is strictly greater than dual_objective_limit_.
665 Fractional primal_objective_limit_;
666 Fractional dual_objective_limit_;
667
668 // Current objective (feasibility for Phase-I, user-provided for Phase-II).
669 DenseRow current_objective_;
670
671 // Array of coefficients for the user-defined objective.
672 // Indexed by column number. Used in Phase-II.
673 DenseRow objective_;
674
675 // Objective offset and scaling factor of the linear program given to Solve().
676 // This is used to display the correct objective values in the logs with
677 // ComputeInitialProblemObjectiveValue().
678 Fractional objective_offset_;
679 Fractional objective_scaling_factor_;
680
681 // Used in dual phase I to keep track of the non-basic dual infeasible
682 // columns and their sign of infeasibility (+1 or -1).
683 DenseRow dual_infeasibility_improvement_direction_;
684 int num_dual_infeasible_positions_;
685
686 // A temporary scattered column that is always reset to all zero after use.
687 ScatteredColumn initially_all_zero_scratchpad_;
688
689 // Array of column index, giving the column number corresponding
690 // to a given basis row.
691 RowToColMapping basis_;
692 RowToColMapping tmp_basis_;
693
694 // Vector of strings containing the names of variables.
695 // Indexed by column number.
696 StrictITIVector<ColIndex, std::string> variable_name_;
697
698 // Only used for logging. What triggered a refactorization.
699 RefactorizationReason last_refactorization_reason_;
700
701 // Information about the solution computed by the last Solve().
702 Fractional solution_objective_value_;
703 DenseColumn solution_dual_values_;
704 DenseRow solution_reduced_costs_;
705 DenseRow solution_primal_ray_;
706 DenseColumn solution_dual_ray_;
707 DenseRow solution_dual_ray_row_combination_;
708 BasisState solution_state_;
709 bool solution_state_has_been_set_externally_;
710
711 // If this is cleared, we assume they are none.
712 DenseRow variable_starting_values_;
713
714 // Flag used by NotifyThatMatrixIsUnchangedForNextSolve() and changing
715 // the behavior of Initialize().
716 bool notify_that_matrix_is_unchanged_ = false;
717
718 // This is known as 'd' in the literature and is set during each pivot to the
719 // right inverse of the basic entering column of A by ComputeDirection().
720 // ComputeDirection() also fills direction_.non_zeros with the position of the
721 // non-zero.
722 ScatteredColumn direction_;
723 Fractional direction_infinity_norm_;
724
725 // Used to compute the error 'b - A.x' or 'a - B.d'.
726 DenseColumn error_;
727
728 // A random number generator. In test we use absl_random_ to have a
729 // non-deterministic behavior and avoid client depending on a golden optimal
730 // solution which prevent us from easily changing the solver.
731 random_engine_t deterministic_random_;
732 absl::BitGen absl_random_;
733
734 // A reference to one of the above random generators. Fixed at construction.
735 absl::BitGenRef random_;
736
737 // Helpers for logging the solve progress.
738 SolverLogger default_logger_;
739 SolverLogger* logger_ = &default_logger_;
740
741 // Representation of matrix B using eta matrices and LU decomposition.
742 BasisFactorization basis_factorization_;
743
744 // Classes responsible for maintaining the data of the corresponding names.
745 VariablesInfo variables_info_;
746 PrimalEdgeNorms primal_edge_norms_;
747 DualEdgeNorms dual_edge_norms_;
748 DynamicMaximum<RowIndex> dual_prices_;
749 VariableValues variable_values_;
750 UpdateRow update_row_;
751 ReducedCosts reduced_costs_;
752 EnteringVariable entering_variable_;
753 PrimalPrices primal_prices_;
754
755 // Used in dual phase I to hold the price of each possible leaving choices.
756 DenseColumn dual_pricing_vector_;
757 DenseColumn tmp_dual_pricing_vector_;
758
759 // Temporary memory used by DualMinimize().
760 std::vector<ColIndex> bound_flip_candidates_;
761
762 // Total number of iterations performed.
763 uint64_t num_iterations_ = 0;
764
765 // Number of iterations performed during the first (feasibility) phase.
766 uint64_t num_feasibility_iterations_ = 0;
767
768 // Number of iterations performed during the second (optimization) phase.
769 uint64_t num_optimization_iterations_ = 0;
770
771 // Number of iterations performed during the push/crossover phase.
772 uint64_t num_push_iterations_ = 0;
773
774 // Deterministic time for DualPhaseIUpdatePriceOnReducedCostChange().
775 int64_t num_update_price_operations_ = 0;
776
777 // Total time spent in Solve().
778 double total_time_ = 0.0;
779
780 // Time spent in the first (feasibility) phase.
781 double feasibility_time_ = 0.0;
782
783 // Time spent in the second (optimization) phase.
784 double optimization_time_ = 0.0;
785
786 // Time spent in the push/crossover phase.
787 double push_time_ = 0.0;
788
789 // The internal deterministic time during the most recent call to
790 // RevisedSimplex::AdvanceDeterministicTime.
791 double last_deterministic_time_update_ = 0.0;
792
793 // Statistics about the iterations done by PrimalMinimize().
794 IterationStats iteration_stats_;
795
796 mutable RatioTestStats ratio_test_stats_;
797
798 // Placeholder for all the function timing stats.
799 // Mutable because we time const functions like ChooseLeavingVariableRow().
800 mutable StatsGroup function_stats_;
801
802 // Proto holding all the parameters of this algorithm.
803 //
804 // Note that parameters_ may actually change during a solve as the solver may
805 // dynamically adapt some values. It is why we store the argument of the last
806 // SetParameters() call in initial_parameters_ so the next Solve() can reset
807 // it correctly.
808 GlopParameters parameters_;
809 GlopParameters initial_parameters_;
810
811 // LuFactorization used to test if a pivot will cause the new basis to
812 // not be factorizable.
813 LuFactorization test_lu_;
814
815 // Number of degenerate iterations made just before the current iteration.
816 int num_consecutive_degenerate_iterations_;
817
818 // Indicate the current phase of the solve.
819 Phase phase_ = Phase::FEASIBILITY;
820
821 // Indicates whether simplex ended due to the objective limit being reached.
822 // Note that it's not enough to compare the final objective value with the
823 // limit due to numerical issues (i.e., the limit which is reached within
824 // given tolerance on the internal objective may no longer be reached when the
825 // objective scaling and offset are taken into account).
826 bool objective_limit_reached_;
827
828 // Temporary SparseColumn used by ChooseLeavingVariableRow().
829 SparseColumn leaving_candidates_;
830
831 // Temporary vector used to hold the best leaving column candidates that are
832 // tied using the current choosing criteria. We actually only store the tied
833 // candidate #2, #3, ...; because the first tied candidate is remembered
834 // anyway.
835 std::vector<RowIndex> equivalent_leaving_choices_;
836
837 // This is used by Polish().
838 DenseRow integrality_scale_;
839};
840
841// Hides the details of the dictionary matrix implementation. In the future,
842// GLOP will support generating the dictionary one row at a time without having
843// to store the whole matrix in memory.
844class RevisedSimplexDictionary {
845 public:
848 // RevisedSimplex cannot be passed const because we have to call a non-const
849 // method ComputeDictionary.
850 // TODO(user): Overload this to take RevisedSimplex* alone when the
851 // caller would normally pass a nullptr for col_scales so this and
852 // ComputeDictionary can take a const& argument.
853 RevisedSimplexDictionary(const DenseRow* col_scales,
854 RevisedSimplex* revised_simplex)
855 : dictionary_(
856 ABSL_DIE_IF_NULL(revised_simplex)->ComputeDictionary(col_scales)),
857 basis_vars_(ABSL_DIE_IF_NULL(revised_simplex)->GetBasisVector()) {}
858
859 // This type is neither copyable nor movable.
863 ConstIterator begin() const { return dictionary_.begin(); }
864 ConstIterator end() const { return dictionary_.end(); }
866 size_t NumRows() const { return dictionary_.size(); }
868 // TODO(user): This function is a better fit for the future custom iterator.
869 ColIndex GetBasicColumnForRow(RowIndex r) const { return basis_vars_[r]; }
870 SparseRow GetRow(RowIndex r) const { return dictionary_[r]; }
872 private:
873 const RowMajorSparseMatrix dictionary_;
874 const RowToColMapping basis_vars_;
875};
876
877// TODO(user): When a row-by-row generation of the dictionary is supported,
878// implement DictionaryIterator class that would call it inside operator*().
879
880} // namespace glop
881} // namespace operations_research
882
883#endif // OR_TOOLS_GLOP_REVISED_SIMPLEX_H_
Statistic on the distribution of a sequence of doubles.
Definition stats.h:276
Statistic on the distribution of a sequence of integers.
Definition stats.h:288
Statistic on the distribution of a sequence of ratios, displayed as %.
Definition stats.h:265
Base class to print a nice summary of a group of statistics.
Definition stats.h:128
StatsGroup(absl::string_view name)
Definition stats.h:135
RevisedSimplexDictionary(const DenseRow *col_scales, RevisedSimplex *revised_simplex)
RowMajorSparseMatrix::const_iterator ConstIterator
RevisedSimplexDictionary & operator=(const RevisedSimplexDictionary &)=delete
Entry point of the revised simplex algorithm implementation.
Fractional GetVariableValue(ColIndex col) const
void SetIntegralityScale(ColIndex col, Fractional scale)
ConstraintStatus GetConstraintStatus(RowIndex row) const
void LoadStateForNextSolve(const BasisState &state)
Uses the given state as a warm-start for the next Solve() call.
const GlopParameters & GetParameters() const
Fractional GetDualValue(RowIndex row) const
Fractional GetReducedCost(ColIndex col) const
const ScatteredRow & GetUnitRowLeftInverse(RowIndex row)
Fractional GetConstraintActivity(RowIndex row) const
RowMajorSparseMatrix ComputeDictionary(const DenseRow *column_scales)
const DenseRow & GetDualRayRowCombination() const
This is the "dual ray" linear combination of the matrix rows.
RowIndex GetProblemNumRows() const
Getters to retrieve all the information computed by the last Solve().
void ComputeBasicVariablesForState(const LinearProgram &linear_program, const BasisState &state)
std::string StatString()
Returns statistics about this class as a string.
const BasisFactorization & GetBasisFactorization() const
VariableStatus GetVariableStatus(ColIndex col) const
void SetParameters(const GlopParameters &parameters)
Sets or gets the algorithm parameters to be used on the next Solve().
ABSL_MUST_USE_RESULT Status Solve(const LinearProgram &lp, TimeLimit *time_limit)
void SetStartingVariableValuesForNextSolve(const DenseRow &values)
RevisedSimplex & operator=(const RevisedSimplex &)=delete
StrictITISpan< RowIndex, const Fractional > ConstView
Definition lp_types.h:293
const ScatteredRow & ComputeAndGetUnitRowLeftInverse(RowIndex leaving_row)
Definition update_row.cc:62
ParentType::const_iterator const_iterator
SatParameters parameters
absl::Status status
Definition g_gurobi.cc:44
time_limit
Definition solve.cc:22
ColIndex col
Definition markowitz.cc:187
RowIndex row
Definition markowitz.cc:186
StrictITIVector< RowIndex, ColIndex > RowToColMapping
Definition lp_types.h:396
VariableType
Different types of variables.
Definition lp_types.h:180
StrictITIVector< RowIndex, Fractional > DenseColumn
Column-vector types. Column-vector types are indexed by a row index.
Definition lp_types.h:382
StrictITIVector< ColIndex, Fractional > DenseRow
Row-vector types. Row-vector types are indexed by a column index.
Definition lp_types.h:353
ProblemStatus
Different statuses for a given problem.
Definition lp_types.h:107
VectorXd ReducedCosts(const PrimalDualHybridGradientParams &params, const ShardedQuadraticProgram &sharded_qp, const VectorXd &primal_solution, const VectorXd &dual_solution, bool use_zero_primal_objective)
In SWIG mode, we don't want anything besides these top-level includes.
util_intops::StrongVector< ColumnEntryIndex, ElementIndex, ElementAllocator > SparseColumn
std::mt19937_64 random_engine_t
Fractional target_bound
std::vector< double > lower_bounds
Definition lp_utils.cc:746
std::vector< double > upper_bounds
Definition lp_utils.cc:747