Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
ip_parameter_tests.cc
Go to the documentation of this file.
1// Copyright 2010-2025 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
14// How each parameter is tested:
15// Parameter | IpParameterTest | generic_test.h | LargeInstanceTest
16// -------------------|-----------------|-----------------|-------------------
17// time_limit | | x | x
18// iteration_limit | x | | x
19// node_limit | x | | x
20// cutoff_limit | x | | x
21// objective_limit | x | | x
22// best_bound_limit | x | | x
23// solution_limit | x | | x
24// enable_output | | x |
25// threads | | |
26// random_seed | x | |
27// absolute_gap_tol | x | | x
28// relative_gap_tol | x | | x
29// solution_pool_size | | |
30// lp_algorithm | x (bad) | |
31// presolve | x | |
32// cuts | x | | x
33// heuristics | | |
34// scaling | | |
35//
36// solution_pool_size is tested in ip_multiple_solutions_tests.cc.
37//
38// Testing some parameters requires that other parameters/stats are supported:
39// * presolve (IpParameterTest) requires message callbacks
40// * cuts (IpParameterTest) must disable presolve
41// * cuts (LargeInstanceTest) needs node_limit=1.
42// * lp_algorithm (IpParameterTest) test is just a no-crash test without
43// supporting iteration counts in SolveStats.
44// * solution_limit (IpParameterTest) requires a hint.
45//
46// TODO(b/180024054): add tests for:
47// * threads
48// * heuristics
49// * scaling
50// * lp_algorithm, differentiate between primal and dual simplex. E.g. find a
51// problem with LP relaxation that is both infeasible and dual infeasible,
52// disable presolve, and solve. When using primal simplex, we should get
53// termination reason kInfeasible, but dual simplex should give
54// kInfeasibleOrUnbounded.
55// * TODO(b/272268188): test the interaction between cutoff and primal + dual
56// infeasibility.
57//
59
60#include <algorithm>
61#include <cmath>
62#include <cstdlib>
63#include <limits>
64#include <memory>
65#include <ostream>
66#include <sstream>
67#include <string>
68#include <utility>
69#include <vector>
70
71#include "absl/container/flat_hash_set.h"
72#include "absl/status/status.h"
73#include "absl/status/statusor.h"
74#include "absl/strings/escaping.h"
75#include "absl/strings/str_cat.h"
76#include "absl/strings/str_join.h"
77#include "absl/strings/string_view.h"
78#include "absl/time/time.h"
79#include "absl/types/span.h"
80#include "gtest/gtest.h"
81#include "ortools/base/gmock.h"
90
91namespace operations_research {
92namespace math_opt {
93
94std::ostream& operator<<(std::ostream& ostr,
95 const SolveResultSupport& solve_result_support) {
96 std::vector<std::string> supported;
97 if (solve_result_support.termination_limit) {
98 supported.push_back("termination_limit");
99 }
100 if (solve_result_support.iteration_stats) {
101 supported.push_back("iteration_stats");
102 }
103 if (solve_result_support.node_count) {
104 supported.push_back("node_count");
105 }
106 ostr << "{ " << absl::StrJoin(supported, ", ") << " }";
107 return ostr;
108}
109
110std::ostream& operator<<(std::ostream& ostr,
111 const ParameterSupport& param_support) {
112 std::vector<std::string> supported;
113 if (param_support.supports_iteration_limit) {
114 supported.push_back("supports_iteration_limit");
115 }
116 if (param_support.supports_node_limit) {
117 supported.push_back("supports_node_limit");
118 }
119 if (param_support.supports_cutoff) {
120 supported.push_back("supports_cutoff");
121 }
122 if (param_support.supports_objective_limit) {
123 supported.push_back("supports_objective_limit");
124 }
125 if (param_support.supports_bound_limit) {
126 supported.push_back("supports_bound_limit");
127 }
128 if (param_support.supports_solution_limit_one) {
129 supported.push_back("supports_solution_limit_one");
130 }
131 if (param_support.supports_one_thread) {
132 supported.push_back("supports_one_thread");
133 }
134 if (param_support.supports_n_threads) {
135 supported.push_back("supports_n_threads");
136 }
137 if (param_support.supports_random_seed) {
138 supported.push_back("supports_random_seed");
139 }
140 if (param_support.supports_absolute_gap_tolerance) {
141 supported.push_back("supports_absolute_gap_tolerance");
142 }
143 if (param_support.supports_lp_algorithm_simplex) {
144 supported.push_back("supports_lp_algorithm_simplex");
145 }
146 if (param_support.supports_lp_algorithm_barrier) {
147 supported.push_back("supports_lp_algorithm_barrier");
148 }
149 if (param_support.supports_presolve) {
150 supported.push_back("supports_presolve");
151 }
152 if (param_support.supports_cuts) {
153 supported.push_back("supports_cuts");
154 }
155 if (param_support.supports_heuristics) {
156 supported.push_back("supports_heuristics");
157 }
158 if (param_support.supports_scaling) {
159 supported.push_back("supports_scaling");
160 }
161 ostr << "{ " << absl::StrJoin(supported, ", ") << " }";
162 return ostr;
163}
164
165std::ostream& operator<<(std::ostream& ostr,
166 const IpParameterTestParameters& params) {
167 ostr << "{ name: " << params.name;
168 ostr << ", solver_type: " << EnumToString(params.solver_type);
169 ostr << ", parameter_support: " << params.parameter_support;
170 ostr << ", hint_supported: " << params.hint_supported;
171 ostr << ", solve_result_support: " << params.solve_result_support;
172 ostr << ", presolved_regexp: \"" << absl::CEscape(params.presolved_regexp);
173 ostr << "\", stop_before_optimal: "
175 return ostr;
176}
177
178std::ostream& operator<<(std::ostream& out,
179 const LargeInstanceTestParams& params) {
180 out << "{ name: " << params.name;
181 out << ", solver_type: " << EnumToString(params.solver_type);
182 out << ", base_parameters: "
184 out << ", parameter_support: " << params.parameter_support;
185 out << ", allow_limit_undetermined: " << params.allow_limit_undetermined
186 << " }";
187 return out;
188}
189
190namespace {
191
192using ::testing::HasSubstr;
193using ::testing::Not;
196
197// Adds the trio of constraints:
198// x + y >= 1
199// y + z >= 1
200// x + z >= 1
201// In the vertex cover problem, you have a graph and must pick a subset of the
202// nodes so that every edge has at least one endpoint selected. If x, y, and z
203// are nodes in this graph, adding Triangle(x, y, z) ensures that two of x, y,
204// and z must be selected in any vertex cover.
205void AddTriangle(Model& model, Variable x, Variable y, Variable z) {
206 model.AddLinearConstraint(x + y >= 1);
207 model.AddLinearConstraint(y + z >= 1);
208 model.AddLinearConstraint(z + x >= 1);
209}
210
211// xs, ys, and zs must have all size 3. Adds the constraints:
212// Triangle(x1, x2, x3),
213// Triangle(y1, y2, y3),
214// Triangle(z1, z2, z3),
215// Triangle(x1, y1, z1),
216// Triangle(x2, y2, z2),
217// Triangle(x3, y3, z3),
218//
219// Adding this constraint ensures that the minimum vertex cover (pick a subset
220// of the 9 nodes such that for every edge, at least one node is selected) has
221// size at least 6. There are many possible symmetric solutions, any solution
222// has two xs, two ys, two z2, two ones, two twos, and two threes, e.g.
223// x1, y1,
224// z2, z3,
225// x2, y3.
226void AddSixTriangles(Model& model, absl::Span<const Variable> xs,
227 absl::Span<const Variable> ys,
228 absl::Span<const Variable> zs) {
229 AddTriangle(model, xs[0], xs[1], xs[2]);
230 AddTriangle(model, ys[0], ys[1], ys[2]);
231 AddTriangle(model, zs[0], zs[1], zs[2]);
232 AddTriangle(model, xs[0], ys[0], zs[0]);
233 AddTriangle(model, xs[1], ys[1], zs[1]);
234 AddTriangle(model, xs[2], ys[2], zs[2]);
235}
236
237// A MIP with an LP relaxation of 13.5 and a best integer solution of 18. The
238// MIP has a large number of symmetric solutions. It is given by:
239//
240// min sum_{i=1}^3 sum_{j=1}^3 x_ij + y_ij + z_ij
241//
242// SixTriangles(x11, x12, x13, y11, y12, y13, z11, z12, z13)
243// SixTriangles(x21, x22, x23, y21, y22, y23, z21, z22, z23)
244// SixTriangles(x31, x32, x33, y31, y32, y33, z31, z32, z33)
245//
246// for j = 1..3:
247// Triangle(x1j, x2j, x3j)
248// Triangle(y1j, y2j, y3j)
249// Triangle(z1j, z2j, z3j)
250//
251// It can be interpreted as a large instance of vertex cover on 27 nodes.
252class VertexCover {
253 public:
254 VertexCover() {
255 xs_ = MakeVars3By3("x");
256 ys_ = MakeVars3By3("y");
257 zs_ = MakeVars3By3("z");
258 LinearExpression objective;
259 for (int i = 0; i < 3; ++i) {
260 objective += Sum(xs_[i]) + Sum(ys_[i]) + Sum(zs_[i]);
261 }
262 model_.Minimize(objective);
263 for (int i = 0; i < 3; ++i) {
264 AddSixTriangles(model_, xs_[i], ys_[i], zs_[i]);
265 }
266 for (int j = 0; j < 3; ++j) {
267 AddTriangle(model_, xs_[0][j], xs_[1][j], xs_[2][j]);
268 AddTriangle(model_, ys_[0][j], ys_[1][j], ys_[2][j]);
269 AddTriangle(model_, zs_[0][j], zs_[1][j], zs_[2][j]);
270 }
271 }
272
273 Model& model() { return model_; }
274
275 std::vector<std::string> SolutionFingerprint(const SolveResult& result) {
276 std::vector<std::string> var_names;
277 for (const Variable v : model_.Variables()) {
278 double val = result.variable_values().at(v);
279 if (val > 0.5) {
280 var_names.push_back(std::string(v.name()));
281 }
282 }
283 std::sort(var_names.begin(), var_names.end());
284 return var_names;
285 }
286
287 static absl::StatusOr<std::vector<std::string>> SolveAndFingerprint(
288 const SolverType solver_type, const SolveParameters& params) {
289 VertexCover vertex_cover;
291 SolveResult result,
292 Solve(vertex_cover.model(), solver_type, {.parameters = params}));
293 RETURN_IF_ERROR(result.termination.EnsureIsOptimal());
294 if (std::abs(result.objective_value() - 18.0) > 1e-4) {
296 << "expected objective value of 18, found: "
297 << result.objective_value();
298 }
299 return result.has_primal_feasible_solution()
300 ? vertex_cover.SolutionFingerprint(result)
301 : std::vector<std::string>();
302 }
303
304 private:
305 // Adds 9 binary variables to the model and returns them in a 3x3 array.
306 std::vector<std::vector<Variable>> MakeVars3By3(absl::string_view prefix) {
307 std::vector<std::vector<Variable>> result(3);
308 for (int i = 0; i < 3; ++i) {
309 for (int j = 0; j < 3; ++j) {
310 result[i].push_back(
311 model_.AddBinaryVariable(absl::StrCat(prefix, "_", i, "_", j)));
312 }
313 }
314 return result;
315 }
316
317 Model model_;
318 std::vector<std::vector<Variable>> xs_;
319 std::vector<std::vector<Variable>> ys_;
320 std::vector<std::vector<Variable>> zs_;
321};
322
323// On a symmetric MIP with multiple optimal solutions, test that:
324// * If we use the same seed, we get the same result.
325// * If we use different seeds, we at least sometimes get different results.
326//
327// Warning: this test is quite fragile. I don't understand why, but if presolve
328// is disabled, the test fails for gSCIP and Gurobi, where both solvers always
329// find the same solution regardless of the seed.
330//
331// WARNING: the solve must be deterministic for this test to work. We set
332// threads=1 if supported, as usually multi-threaded solves are not
333// deterministic. HiGHS does not yet support this, but appears to still be
334// deterministic.
335TEST_P(IpParameterTest, RandomSeedIP) {
336 absl::flat_hash_set<std::vector<std::string>> solutions_seen;
337 for (int seed = 10; seed < 200; seed += 10) {
338 SCOPED_TRACE(absl::StrCat("seed ", seed));
339 std::vector<std::string> result_for_seed;
340 for (int trial = 0; trial < 10; ++trial) {
341 SCOPED_TRACE(absl::StrCat("trial ", trial));
342 SolveParameters params = {.random_seed = seed};
343 if (GetParam().parameter_support.supports_one_thread) {
344 params.threads = 1;
345 }
346 absl::StatusOr<std::vector<std::string>> fingerprint =
347 VertexCover::SolveAndFingerprint(TestedSolver(), params);
348 if (!GetParam().parameter_support.supports_random_seed) {
349 EXPECT_THAT(fingerprint, StatusIs(absl::StatusCode::kInvalidArgument,
350 HasSubstr("random_seed")));
351 return;
352 }
353 if (trial == 0) {
354 result_for_seed = *fingerprint;
355 solutions_seen.insert(result_for_seed);
356 } else {
357 ASSERT_EQ(result_for_seed, *fingerprint);
358 }
359 }
360 }
361 if (GetParam().solver_type != SolverType::kCpSat) {
362 // Drawing 20 items from a very large number with replacement, the
363 // probability of getting at least 3 unique is very high.
364 EXPECT_GE(solutions_seen.size(), 3);
365 }
366}
367
368// Solves the problem
369// max sum_i y_i
370// x_i >= y_i
371// x_i + y_1 == 1
372// x_i, y_i \in {0, 1}
373//
374// This is linearly separable in i, and we must have x_i = 1, y_i = 0 for all i.
375// Presolve can typically detect this.
376absl::StatusOr<std::pair<SolveStats, std::string>> SolveForIPPresolve(
377 SolverType solver_type, bool do_presolve) {
378 std::ostringstream oss;
379 Model model("easy_presolve_model");
380 model.set_maximize();
381 for (int i = 0; i < 4; ++i) {
382 Variable x = model.AddVariable(0.0, 1.0, true);
383 Variable y = model.AddVariable(0.0, 1.0, true);
384 model.AddToObjective(y);
385 model.AddLinearConstraint(x + y == 1.0);
386 model.AddLinearConstraint(x >= y);
387 }
388
389 SolveArguments args;
391 args.message_callback = PrinterMessageCallback(oss);
392 ASSIGN_OR_RETURN(const SolveResult result, Solve(model, solver_type, args));
393 RETURN_IF_ERROR(result.termination.EnsureIsOptimal());
394 return std::make_pair(result.solve_stats, oss.str());
395}
396
397// On asserting that presolve is working:
398// We have created a problem and can be entirely solved in presolve (all
399// variables and constraints removed) using basic reductions that should be
400// supported by most solvers. It would be easiest to simply look at the size of
401// the problem after presolve, but this not universally supported (with Gurobi,
402// it is only visible in a callback). Instead, we check the logs for a solver
403// specific string that occurs only if presolve solves the model. Further, for
404// solvers that return simplex/barrier iterations, we check that there are no
405// such iterations iff presolve is on.
406TEST_P(IpParameterTest, PresolveOff) {
407 if (!GetParam().parameter_support.supports_presolve) {
408 // We test presolve being unsupported in IpParameterTest.PresolveOn
409 return;
410 }
411 absl::StatusOr<std::pair<SolveStats, std::string>> stats_and_logs =
412 SolveForIPPresolve(TestedSolver(), /*do_presolve=*/false);
413 ASSERT_OK(stats_and_logs);
414 const auto [solve_stats, logs] = stats_and_logs.value();
415 if (GetParam().solve_result_support.iteration_stats) {
416 EXPECT_GE(solve_stats.barrier_iterations + solve_stats.simplex_iterations +
417 solve_stats.first_order_iterations,
418 1);
419 }
420#if !defined(_MSC_VER)
421 EXPECT_THAT(logs, Not(testing::ContainsRegex(GetParam().presolved_regexp)));
422#endif
423}
424
425TEST_P(IpParameterTest, PresolveOn) {
426 absl::StatusOr<std::pair<SolveStats, std::string>> stats_and_logs =
427 SolveForIPPresolve(TestedSolver(), /*do_presolve=*/true);
428 if (!GetParam().parameter_support.supports_presolve) {
429 EXPECT_THAT(stats_and_logs, StatusIs(absl::StatusCode::kInvalidArgument,
430 HasSubstr("presolve")));
431 return;
432 }
433 ASSERT_OK(stats_and_logs);
434 const auto [solve_stats, logs] = stats_and_logs.value();
435 if (!GetParam().solve_result_support.iteration_stats) {
436 EXPECT_EQ(solve_stats.barrier_iterations, 0);
437 EXPECT_EQ(solve_stats.simplex_iterations, 0);
438 EXPECT_EQ(solve_stats.first_order_iterations, 0);
439 }
440#if !defined(_MSC_VER)
441 EXPECT_THAT(logs, testing::ContainsRegex(GetParam().presolved_regexp));
442#endif
443}
444
445// Requires disabling presolve and cuts is supported (or status errors).
446absl::StatusOr<SolveStats> SolveForCuts(SolverType solver_type, bool use_cuts) {
447 Model model;
448 model.set_maximize();
449 for (int i = 0; i < 10; ++i) {
450 const Variable x = model.AddVariable(0.0, 1.0, true);
451 const Variable y = model.AddVariable(0.0, 1.0, true);
452 model.AddToObjective(2 * x + y);
453 // With the addition of the knapsack cut:
454 // x + y <= 1
455 // the problem becomes integral.
456 model.AddLinearConstraint(3 * x + 2 * y <= 4);
457 }
458
459 SolveArguments args;
461 args.parameters.cuts = use_cuts ? Emphasis::kMedium : Emphasis::kOff;
462 ASSIGN_OR_RETURN(const SolveResult result, Solve(model, solver_type, args));
463 RETURN_IF_ERROR(result.termination.EnsureIsOptimal());
464 return result.solve_stats;
465}
466
467TEST_P(IpParameterTest, CutsOff) {
468 if (!GetParam().parameter_support.supports_presolve) {
469 GTEST_SKIP() << "Skipping test, this test requires disabling presolve "
470 "which is not supported.";
471 }
472 if (!GetParam().parameter_support.supports_cuts) {
473 // If cuts are not supported we test this in IpParameterTest.CutsOn
474 return;
475 }
476 ASSERT_OK_AND_ASSIGN(const SolveStats solve_stats,
477 SolveForCuts(TestedSolver(), /*use_cuts=*/false));
478 if (GetParam().solve_result_support.node_count) {
479 EXPECT_GT(solve_stats.node_count, 1);
480 }
481}
482TEST_P(IpParameterTest, CutsOn) {
483 if (!GetParam().parameter_support.supports_presolve) {
484 GTEST_SKIP() << "Skipping test, this test requires disabling presolve "
485 "which is not supported.";
486 }
487 absl::StatusOr<SolveStats> solve_stats =
488 SolveForCuts(TestedSolver(), /*use_cuts=*/true);
489 if (!GetParam().parameter_support.supports_cuts) {
490 EXPECT_THAT(solve_stats, StatusIs(absl::StatusCode::kInvalidArgument,
491 HasSubstr("cuts")));
492 return;
493 }
494 ASSERT_OK(solve_stats);
495 if (GetParam().solve_result_support.node_count) {
496 EXPECT_EQ(solve_stats->node_count, 1);
497 }
498}
499
500// This method doesn't give any way to distinguish between primal and dual
501// simplex, a better test is needed, see comment at top of file for an idea.
502absl::StatusOr<SolveStats> SolveForRootLp(
503 const SolverType solver_type, const LPAlgorithm algorithm,
504 const ParameterSupport& parameter_support) {
505 VertexCover vertex_cover;
506 SolveParameters params = {.lp_algorithm = algorithm};
507 // Try to make sure that only one algorithm is used
508 if (parameter_support.supports_one_thread) {
509 params.threads = 1;
510 }
511 // Avoid making too much progress before the LP, we are testing based on use
512 // of the LP solver.
513 if (parameter_support.supports_presolve) {
514 params.presolve = Emphasis::kOff;
515 }
516
518 const SolveResult result,
519 Solve(vertex_cover.model(), solver_type, {.parameters = params}));
520 RETURN_IF_ERROR(result.termination.EnsureIsOptimal());
521 return result.solve_stats;
522}
523
524TEST_P(IpParameterTest, RootLPAlgorithmPrimal) {
525 const absl::StatusOr<SolveStats> stats =
526 SolveForRootLp(TestedSolver(), LPAlgorithm::kPrimalSimplex,
527 GetParam().parameter_support);
528 if (!GetParam().parameter_support.supports_lp_algorithm_simplex) {
529 EXPECT_THAT(stats, StatusIs(absl::StatusCode::kInvalidArgument,
530 HasSubstr("lp_algorithm")));
531 return;
532 }
533 ASSERT_OK(stats);
534 if (GetParam().solve_result_support.iteration_stats) {
535 EXPECT_GT(stats->simplex_iterations, 0);
536 EXPECT_EQ(stats->barrier_iterations, 0);
537 EXPECT_EQ(stats->first_order_iterations, 0);
538 }
539}
540
541TEST_P(IpParameterTest, RootLPAlgorithmDual) {
542 const absl::StatusOr<SolveStats> stats = SolveForRootLp(
543 TestedSolver(), LPAlgorithm::kDualSimplex, GetParam().parameter_support);
544 if (!GetParam().parameter_support.supports_lp_algorithm_simplex) {
545 EXPECT_THAT(stats, StatusIs(absl::StatusCode::kInvalidArgument,
546 HasSubstr("lp_algorithm")));
547 return;
548 }
549 ASSERT_OK(stats);
550 if (GetParam().solve_result_support.iteration_stats) {
551 EXPECT_GT(stats->simplex_iterations, 0);
552 EXPECT_EQ(stats->barrier_iterations, 0);
553 EXPECT_EQ(stats->first_order_iterations, 0);
554 }
555}
556
557TEST_P(IpParameterTest, RootLPAlgorithmBarrier) {
558 const absl::StatusOr<SolveStats> stats = SolveForRootLp(
559 TestedSolver(), LPAlgorithm::kBarrier, GetParam().parameter_support);
560 if (!GetParam().parameter_support.supports_lp_algorithm_barrier) {
561 EXPECT_THAT(stats, StatusIs(absl::StatusCode::kInvalidArgument,
562 HasSubstr("lp_algorithm")));
563 return;
564 }
565 ASSERT_OK(stats);
566 if (GetParam().solve_result_support.iteration_stats) {
567 EXPECT_GT(stats->barrier_iterations, 0);
568 // We make no assertions on simplex iterations, we do not specify if
569 // crossover takes place.
570 }
571}
572
573// No IP solver supports FOM for solving the root LP yet, update this test test
574// once supported.
575TEST_P(IpParameterTest, RootLPAlgorithmFirstOrder) {
577 SolveForRootLp(TestedSolver(), LPAlgorithm::kFirstOrder,
578 GetParam().parameter_support),
579 StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("lp_algorithm")));
580}
581
582TEST_P(IpParameterTest, IterationLimitIP) {
583 const int n = 10;
584 Model model("Iteration limit IP");
585 std::vector<Variable> x;
586 x.reserve(n);
587 for (int i = 0; i < n; ++i) {
588 x.push_back(model.AddIntegerVariable(0.0, 1.0));
589 }
590 for (int i = 0; i < n; ++i) {
591 for (int j = i + 1; j < n; ++j) {
592 model.AddLinearConstraint(3 * x[i] + 5 * x[j] <= 7);
593 }
594 }
595 model.Maximize(Sum(x));
596 SolveParameters params = {.iteration_limit = 1};
597 // Weaken the solver as much as possible to make sure we make it to solving
598 // the root LP.
599 if (GetParam().parameter_support.supports_presolve) {
600 params.presolve = Emphasis::kOff;
601 }
602 if (GetParam().parameter_support.supports_heuristics) {
603 params.heuristics = Emphasis::kOff;
604 }
605 if (GetParam().parameter_support.supports_one_thread) {
606 params.threads = 1;
607 }
608 const absl::StatusOr<SolveResult> result =
609 Solve(model, TestedSolver(), {.parameters = params});
610 if (!GetParam().parameter_support.supports_iteration_limit) {
611 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
612 HasSubstr("iteration_limit")));
613 return;
614 }
617 /*allow_limit_undetermined=*/!GetParam()
618 .solve_result_support.termination_limit)));
619}
620
621TEST_P(IpParameterTest, NodeLimit) {
622 if (GetParam().solver_type == SolverType::kHighs) {
623 GTEST_SKIP()
624 << "This test does not work for HiGHS, which cannot disable cuts and "
625 "where disabling primal heuristics seems to have little effect, see "
626 "https://paste.googleplex.com/5694421105377280";
627 }
628 if (GetParam().solver_type == SolverType::kGscip) {
629 GTEST_SKIP() << "This test does not work with SCIP v900";
630 }
631 const std::unique_ptr<const Model> model = DenseIndependentSet(true);
632 SolveParameters params = {.node_limit = 1};
633 // Weaken the solver as much as possible so it does not solve the problem to
634 // optimality at the root.
635 if (GetParam().parameter_support.supports_presolve) {
636 params.presolve = Emphasis::kOff;
637 }
638 if (GetParam().parameter_support.supports_heuristics) {
639 params.heuristics = Emphasis::kOff;
640 }
641 if (GetParam().parameter_support.supports_cuts) {
642 params.cuts = Emphasis::kOff;
643 }
644 const absl::StatusOr<SolveResult> result =
645 Solve(*model, GetParam().solver_type, {.parameters = params});
646 if (!GetParam().parameter_support.supports_node_limit) {
647 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
648 HasSubstr("node_limit")));
649 return;
650 }
651 EXPECT_THAT(result,
653 Limit::kNode, /*allow_limit_undetermined=*/!GetParam()
654 .solve_result_support.termination_limit)));
655}
656
657// Problem statement:
658// max y
659// s.t. x[i] + x[j] <= 1 for i = 1..n, j = 1..n.
660// k * Sum(x) + y <= k + 1
661// k * Sum(x) - y >= -1
662// y >= 1
663// x[i, j] binary for i = 1..n, j = 1..n.
664//
665// Note that:
666// k * z + y <= k + 1
667// k * z - y >= -1
668// y >= 1
669//
670// describes the convex hull of (z, y) = (0, 1), (z, y) = (1, 1), and
671// (z, y) = (1/2, k/2 + 1). Then for the problem in the (x, y) variables we
672// have:
673// * The optimal objective value for the LP relaxation is k/2 + 1 and the set
674// of optimal solutions is any (x, y) such that
675// 1. Sum(x) = 1/2
676// 2. 0 <= x <= 1
677// 3. x[i] + x[j] <= 1, for i = 1..n, j = 1..n.
678// 3. y = k/2 + 1
679// (e.g. one solution is x[1] = 1/2, x[i] = 0 for i != 1 and y = k/2 + 1)
680// * The optimal objective value of the MIP is 1 and any integer feasible
681// solution is optimal. (e.g. one solution is x[1] = 1, x[i] = 0 for i != 1
682// and y = k/2 + 1)
683//
684// Then the LP relaxation is enough to validate any integer feasible solution to
685// a relative or absolute gap of k/2.
686absl::StatusOr<SolveResult> SolveForGapLimit(const int k, const int n,
687 const SolverType solver_type,
688 const SolveParameters params) {
689 Model model("Absolute gap limit IP");
690 std::vector<Variable> x;
691 for (int i = 0; i < n; ++i) {
692 x.push_back(model.AddBinaryVariable());
693 }
694
695 for (int i = 0; i < n; ++i) {
696 for (int j = i + 1; j < n; ++j) {
697 model.AddLinearConstraint(x[i] + x[j] <= 1);
698 }
699 }
700 const Variable y =
701 model.AddContinuousVariable(1, std::numeric_limits<double>::infinity());
702 model.AddLinearConstraint(k * Sum(x) + y <= k + 1);
703 model.AddLinearConstraint(k * Sum(x) - y >= -1);
704 model.Maximize(y);
705 return Solve(model, solver_type, {.parameters = params});
706}
707
708TEST_P(IpParameterTest, AbsoluteGapLimit) {
709 if (GetParam().solver_type == SolverType::kHighs) {
710 GTEST_SKIP()
711 << "This test does not work for HiGHS, we cannot weaken the root node "
712 "bound enough, see https://paste.googleplex.com/6416319233654784";
713 }
714 const int k = 10;
715 const int n = 2;
716 const double lp_opt = k / 2 + 1;
717 const double ip_opt = 1;
718 const double abs_lp_gap = lp_opt - ip_opt;
719 // We will set a target gap that can be validated by lp_opt, but best_bound
720 // may end up being slightly better for some solvers.
721 const double best_bound_differentiator = lp_opt - abs_lp_gap / 2.0;
722
723 // Check that best bound on default solve is close to ip_opt and hence
724 // strictly smaller than best_bound_differentiator.
726 const SolveResult default_result,
727 SolveForGapLimit(k, n, TestedSolver(), SolveParameters{}));
728 EXPECT_EQ(default_result.termination.reason, TerminationReason::kOptimal);
729 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
730 ip_opt + 0.1);
731 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
732 best_bound_differentiator);
733
734 // Set target gap slightly larger than abs_lp_gap and check that best bound
735 // is strictly larger than best_bound_differentiator.
736 SolveParameters params = {.absolute_gap_tolerance = abs_lp_gap + 0.1};
737 // Weaken the solver so that we actually have a chance to run the root LP
738 // and terminate early (if we solve the problem in presolve there will be no
739 // gap).
740 if (GetParam().parameter_support.supports_presolve) {
741 params.presolve = Emphasis::kOff;
742 }
743 if (GetParam().parameter_support.supports_one_thread) {
744 params.threads = 1;
745 }
746 if (GetParam().parameter_support.supports_cuts) {
747 params.cuts = Emphasis::kOff;
748 }
749 const absl::StatusOr<SolveResult> gap_tolerance_result =
750 SolveForGapLimit(k, n, TestedSolver(), params);
751 if (!GetParam().parameter_support.supports_absolute_gap_tolerance) {
752 EXPECT_THAT(gap_tolerance_result,
753 StatusIs(absl::StatusCode::kInvalidArgument,
754 HasSubstr("absolute_gap_tolerance")));
755 return;
756 }
757 EXPECT_EQ(gap_tolerance_result->termination.reason,
759
760 // This test is too brittle for CP-SAT, as we cannot get a bound that is just
761 // the LP relaxation and nothing more. This test is already brittle and may
762 // break on solver upgrades.
763 if (TestedSolver() != SolverType::kCpSat) {
764 EXPECT_GT(gap_tolerance_result->termination.objective_bounds.dual_bound,
765 best_bound_differentiator);
766 }
767}
768
769TEST_P(IpParameterTest, RelativeGapLimit) {
770 if (GetParam().solver_type == SolverType::kHighs) {
771 GTEST_SKIP()
772 << "This test does not work for HiGHS, we cannot weaken the root node "
773 "bound enough, see https://paste.googleplex.com/6416319233654784";
774 }
775 if (GetParam().solver_type == SolverType::kGlpk) {
776 GTEST_SKIP()
777 << "This test does not work for GLPK, not clear why this isn't "
778 "working, logs here: https://paste.googleplex.com/6080056622317568";
779 }
780 const int k = 10;
781 const int n = 2;
782 const double lp_opt = k / 2.0 + 1;
783 const double ip_opt = 1;
784 const double abs_lp_gap = lp_opt - ip_opt;
785 const double rel_lp_gap = (lp_opt - ip_opt) / ip_opt;
786 // We will set a target gap that can be validated by lp_opt, but best_bound
787 // may end up being slightly better for some solvers.
788 const double best_bound_differentiator = lp_opt - abs_lp_gap / 2.0;
789
790 // Check that best bound on default solve is close to ip_opt and hence
791 // strictly smaller than best_bound_differentiator.
793 const SolveResult default_result,
794 SolveForGapLimit(k, n, TestedSolver(), SolveParameters()));
795 EXPECT_THAT(default_result, IsOptimal());
796 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
797 ip_opt + 0.1);
798 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
799 best_bound_differentiator);
800
801 // Set target gap slightly larger than rel_lp_gap and check that best bound
802 // is strictly larger than best_bound_differentiator.
803 SolveParameters params = {.relative_gap_tolerance = rel_lp_gap + 0.1};
804 // Weaken the solver so that we actually have a chance to run the root LP
805 // and terminate early (if we solve the problem in presolve there will be no
806 // gap).
807 if (GetParam().parameter_support.supports_presolve) {
808 params.presolve = Emphasis::kOff;
809 }
810 if (GetParam().parameter_support.supports_one_thread) {
811 params.threads = 1;
812 }
813 if (GetParam().parameter_support.supports_cuts) {
814 params.cuts = Emphasis::kOff;
815 }
816 ASSERT_OK_AND_ASSIGN(const SolveResult gap_tolerance_result,
817 SolveForGapLimit(k, n, TestedSolver(), params));
818 EXPECT_EQ(gap_tolerance_result.termination.reason,
820
821 // This test is too brittle for CP-SAT, as we cannot get a bound that is just
822 // the LP relaxation and nothing more. This test is already brittle and may
823 // break on solver upgrades.
824 if (TestedSolver() != SolverType::kCpSat) {
825 EXPECT_GT(gap_tolerance_result.termination.objective_bounds.dual_bound,
826 best_bound_differentiator);
827 }
828}
829
830TEST_P(IpParameterTest, CutoffLimit) {
831 Model model;
832 const Variable x = model.AddBinaryVariable();
833 model.Minimize(x);
834 // When the optimal solution is worse than cutoff, no solution information is
835 // returned and we return Limit::kCutoff.
836 const absl::StatusOr<SolveResult> result = Solve(
837 model, GetParam().solver_type, {.parameters = {.cutoff_limit = -1.0}});
838 if (!GetParam().parameter_support.supports_cutoff) {
839 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
840 HasSubstr("cutoff")));
841 return;
842 }
845 // When the optimal solution is better than cutoff, the parameter has no
846 // effect on the returned SolveResult (at least for problems with a unique
847 // solution, it may change the nodes visited still) and we return the optimal
848 // solution.
849 EXPECT_THAT(Solve(model, GetParam().solver_type,
850 {.parameters = {.cutoff_limit = 0.5}}),
851 IsOkAndHolds(IsOptimal(0.0)));
852}
853
854TEST_P(IpParameterTest, ObjectiveLimit) {
855 const std::unique_ptr<Model> model = DenseIndependentSet(/*integer=*/true);
856 SolveParameters params = {.objective_limit = 3.5};
857 // If we solve in presolve we don't get a chance to stop early with the
858 // limit.
859 if (GetParam().parameter_support.supports_presolve) {
860 params.presolve = Emphasis::kOff;
861 }
862 {
863 // The model has an optimal solution of 7 which is hard to find, and many
864 // easy to find solutions with objective value 5. Solve with permission to
865 // stop early once an easy solution is found, and verify that we terminate
866 // from the objective limit.
867
868 const absl::StatusOr<SolveResult> result =
869 Solve(*model, GetParam().solver_type, {.parameters = params});
870 if (!GetParam().parameter_support.supports_objective_limit) {
871 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
872 HasSubstr("objective_limit")));
873 return;
874 }
876 ASSERT_TRUE(result->has_primal_feasible_solution());
877 EXPECT_LE(result->objective_value(), 5.0 + 1.0e-5);
878 }
879 // Resolve the same model with objective limit 20. Since the true objective
880 // is 7, we will just solve to optimality.
881 params.objective_limit = 20.0;
882 EXPECT_THAT(Solve(*model, GetParam().solver_type, {.parameters = params}),
884}
885
886TEST_P(IpParameterTest, BestBoundLimit) {
887 const std::unique_ptr<Model> model = DenseIndependentSet(/*integer=*/true);
888 // The model has an LP relaxation of 60 and an optimal solution of 7.
889 // Solve with permission to stop early, when the best bound is equal to 60.
890 // Check the termination reason, and that the bound is indeed worse than
891 // optimal.
892 SolveParameters params = {.best_bound_limit = 60.0};
893 // If we solve in presolve we don't get a chance to stop early with the
894 // limit.
895 if (GetParam().parameter_support.supports_presolve) {
896 params.presolve = Emphasis::kOff;
897 }
898 {
899 const absl::StatusOr<SolveResult> result =
900 Solve(*model, GetParam().solver_type, {.parameters = params});
901 if (!GetParam().parameter_support.supports_bound_limit) {
902 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
903 HasSubstr("best_bound_limit")));
904 return;
905 }
907 EXPECT_LE(result->termination.objective_bounds.dual_bound, 60.0);
908 EXPECT_GE(result->termination.objective_bounds.dual_bound, 8.0);
909 }
910 // Solve again but now with permission to stop only when the bound is 4 or
911 // smaller. Since the optimal solution is 7, we will just solve to optimality.
912 params.best_bound_limit = 4.0;
913 EXPECT_THAT(Solve(*model, GetParam().solver_type, {.parameters = params}),
914 IsOkAndHolds(IsOptimal(7.0)));
915}
916
917TEST_P(IpParameterTest, SolutionLimitOneWithHint) {
918 if (!GetParam().hint_supported) {
919 GTEST_SKIP() << "Test requires a hint";
920 }
921 Model model;
922 const Variable x = model.AddBinaryVariable();
923 model.Minimize(x);
924 ModelSolveParameters model_params;
925 model_params.solution_hints.push_back({.variable_values = {{x, 1.0}}});
926 SolveParameters params = {.solution_limit = 1};
927 if (GetParam().parameter_support.supports_presolve) {
928 params.presolve = Emphasis::kOff;
929 }
930 // SCIP fails to stop based on the hinted solution, runs the "trivial
931 // heuristic" and finds a better solution, then returns limit feasible with
932 // the wrong solution, unless heuristics are disabled.
933 if (GetParam().parameter_support.supports_heuristics) {
934 params.heuristics = Emphasis::kOff;
935 }
936 const absl::StatusOr<SolveResult> result =
937 Solve(model, GetParam().solver_type,
938 {.parameters = params, .model_parameters = model_params});
939 if (!GetParam().parameter_support.supports_solution_limit_one) {
940 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
941 HasSubstr("solution_limit")));
942 return;
943 }
946 /*allow_limit_undetermined=*/!GetParam()
947 .solve_result_support.termination_limit)));
948 EXPECT_EQ(result->solutions.size(), 1);
950 .variable_values = {{x, 1.0}},
951 .objective_value = 1.0,
952 .feasibility_status = SolutionStatus::kFeasible}));
953}
954
955TEST_P(IpParameterTest, SolutionLimitOneAndCutoff) {
956 if (!(GetParam().parameter_support.supports_cutoff &&
957 GetParam().parameter_support.supports_solution_limit_one)) {
958 // We have already tested when these parameters are unsupported.
959 return;
960 }
961 if (!GetParam().hint_supported) {
962 GTEST_SKIP() << "Test requires a hint";
963 }
964 Model model;
965 const Variable x = model.AddBinaryVariable();
966 const Variable y = model.AddBinaryVariable();
967 const Variable z = model.AddBinaryVariable();
968 model.Maximize(x + 2 * y + 3 * z);
969 model.AddLinearConstraint(x + y + z <= 1);
970
971 // Exclude (0, 0, 0) and (1, 0, 0) with cutoff = 1.5.
972 // Hint (1, 0, 0) and (0, 1, 0).
973 // Set a solution limit of 1. The first hint should be ignored, and the second
974 // suboptimal hint should be returned.
975 //
976 // NOTE: CP-SAT only allows one hint (the first one suggested). We put hint
977 // (0, 1, 0) first so the test still passes, but we are not testing as much.
978 SolveParameters params = {.cutoff_limit = 1.5, .solution_limit = 1};
979 if (GetParam().parameter_support.supports_presolve) {
980 params.presolve = Emphasis::kOff;
981 }
982 // Not 100% clear why this is needed, but CP-SAT will sometimes return
983 // a solution better than the hint without this.
984 if (GetParam().parameter_support.supports_one_thread) {
985 params.threads = 1;
986 }
987 ModelSolveParameters model_params;
989 .variable_values = {{x, 0.0}, {y, 1.0}, {z, 0.0}}});
990 model_params.solution_hints.push_back(ModelSolveParameters::SolutionHint{
991 .variable_values = {{x, 1.0}, {y, 0.0}, {z, 0.0}}});
993 const SolveResult result,
994 Solve(model, GetParam().solver_type,
995 {.parameters = params, .model_parameters = model_params}));
998 /*allow_limit_undetermined=*/!GetParam()
999 .solve_result_support.termination_limit));
1000 ASSERT_TRUE(result.has_primal_feasible_solution());
1001 EXPECT_NEAR(result.objective_value(), 2.0, 1e-5);
1002 EXPECT_EQ(result.solutions.size(), 1);
1003}
1004
1005// Tests the interaction between cutoff and an additional limit.
1006TEST_P(IpParameterTest, NoSolutionsBelowCutoffEarlyTermination) {
1007 if (GetParam().solver_type == SolverType::kGscip) {
1008 GTEST_SKIP() << "This test does not work with SCIP v900";
1009 }
1010 if (!(GetParam().parameter_support.supports_cutoff)) {
1011 // We have already tested that the right error message is returned.
1012 return;
1013 }
1014 if (!GetParam().hint_supported) {
1015 GTEST_SKIP() << "Test requires a hint";
1016 }
1017 const std::unique_ptr<const Model> model = DenseIndependentSet(true);
1018 ModelSolveParameters model_params;
1019 model_params.solution_hints.push_back(DenseIndependentSetHint5(*model));
1020 SolveParameters params = GetParam().stop_before_optimal;
1021 params.cutoff_limit = 6.5;
1023 const SolveResult result,
1024 Solve(*model, GetParam().solver_type,
1025 {.parameters = params, .model_parameters = model_params}));
1026 // There is a solution with objective 7, but it is hard to find.
1027 // NOTE: if this becomes flaky, we can increase to cutoff to 7.5.
1029}
1030
1031} // namespace
1032
1034// LargeInstanceIpParameterTest
1036
1037namespace {
1038
1039absl::StatusOr<std::unique_ptr<Model>> LoadMiplibInstance(
1040 absl::string_view name) {
1042 const ModelProto model_proto,
1043 ReadMpsFile(absl::StrCat("ortools/math_opt/solver_tests/testdata/", name,
1044 ".mps")));
1045 return Model::FromModelProto(model_proto);
1046}
1047
1048}; // namespace
1049
1050absl::StatusOr<std::unique_ptr<Model>>
1052 return LoadMiplibInstance("23588");
1054
1055absl::StatusOr<std::unique_ptr<Model>>
1057 return LoadMiplibInstance("beavma");
1059
1060namespace {
1061
1062TEST_P(LargeInstanceIpParameterTest, SolvesInstanceNoLimits) {
1063 if (DEBUG_MODE || kAnyXsanEnabled) {
1064 GTEST_SKIP() << "Test skipped, too slow unless compiled with -c opt.";
1065 }
1066 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1067 const SolveParameters params = GetParam().base_parameters;
1068 EXPECT_THAT(Solve(*model, GetParam().solver_type, {.parameters = params}),
1069 IsOkAndHolds(IsOptimal(kOptimalObjective)));
1070}
1071
1072TEST_P(LargeInstanceIpParameterTest, TimeLimit) {
1073 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1074 SolveParameters params = GetParam().base_parameters;
1075 params.time_limit = absl::Milliseconds(1);
1077 const SolveResult result,
1078 Solve(*model, GetParam().solver_type, {.parameters = params}));
1080 GetParam().allow_limit_undetermined));
1081 // Solvers do not stop very precisely, use a large number to avoid flaky
1082 // tests. Do NOT try to fine tune this to be small, it is hard to get right
1083 // for all compilation modes (e.g. debug, asan).
1084 EXPECT_LE(result.solve_stats.solve_time, absl::Seconds(1));
1085}
1086
1087TEST_P(LargeInstanceIpParameterTest, IterationLimit) {
1088 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1089 SolveParameters params = GetParam().base_parameters;
1090 params.iteration_limit = 1;
1091 const absl::StatusOr<SolveResult> result =
1092 Solve(*model, GetParam().solver_type, {.parameters = params});
1093 if (!GetParam().parameter_support.supports_iteration_limit) {
1094 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
1095 HasSubstr("iteration_limit")));
1096 return;
1097 }
1098 ASSERT_THAT(result,
1100 Limit::kIteration, GetParam().allow_limit_undetermined)));
1101 EXPECT_LE(result->solve_stats.simplex_iterations, 1);
1102 EXPECT_LE(result->solve_stats.barrier_iterations, 1);
1103}
1104
1106 if (GetParam().solver_type == SolverType::kHighs) {
1107 GTEST_SKIP() << "Ignoring this test as Highs 1.7+ returns unimplemented";
1108 }
1109 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1110 SolveParameters params = GetParam().base_parameters;
1111 params.node_limit = 1;
1112 const absl::StatusOr<SolveResult> result =
1113 Solve(*model, GetParam().solver_type, {.parameters = params});
1114 if (!GetParam().parameter_support.supports_node_limit) {
1115 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
1116 HasSubstr("node_limit")));
1117 return;
1118 }
1120 Limit::kNode, GetParam().allow_limit_undetermined)));
1121 EXPECT_LE(result->solve_stats.node_count, 1);
1122}
1123
1125 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1126 SolveParameters params = GetParam().base_parameters;
1127 // 23588.mps is minimization, set the cutoff below the optimal solution so
1128 // that no solutions are found.
1129 params.cutoff_limit = kOptimalObjective - 10.0;
1130 const absl::StatusOr<SolveResult> result =
1131 Solve(*model, GetParam().solver_type, {.parameters = params});
1132 if (!GetParam().parameter_support.supports_cutoff) {
1133 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
1134 HasSubstr("cutoff_limit")));
1135 return;
1136 }
1137 ASSERT_THAT(result,
1139 Limit::kCutoff, GetParam().allow_limit_undetermined)));
1140 // All solutions are worse than the cutoff value
1141 EXPECT_FALSE(result->has_primal_feasible_solution());
1142
1143 // Solve again with a cutoff above the optimal solution, make sure we get the
1144 // optimal solution back.
1145 //
1146 // This requires a full solve, which is slow in debug/asan.
1147 if (DEBUG_MODE || kAnyXsanEnabled) {
1148 return;
1149 }
1150}
1151
1152TEST_P(LargeInstanceIpParameterTest, ObjectiveLimit) {
1153 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1154 SolveParameters params = GetParam().base_parameters;
1155 // 23588.mps is minimization, set the objective limit above the optimal
1156 // solution so we terminate early.
1157 params.objective_limit = 1.5 * kOptimalObjective;
1158 const absl::StatusOr<SolveResult> result =
1159 Solve(*model, GetParam().solver_type, {.parameters = params});
1160 if (!GetParam().parameter_support.supports_objective_limit) {
1161 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
1162 HasSubstr("objective_limit")));
1163 return;
1164 }
1165
1166 // This assertion is a bit fragile, the solver could prove optimality.
1167 ASSERT_THAT(result,
1169 Limit::kObjective, GetParam().allow_limit_undetermined)));
1170 // The objective value should be in the interval:
1171 // [kOptimalObjective, params.objective_limit].
1172 EXPECT_LE(result->objective_value(), params.objective_limit);
1173 // This assertion is fragile, the solver could find an optimal solution, but
1174 // we want to ensure that the objective limit is actually making us stop
1175 // early.
1176 EXPECT_GE(result->objective_value(), kOptimalObjective + 1.0);
1177
1178 // Solve again with an objective limit below the optimal solution, make sure
1179 // we get the optimal solution back.
1180 //
1181 // This requires a full solve, which is slow in debug/asan.
1182 if (DEBUG_MODE || kAnyXsanEnabled) {
1183 return;
1184 }
1185 params.objective_limit = kOptimalObjective - 10.0;
1186 EXPECT_THAT(Solve(*model, GetParam().solver_type, {.parameters = params}),
1187 IsOkAndHolds(IsOptimal(kOptimalObjective)));
1188}
1189
1190TEST_P(LargeInstanceIpParameterTest, BestBoundLimit) {
1191 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1192 SolveParameters params = GetParam().base_parameters;
1193 params.best_bound_limit = kLpRelaxationObjective - 1.0;
1194 const absl::StatusOr<SolveResult> result =
1195 Solve(*model, GetParam().solver_type, {.parameters = params});
1196 if (!GetParam().parameter_support.supports_bound_limit) {
1197 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
1198 HasSubstr("best_bound_limit")));
1199 return;
1200 }
1201 // This assertion is a bit fragile, the solver could prove optimality.
1202 ASSERT_THAT(result,
1204 Limit::kObjective, GetParam().allow_limit_undetermined)));
1205 // Since we should get a bound at least as strong as the LP relaxation at
1206 // the root node
1207 EXPECT_LE(result->solve_stats.node_count, 1);
1208 // The objective value should be in the interval:
1209 // [params.best_bound_limit, kOptimalObjective].
1210 EXPECT_GE(result->best_objective_bound(), params.best_bound_limit);
1211 // This assertion is fragile, the solver could prove optimality, but
1212 // we want to ensure that the bound limit is actually making us stop early.
1213 EXPECT_GE(result->termination.objective_bounds.primal_bound,
1214 kOptimalObjective - 1.0);
1215
1216 // Solve again with a bound limit above the optimal solution, make sure we
1217 // get the optimal solution back.
1218 //
1219 // This requires a full solve, which is slow in debug/asan.
1220 if (DEBUG_MODE || kAnyXsanEnabled) {
1221 return;
1222 }
1223 params.best_bound_limit = kOptimalObjective + 10.0;
1224 EXPECT_THAT(Solve(*model, GetParam().solver_type, {.parameters = params}),
1225 IsOkAndHolds(IsOptimal(kOptimalObjective)));
1226}
1227
1228TEST_P(LargeInstanceIpParameterTest, SolutionLimit) {
1229 if (GetParam().solver_type == SolverType::kHighs) {
1230 GTEST_SKIP() << "Ignoring this test as Highs 1.7+ returns unimplemented";
1231 }
1232 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1233 SolveParameters params = GetParam().base_parameters;
1234 params.solution_limit = 1;
1235 const absl::StatusOr<SolveResult> result =
1236 Solve(*model, GetParam().solver_type, {.parameters = params});
1237 if (!GetParam().parameter_support.supports_solution_limit_one) {
1238 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
1239 HasSubstr("solution_limit")));
1240 return;
1241 }
1242 // This assertion is a bit fragile, the solver could prove optimality.
1243 ASSERT_THAT(result,
1245 Limit::kSolution, GetParam().allow_limit_undetermined)));
1246 // This test is a bit fragile, but typically we cannot prove optimality at
1247 // the time of first feasible solution (note that CP-SATs first primal
1248 // solution is optimal roughly 1/100 solves).
1249 EXPECT_GE(result->objective_value() - result->best_objective_bound(), 1.0);
1250}
1251
1252// Set the absolute gap to the difference between the optimal objective
1253// and the root LP (~441), and check that there is at least a gap of ~10
1254// between the objective and best bound at termination.
1255//
1256// The root LP should bring us within the gap. Do NOT assert that there
1257// is at most one node as:
1258// * There may be multiple nodes due to restarts.
1259// * There is no guarantee (Without hints) that we find a good primal
1260// solution at the root.
1261TEST_P(LargeInstanceIpParameterTest, AbsoluteGapTolerance) {
1262 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1263 SolveParameters params = GetParam().base_parameters;
1264 const double absolute_lp_relax_gap =
1265 kOptimalObjective - kLpRelaxationObjective;
1266 params.absolute_gap_tolerance = absolute_lp_relax_gap;
1267 const absl::StatusOr<SolveResult> result =
1268 Solve(*model, GetParam().solver_type, {.parameters = params});
1269 if (!GetParam().parameter_support.supports_absolute_gap_tolerance) {
1270 EXPECT_THAT(result, StatusIs(absl::StatusCode::kInvalidArgument,
1271 HasSubstr("absolute_gap_tolerance")));
1272 return;
1273 }
1275 // There should be some space between our optimal solution and best bound
1276 EXPECT_GE(result->termination.objective_bounds.primal_bound -
1277 result->termination.objective_bounds.dual_bound,
1278 absolute_lp_relax_gap / 40.0);
1279}
1280
1281// Set the relative gap to 2*(8090 - 7649)/8090 ~= 0.1 and check there is
1282// a gap of at least ~10 between the objective and best bound at termination.
1283//
1284// The root LP should bring us within the gap, but not assert on the node count,
1285// see above.
1286TEST_P(LargeInstanceIpParameterTest, RelativeGapTolerance) {
1287 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, Load23588());
1288 SolveParameters params = GetParam().base_parameters;
1289 const double absolute_lp_relax_gap =
1290 kOptimalObjective - kLpRelaxationObjective;
1291 params.relative_gap_tolerance = 2 * absolute_lp_relax_gap / kOptimalObjective;
1292 const absl::StatusOr<SolveResult> result =
1293 Solve(*model, GetParam().solver_type, {.parameters = params});
1294
1296 // The root LP should bring us within the gap. Do NOT assert that there
1297 // is at most one node, there may be multiple due to restarts.
1298 // There should be some space between our optimal solution and best bound
1299 EXPECT_GE(result->termination.objective_bounds.primal_bound -
1300 result->termination.objective_bounds.dual_bound,
1301 absolute_lp_relax_gap / 40.0);
1302}
1303
1305 if (!GetParam().parameter_support.supports_node_limit) {
1306 GTEST_SKIP() << "Skipping test, requires node_limit but is not supported.";
1307 }
1308 ASSERT_OK_AND_ASSIGN(std::unique_ptr<Model> model, LoadBeavma());
1309 SolveParameters params = GetParam().base_parameters;
1310 // Run only the root node so we can compare the bound quality with and without
1311 // cuts on by checking the best bound on the SolveResult.
1312 params.node_limit = 1;
1313 params.cuts = Emphasis::kOff;
1314 const absl::StatusOr<SolveResult> result_cuts_off =
1315 Solve(*model, GetParam().solver_type, {.parameters = params});
1316 if (!GetParam().parameter_support.supports_cuts) {
1317 EXPECT_THAT(result_cuts_off, StatusIs(absl::StatusCode::kInvalidArgument,
1318 HasSubstr("cuts")));
1319 return;
1320 }
1321 ASSERT_OK(result_cuts_off);
1322 const double bound_cuts_off = result_cuts_off->best_objective_bound();
1323
1324 params.cuts = Emphasis::kMedium;
1326 const SolveResult result_cuts_on,
1327 Solve(*model, GetParam().solver_type, {.parameters = params}));
1328 const double bound_cuts_on = result_cuts_on.best_objective_bound();
1329
1330 // Problem is minimization, so a larger bound is better. Using cuts should
1331 // improve the bound.
1332 EXPECT_GE(bound_cuts_on, bound_cuts_off + 1.0);
1333}
1334
1335} // namespace
1336
1337} // namespace math_opt
1338} // namespace operations_research
#define ASSIGN_OR_RETURN(lhs, rexpr)
#define RETURN_IF_ERROR(expr)
Definition model.h:341
void Maximize(Variable *obj, std::vector< Annotation > search_annotations)
Definition model.cc:1075
Variable * AddVariable(absl::string_view name, const Domain &domain, bool defined)
--— Builder methods --—
Definition model.cc:1025
void Minimize(Variable *obj, std::vector< Annotation > search_annotations)
Definition model.cc:1068
absl::StatusOr< std::unique_ptr< Model > > LoadBeavma()
absl::StatusOr< std::unique_ptr< Model > > Load23588()
static absl::StatusOr< std::unique_ptr< Model > > FromModelProto(const ModelProto &model_proto)
Definition model.cc:54
const bool DEBUG_MODE
Definition macros.h:26
An object oriented wrapper for quadratic constraints in ModelStorage.
Definition gurobi_isv.cc:28
EXPECT_THAT(ComputeInfeasibleSubsystem(model, GetParam().solver_type), IsOkAndHolds(IsInfeasible(true, ModelSubset{ .variable_bounds={{x, ModelSubset::Bounds{.lower=false,.upper=true}}},.linear_constraints={ {c, ModelSubset::Bounds{.lower=true,.upper=false}}}})))
TEST_P(InfeasibleSubsystemTest, CanComputeInfeasibleSubsystem)
SolverType
The solvers supported by MathOpt.
Definition parameters.h:42
@ kOptimal
A provably optimal solution (up to numerical tolerances) has been found.
<=x<=1 IncrementalMipTest::IncrementalMipTest() :model_("incremental_solve_test"), x_(model_.AddContinuousVariable(0.0, 1.0, "x")), y_(model_.AddIntegerVariable(0.0, 2.0, "y")), c_(model_.AddLinearConstraint(0<=x_+y_<=1.5, "c")) { model_.Maximize(3.0 *x_+2.0 *y_+0.1);solver_=NewIncrementalSolver(&model_, TestedSolver()).value();const SolveResult first_solve=solver_->Solve().value();CHECK(first_solve.has_primal_feasible_solution());CHECK_LE(std::abs(first_solve.objective_value() - 3.6), kTolerance)<< first_solve.objective_value();} namespace { TEST_P(SimpleMipTest, OneVarMax) { Model model;const Variable x=model.AddVariable(0.0, 4.0, false, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(8.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 4.0}}));} TEST_P(SimpleMipTest, OneVarMin) { Model model;const Variable x=model.AddVariable(-2.4, 4.0, false, "x");model.Minimize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(-4.8));EXPECT_THAT(result.variable_values(), IsNear({{x, -2.4}}));} TEST_P(SimpleMipTest, OneIntegerVar) { Model model;const Variable x=model.AddVariable(0.0, 4.5, true, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(8.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 4.0}}));} TEST_P(SimpleMipTest, SimpleLinearConstraint) { Model model;const Variable x=model.AddBinaryVariable("x");const Variable y=model.AddBinaryVariable("y");model.Maximize(2.0 *x+y);model.AddLinearConstraint(0.0<=x+y<=1.5, "c");ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(2.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 1}, {y, 0}}));} TEST_P(SimpleMipTest, Unbounded) { Model model;const Variable x=model.AddVariable(0.0, kInf, true, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));if(GetParam().report_unboundness_correctly) { ASSERT_THAT(result, TerminatesWithOneOf({TerminationReason::kUnbounded, TerminationReason::kInfeasibleOrUnbounded}));} else { ASSERT_THAT(result, TerminatesWith(TerminationReason::kOtherError));} } TEST_P(SimpleMipTest, Infeasible) { Model model;const Variable x=model.AddVariable(0.0, 3.0, true, "x");model.Maximize(2.0 *x);model.AddLinearConstraint(x >=4.0);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, TerminatesWith(TerminationReason::kInfeasible));} TEST_P(SimpleMipTest, FractionalBoundsContainNoInteger) { if(GetParam().solver_type==SolverType::kGurobi) { GTEST_SKIP()<< "TODO(b/272298816): Gurobi bindings are broken here.";} Model model;const Variable x=model.AddIntegerVariable(0.5, 0.6, "x");model.Maximize(x);EXPECT_THAT(Solve(model, GetParam().solver_type), IsOkAndHolds(TerminatesWith(TerminationReason::kInfeasible)));} TEST_P(IncrementalMipTest, EmptyUpdate) { ASSERT_THAT(solver_->Update(), IsOkAndHolds(DidUpdate()));ASSERT_OK_AND_ASSIGN(const SolveResult result, solver_->SolveWithoutUpdate());ASSERT_THAT(result, IsOptimal(3.6));EXPECT_THAT(result.variable_values(), IsNear({{x_, 0.5}, {y_, 1.0}}));} TEST_P(IncrementalMipTest, MakeContinuous) { model_.set_continuous(y_);ASSERT_THAT(solver_->Update(), IsOkAndHolds(DidUpdate()));ASSERT_OK_AND_ASSIGN(const SolveResult result, solver_->SolveWithoutUpdate());ASSERT_THAT(result, IsOptimal(4.1));EXPECT_THAT(result.variable_values(), IsNear({{x_, 1.0}, {y_, 0.5}}));} TEST_P(IncrementalMipTest, DISABLED_MakeContinuousWithNonIntegralBounds) { solver_.reset();Model model("bounds");const Variable x=model.AddIntegerVariable(0.5, 1.5, "x");model.Maximize(x);ASSERT_OK_AND_ASSIGN(const auto solver, NewIncrementalSolver(&model, TestedSolver()));ASSERT_THAT(solver->Solve(), IsOkAndHolds(IsOptimal(1.0)));model.set_continuous(x);ASSERT_THAT(solver->Update(), IsOkAndHolds(DidUpdate()));ASSERT_THAT(solver-> IsOkAndHolds(IsOptimal(1.5)))
ASSERT_THAT(solver->Update(), IsOkAndHolds(DidUpdate()))
LPAlgorithm
Selects an algorithm for solving linear programs.
Definition parameters.h:134
When the underlying default is used When the feature cannot be turned kOff will return an error If the feature is enabled by the solver default is typically If the feature is supported
mapped to kMedium.
Definition parameters.h:183
LinearExpression Sum(const Iterable &items)
absl::StatusOr< SolveResult > Solve(const Model &model, const SolverType solver_type, const SolveArguments &solve_args, const SolverInitArguments &init_args)
Definition solve.cc:62
std::ostream & operator<<(std::ostream &ostr, const IndicatorConstraint &constraint)
Matcher< SolveResult > HasSolution(PrimalSolution expected, const double tolerance)
SolveResult has a primal solution matching expected within tolerance.
Definition matchers.cc:823
@ kFeasible
Solver claims the solution is feasible.
Definition solution.h:44
testing::Matcher< SolveResult > TerminatesWithReasonFeasible(const Limit expected, const bool allow_limit_undetermined)
Definition matchers.cc:657
Matcher< SolveResult > TerminatesWith(const TerminationReason expected)
Definition matchers.cc:621
MessageCallback PrinterMessageCallback(std::ostream &output_stream, const absl::string_view prefix)
absl::StatusOr< ModelProto > ReadMpsFile(const absl::string_view filename)
testing::Matcher< SolveResult > TerminatesWithLimit(const Limit expected, const bool allow_limit_undetermined)
Definition matchers.cc:648
@ kTime
The algorithm stopped after a user-specified computation time.
std::unique_ptr< Model > DenseIndependentSet(const bool integer, const int n)
absl::string_view EnumToString(E value)
Definition enums.h:289
internal::StatusIsMatcher StatusIs(CodeMatcher code_matcher, MessageMatcher message_matcher)
ModelSolveParameters::SolutionHint DenseIndependentSetHint5(const Model &model)
Matcher< SolveResult > IsOptimal(const std::optional< double > expected_primal_objective, const double tolerance)
Definition matchers.cc:762
testing::Matcher< SolveResult > TerminatesWithReasonNoSolutionFound(const Limit expected, const bool allow_limit_undetermined)
Definition matchers.cc:665
BoolVar Not(BoolVar x)
Definition cp_model.cc:87
In SWIG mode, we don't want anything besides these top-level includes.
std::string ProtobufShortDebugString(const P &message)
Definition proto_utils.h:41
constexpr bool kAnyXsanEnabled
internal::StatusIsMatcher StatusIs(CodeMatcher code_matcher, MessageMatcher message_matcher)
internal::IsOkAndHoldsMatcher< typename std::decay< InnerMatcher >::type > IsOkAndHolds(InnerMatcher &&inner_matcher)
StatusBuilder InternalErrorBuilder()
#define ASSERT_OK(expression)
#define ASSERT_OK_AND_ASSIGN(lhs, rexpr)
bool supports_n_threads
Supports setting threads to an arbitrary value.
bool supports_one_thread
Supports setting threads = 1 (all but HiGHS support this).
bool supports_solution_limit_one
Indicates if setting solution_limit with value 1 is supported.
SolveParameters parameters
Model independent parameters, e.g. time limit.
bool node_count
If SolveStats reports the node count.
bool iteration_stats
If SolveStats reports iteration stats for LP/IPM/FOM.