21#include "absl/status/status.h"
22#include "absl/strings/string_view.h"
23#include "gtest/gtest.h"
48 <<
", supports_qc: " << (params.
supports_qc ?
"true" :
"false")
49 <<
", supports_incremental_add_and_deletes: "
51 <<
", supports_incremental_variable_deletions: "
53 <<
", use_integer_variables: "
60using ::testing::AnyOf;
61using ::testing::HasSubstr;
62using ::testing::status::IsOkAndHolds;
63using ::testing::status::StatusIs;
66constexpr absl::string_view no_qc_support_message =
67 "This test is disabled as the solver does not support quadratic "
80struct UnivariateQcProblem {
81 explicit UnivariateQcProblem(
bool use_integer_variables)
82 : model(), x(model.AddVariable(-1.0, 1.0, use_integer_variables,
"x")) {
83 model.AddQuadraticConstraint(x * x - x <= 1.0);
84 model.Minimize(x + 5.0);
92 UnivariateQcProblem qc_problem(GetParam().use_integer_variables);
93 if (GetParam().supports_qc) {
99 StatusIs(AnyOf(absl::StatusCode::kInvalidArgument,
100 absl::StatusCode::kUnimplemented),
101 HasSubstr(
"quadratic constraints")));
106 if (!GetParam().supports_qc) {
107 GTEST_SKIP() << no_qc_support_message;
109 const UnivariateQcProblem qc_problem(GetParam().use_integer_variables);
110 const double x_expected =
111 GetParam().use_integer_variables ? 0.0 : -0.618033988748785;
114 5.0 + x_expected, {{qc_problem.x, x_expected}})));
129struct HalfEllipseProblem {
130 explicit HalfEllipseProblem(
bool use_integer_variables)
132 x(model.AddVariable(0.0, 0.5, use_integer_variables,
"x")),
133 y(model.AddVariable(0.0, 1.0, use_integer_variables,
"y")),
134 q(model.AddQuadraticConstraint(
x *
x +
x * y + y * y - 2 *
x - 2 * y <=
137 model.AddLinearConstraint(x <= y);
143 const QuadraticConstraint q;
147 if (!GetParam().supports_qc) {
148 GTEST_SKIP() << no_qc_support_message;
150 const HalfEllipseProblem qc_problem(GetParam().use_integer_variables);
151 if (GetParam().use_integer_variables) {
154 1.0, {{qc_problem.x, 0.0}, {qc_problem.y, 1.0}})));
156 const double value = 1.0 / 3.0;
159 value, {{qc_problem.x, value}, {qc_problem.y, value}})));
179 GTEST_SKIP() <<
"Skip test due to bug in Xpress 9.6.0.";
183 model.
AddVariable(0.0, 1.0, GetParam().use_integer_variables,
"x");
189 ASSERT_THAT(solver->Solve({.parameters = GetParam().parameters}),
192 model.AddQuadraticConstraint(
x *
x <= 0.5);
194 if (!GetParam().supports_qc) {
203 StatusIs(AnyOf(absl::StatusCode::kInvalidArgument,
204 absl::StatusCode::kUnimplemented),
205 AllOf(HasSubstr(
"quadratic constraint"),
207 Not(HasSubstr(
"update failed")),
209 HasSubstr(
"solver re-creation failed"))));
213 ASSERT_THAT(solver->Update(),
214 IsOkAndHolds(GetParam().supports_incremental_add_and_deletes
217 const double expected_x =
218 GetParam().use_integer_variables ? 0.0 : std::sqrt(0.5);
220 solver->SolveWithoutUpdate({.parameters = GetParam().parameters}),
239 if (!GetParam().supports_qc) {
240 GTEST_SKIP() << no_qc_support_message;
242 HalfEllipseProblem qc_problem(GetParam().use_integer_variables);
247 ASSERT_OK(solver->Solve({.parameters = GetParam().parameters}));
249 qc_problem.model.DeleteQuadraticConstraint(qc_problem.q);
251 ASSERT_THAT(solver->Update(),
252 IsOkAndHolds(GetParam().supports_incremental_add_and_deletes
255 EXPECT_THAT(solver->SolveWithoutUpdate({.parameters = GetParam().parameters}),
257 0.0, {{qc_problem.x, 0.0}, {qc_problem.y, 0.0}})));
273 if (!GetParam().supports_qc) {
274 GTEST_SKIP() << no_qc_support_message;
276 HalfEllipseProblem qc_problem(GetParam().use_integer_variables);
282 ASSERT_OK(solver->Solve({.parameters = GetParam().parameters}));
284 qc_problem.model.DeleteVariable(qc_problem.x);
286 ASSERT_THAT(solver->Update(),
287 IsOkAndHolds(GetParam().supports_incremental_variable_deletions
290 EXPECT_THAT(solver->SolveWithoutUpdate({.parameters = GetParam().parameters}),
311 if (!GetParam().supports_qc) {
320 const double expected_objective_value = -1.0;
325 {{mu, -0.5}}, {{
x, 0.0}}));
344 if (!GetParam().supports_qc) {
353 const double expected_objective_value = -1.0;
358 {{mu, 0.5}}, {{
x, 0.0}}));
384 if (!GetParam().supports_qc) {
393 model.AddQuadraticConstraint(x1 * x1 + x0 <= 2);
394 model.
Minimize(x1 * x1 - 10.0 * x1);
397 const double expected_objective_value = -9.0;
399 {{x0, 1.0}, {x1, 1.0}}));
402 expected_objective_value, {{y0, -8.0 / 3.0}, {y1, 0.0}},
403 {{mu, -8.0 / 3.0}}, {{x0, 0.0}, {x1, 0.0}}));
429 if (!GetParam().supports_qc) {
435 const Variable x2 = model.AddContinuousVariable(1.0, 1.0);
438 model.AddQuadraticConstraint(x0 * x0 + x1 * x1 + x2 * x2 <= 3.0);
439 model.
Maximize(-x0 * x0 + 4.0 * x0);
442 const double expected_objective_value = 3.0;
445 {{x0, 1.0}, {x1, 1.0}, {x2, 1.0}}));
449 {{x0, 0.0}, {x1, 0.0}, {x2, -2.0}}));
Variable * AddVariable(absl::string_view name, const Domain &domain, bool defined, bool set_is_fixed=false)
void Maximize(Variable *obj, std::vector< Annotation > search_annotations)
void Minimize(Variable *obj, std::vector< Annotation > search_annotations)
#define ASSERT_OK(expression)
#define EXPECT_OK(expression)
#define ASSERT_OK_AND_ASSIGN(lhs, rexpr)
Matcher< SolveResult > IsOptimalWithSolution(const double expected_objective, const VariableMap< double > expected_variable_values, const double tolerance)
EXPECT_THAT(ComputeInfeasibleSubsystem(model, GetParam().solver_type), IsOkAndHolds(IsInfeasible(true, ModelSubset{ .variable_bounds={{x, ModelSubset::Bounds{.lower=false,.upper=true}}},.linear_constraints={ {c, ModelSubset::Bounds{.lower=true,.upper=false}}}})))
TEST_P(InfeasibleSubsystemTest, CanComputeInfeasibleSubsystem)
<=x<=1 IncrementalMipTest::IncrementalMipTest() :model_("incremental_solve_test"), x_(model_.AddContinuousVariable(0.0, 1.0, "x")), y_(model_.AddIntegerVariable(0.0, 2.0, "y")), c_(model_.AddLinearConstraint(0<=x_+y_<=1.5, "c")) { model_.Maximize(3.0 *x_+2.0 *y_+0.1);solver_=NewIncrementalSolver(&model_, TestedSolver()).value();const SolveResult first_solve=solver_->Solve().value();CHECK(first_solve.has_primal_feasible_solution());CHECK_LE(std::abs(first_solve.objective_value() - 3.6), kTolerance)<< first_solve.objective_value();} namespace { TEST_P(SimpleMipTest, OneVarMax) { Model model;const Variable x=model.AddVariable(0.0, 4.0, false, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(8.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 4.0}}));} TEST_P(SimpleMipTest, OneVarMin) { Model model;const Variable x=model.AddVariable(-2.4, 4.0, false, "x");model.Minimize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(-4.8));EXPECT_THAT(result.variable_values(), IsNear({{x, -2.4}}));} TEST_P(SimpleMipTest, OneIntegerVar) { Model model;const Variable x=model.AddVariable(0.0, 4.5, true, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(8.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 4.0}}));} TEST_P(SimpleMipTest, SimpleLinearConstraint) { Model model;const Variable x=model.AddBinaryVariable("x");const Variable y=model.AddBinaryVariable("y");model.Maximize(2.0 *x+y);model.AddLinearConstraint(0.0<=x+y<=1.5, "c");ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(2.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 1}, {y, 0}}));} TEST_P(SimpleMipTest, Unbounded) { Model model;const Variable x=model.AddVariable(0.0, kInf, true, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));if(GetParam().report_unboundness_correctly) { ASSERT_THAT(result, TerminatesWithOneOf({TerminationReason::kUnbounded, TerminationReason::kInfeasibleOrUnbounded}));} else { ASSERT_THAT(result, TerminatesWith(TerminationReason::kOtherError));} } TEST_P(SimpleMipTest, Infeasible) { Model model;const Variable x=model.AddVariable(0.0, 3.0, true, "x");model.Maximize(2.0 *x);model.AddLinearConstraint(x >=4.0);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, TerminatesWith(TerminationReason::kInfeasible));} TEST_P(SimpleMipTest, FractionalBoundsContainNoInteger) { if(GetParam().solver_type==SolverType::kGurobi) { GTEST_SKIP()<< "TODO(b/272298816): Gurobi bindings are broken here.";} if(GetParam().solver_type==SolverType::kXpress) { GTEST_SKIP()<< "Xpress does not support contradictory bounds.";} Model model;const Variable x=model.AddIntegerVariable(0.5, 0.6, "x");model.Maximize(x);EXPECT_THAT(Solve(model, GetParam().solver_type), IsOkAndHolds(TerminatesWith(TerminationReason::kInfeasible)));} TEST_P(IncrementalMipTest, EmptyUpdate) { ASSERT_THAT(solver_->Update(), IsOkAndHolds(DidUpdate()));ASSERT_OK_AND_ASSIGN(const SolveResult result, solver_->SolveWithoutUpdate());ASSERT_THAT(result, IsOptimal(3.6));EXPECT_THAT(result.variable_values(), IsNear({{x_, 0.5}, {y_, 1.0}}));} TEST_P(IncrementalMipTest, MakeContinuous) { model_.set_continuous(y_);ASSERT_THAT(solver_->Update(), IsOkAndHolds(DidUpdate()));ASSERT_OK_AND_ASSIGN(const SolveResult result, solver_->SolveWithoutUpdate());ASSERT_THAT(result, IsOptimal(4.1));EXPECT_THAT(result.variable_values(), IsNear({{x_, 1.0}, {y_, 0.5}}));} TEST_P(IncrementalMipTest, DISABLED_MakeContinuousWithNonIntegralBounds) { solver_.reset();Model model("bounds");const Variable x=model.AddIntegerVariable(0.5, 1.5, "x");model.Maximize(x);ASSERT_OK_AND_ASSIGN(const auto solver, NewIncrementalSolver(&model, TestedSolver()));ASSERT_THAT(solver->Solve(), IsOkAndHolds(IsOptimal(1.0)));model.set_continuous(x);ASSERT_THAT(solver->Update(), IsOkAndHolds(DidUpdate()));ASSERT_THAT(solver->SolveWithoutUpdate(), IsOkAndHolds(IsOptimal(1.5)));model.Minimize(x);ASSERT_THAT(solver->Update(), IsOkAndHolds(DidUpdate()));ASSERT_THAT(solver-> IsOkAndHolds(IsOptimal(0.5)))
absl::StatusOr< std::unique_ptr< IncrementalSolver > > NewIncrementalSolver(Model *model, SolverType solver_type, SolverInitArguments arguments)
std::ostream & operator<<(std::ostream &ostr, const SecondOrderConeConstraint &constraint)
Matcher< UpdateResult > DidUpdate()
constexpr double kTolerance
Matcher< SolveResult > IsOptimalWithDualSolution(const double expected_objective, const LinearConstraintMap< double > expected_dual_values, const VariableMap< double > expected_reduced_costs, const double tolerance)
std::string ProtobufShortDebugString(const P &message)
bool supports_incremental_add_and_deletes
bool use_integer_variables
bool supports_incremental_variable_deletions
SolveParameters parameters
QcTestParameters(SolverType solver_type, SolveParameters parameters, bool supports_qc, bool supports_incremental_add_and_deletes, bool supports_incremental_variable_deletions, bool use_integer_variables)
SolveParametersProto Proto() const