71#include "absl/container/flat_hash_set.h"
72#include "absl/status/status.h"
73#include "absl/status/statusor.h"
74#include "absl/strings/escaping.h"
75#include "absl/strings/str_cat.h"
76#include "absl/strings/str_join.h"
77#include "absl/strings/string_view.h"
78#include "absl/time/time.h"
79#include "absl/types/span.h"
80#include "gtest/gtest.h"
106 ostr <<
"{ " << absl::StrJoin(
supported,
", ") <<
" }";
114 supported.push_back(
"supports_iteration_limit");
117 supported.push_back(
"supports_node_limit");
123 supported.push_back(
"supports_objective_limit");
126 supported.push_back(
"supports_bound_limit");
129 supported.push_back(
"supports_solution_limit_one");
132 supported.push_back(
"supports_one_thread");
135 supported.push_back(
"supports_n_threads");
138 supported.push_back(
"supports_random_seed");
141 supported.push_back(
"supports_absolute_gap_tolerance");
144 supported.push_back(
"supports_lp_algorithm_simplex");
147 supported.push_back(
"supports_lp_algorithm_barrier");
150 supported.push_back(
"supports_presolve");
156 supported.push_back(
"supports_heuristics");
161 ostr <<
"{ " << absl::StrJoin(
supported,
", ") <<
" }";
167 ostr <<
"{ name: " << params.
name;
173 ostr <<
"\", stop_before_optimal: "
180 out <<
"{ name: " << params.
name;
182 out <<
", base_parameters: "
192using ::testing::HasSubstr;
206 model.AddLinearConstraint(
x + y >= 1);
207 model.AddLinearConstraint(y + z >= 1);
208 model.AddLinearConstraint(z +
x >= 1);
226void AddSixTriangles(
Model& model, absl::Span<const Variable> xs,
227 absl::Span<const Variable> ys,
228 absl::Span<const Variable> zs) {
229 AddTriangle(model, xs[0], xs[1], xs[2]);
230 AddTriangle(model, ys[0], ys[1], ys[2]);
231 AddTriangle(model, zs[0], zs[1], zs[2]);
232 AddTriangle(model, xs[0], ys[0], zs[0]);
233 AddTriangle(model, xs[1], ys[1], zs[1]);
234 AddTriangle(model, xs[2], ys[2], zs[2]);
255 xs_ = MakeVars3By3(
"x");
256 ys_ = MakeVars3By3(
"y");
257 zs_ = MakeVars3By3(
"z");
258 LinearExpression objective;
259 for (
int i = 0;
i < 3; ++
i) {
260 objective +=
Sum(xs_[i]) +
Sum(ys_[i]) +
Sum(zs_[i]);
262 model_.Minimize(objective);
263 for (
int i = 0;
i < 3; ++
i) {
264 AddSixTriangles(model_, xs_[i], ys_[i], zs_[i]);
266 for (
int j = 0; j < 3; ++j) {
267 AddTriangle(model_, xs_[0][j], xs_[1][j], xs_[2][j]);
268 AddTriangle(model_, ys_[0][j], ys_[1][j], ys_[2][j]);
269 AddTriangle(model_, zs_[0][j], zs_[1][j], zs_[2][j]);
273 Model& model() {
return model_; }
275 std::vector<std::string> SolutionFingerprint(
const SolveResult& result) {
276 std::vector<std::string> var_names;
277 for (
const Variable v : model_.Variables()) {
278 double val = result.variable_values().at(v);
280 var_names.push_back(std::string(v.name()));
283 std::sort(var_names.begin(), var_names.end());
287 static absl::StatusOr<std::vector<std::string>> SolveAndFingerprint(
288 const SolverType solver_type,
const SolveParameters& params) {
289 VertexCover vertex_cover;
292 Solve(vertex_cover.model(), solver_type, {.parameters = params}));
294 if (std::abs(result.objective_value() - 18.0) > 1e-4) {
296 <<
"expected objective value of 18, found: "
297 << result.objective_value();
299 return result.has_primal_feasible_solution()
300 ? vertex_cover.SolutionFingerprint(result)
301 : std::vector<std::string>();
306 std::vector<std::vector<Variable>> MakeVars3By3(absl::string_view prefix) {
307 std::vector<std::vector<Variable>> result(3);
308 for (
int i = 0;
i < 3; ++
i) {
309 for (
int j = 0; j < 3; ++j) {
311 model_.AddBinaryVariable(absl::StrCat(prefix,
"_", i,
"_", j)));
318 std::vector<std::vector<Variable>> xs_;
319 std::vector<std::vector<Variable>> ys_;
320 std::vector<std::vector<Variable>> zs_;
336 absl::flat_hash_set<std::vector<std::string>> solutions_seen;
337 for (
int seed = 10; seed < 200; seed += 10) {
338 SCOPED_TRACE(absl::StrCat(
"seed ", seed));
339 std::vector<std::string> result_for_seed;
340 for (
int trial = 0; trial < 10; ++trial) {
341 SCOPED_TRACE(absl::StrCat(
"trial ", trial));
343 if (GetParam().parameter_support.supports_one_thread) {
346 absl::StatusOr<std::vector<std::string>> fingerprint =
347 VertexCover::SolveAndFingerprint(TestedSolver(), params);
348 if (!GetParam().parameter_support.supports_random_seed) {
350 HasSubstr(
"random_seed")));
354 result_for_seed = *fingerprint;
355 solutions_seen.insert(result_for_seed);
357 ASSERT_EQ(result_for_seed, *fingerprint);
364 EXPECT_GE(solutions_seen.size(), 3);
376absl::StatusOr<std::pair<SolveStats, std::string>> SolveForIPPresolve(
378 std::ostringstream oss;
379 Model model(
"easy_presolve_model");
380 model.set_maximize();
381 for (
int i = 0;
i < 4; ++
i) {
384 model.AddToObjective(y);
385 model.AddLinearConstraint(
x + y == 1.0);
386 model.AddLinearConstraint(
x >= y);
394 return std::make_pair(result.solve_stats, oss.str());
407 if (!GetParam().parameter_support.supports_presolve) {
411 absl::StatusOr<std::pair<SolveStats, std::string>> stats_and_logs =
412 SolveForIPPresolve(TestedSolver(),
false);
414 const auto [solve_stats, logs] = stats_and_logs.value();
415 if (GetParam().solve_result_support.iteration_stats) {
416 EXPECT_GE(solve_stats.barrier_iterations + solve_stats.simplex_iterations +
417 solve_stats.first_order_iterations,
420#if !defined(_MSC_VER)
421 EXPECT_THAT(logs,
Not(testing::ContainsRegex(GetParam().presolved_regexp)));
426 absl::StatusOr<std::pair<SolveStats, std::string>> stats_and_logs =
427 SolveForIPPresolve(TestedSolver(),
true);
428 if (!GetParam().parameter_support.supports_presolve) {
430 HasSubstr(
"presolve")));
434 const auto [solve_stats, logs] = stats_and_logs.value();
435 if (!GetParam().solve_result_support.iteration_stats) {
436 EXPECT_EQ(solve_stats.barrier_iterations, 0);
437 EXPECT_EQ(solve_stats.simplex_iterations, 0);
438 EXPECT_EQ(solve_stats.first_order_iterations, 0);
440#if !defined(_MSC_VER)
441 EXPECT_THAT(logs, testing::ContainsRegex(GetParam().presolved_regexp));
446absl::StatusOr<SolveStats> SolveForCuts(
SolverType solver_type,
bool use_cuts) {
448 model.set_maximize();
449 for (
int i = 0;
i < 10; ++
i) {
452 model.AddToObjective(2 *
x + y);
456 model.AddLinearConstraint(3 *
x + 2 * y <= 4);
464 return result.solve_stats;
468 if (!GetParam().parameter_support.supports_presolve) {
469 GTEST_SKIP() <<
"Skipping test, this test requires disabling presolve "
470 "which is not supported.";
472 if (!GetParam().parameter_support.supports_cuts) {
477 SolveForCuts(TestedSolver(),
false));
478 if (GetParam().solve_result_support.node_count) {
479 EXPECT_GT(solve_stats.node_count, 1);
483 if (!GetParam().parameter_support.supports_presolve) {
484 GTEST_SKIP() <<
"Skipping test, this test requires disabling presolve "
485 "which is not supported.";
487 absl::StatusOr<SolveStats> solve_stats =
488 SolveForCuts(TestedSolver(),
true);
489 if (!GetParam().parameter_support.supports_cuts) {
495 if (GetParam().solve_result_support.node_count) {
496 EXPECT_EQ(solve_stats->node_count, 1);
502absl::StatusOr<SolveStats> SolveForRootLp(
505 VertexCover vertex_cover;
508 if (parameter_support.supports_one_thread) {
513 if (parameter_support.supports_presolve) {
518 const SolveResult result,
519 Solve(vertex_cover.model(), solver_type, {.parameters = params}));
521 return result.solve_stats;
525 const absl::StatusOr<SolveStats> stats =
527 GetParam().parameter_support);
528 if (!GetParam().parameter_support.supports_lp_algorithm_simplex) {
530 HasSubstr(
"lp_algorithm")));
534 if (GetParam().solve_result_support.iteration_stats) {
535 EXPECT_GT(stats->simplex_iterations, 0);
536 EXPECT_EQ(stats->barrier_iterations, 0);
537 EXPECT_EQ(stats->first_order_iterations, 0);
542 const absl::StatusOr<SolveStats> stats = SolveForRootLp(
544 if (!GetParam().parameter_support.supports_lp_algorithm_simplex) {
546 HasSubstr(
"lp_algorithm")));
550 if (GetParam().solve_result_support.iteration_stats) {
551 EXPECT_GT(stats->simplex_iterations, 0);
552 EXPECT_EQ(stats->barrier_iterations, 0);
553 EXPECT_EQ(stats->first_order_iterations, 0);
558 const absl::StatusOr<SolveStats> stats = SolveForRootLp(
560 if (!GetParam().parameter_support.supports_lp_algorithm_barrier) {
562 HasSubstr(
"lp_algorithm")));
566 if (GetParam().solve_result_support.iteration_stats) {
567 EXPECT_GT(stats->barrier_iterations, 0);
578 GetParam().parameter_support),
579 StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr(
"lp_algorithm")));
584 Model model(
"Iteration limit IP");
585 std::vector<Variable>
x;
587 for (
int i = 0;
i < n; ++
i) {
588 x.push_back(model.AddIntegerVariable(0.0, 1.0));
590 for (
int i = 0;
i < n; ++
i) {
591 for (
int j = i + 1; j < n; ++j) {
592 model.AddLinearConstraint(3 *
x[i] + 5 *
x[j] <= 7);
599 if (GetParam().parameter_support.supports_presolve) {
602 if (GetParam().parameter_support.supports_heuristics) {
605 if (GetParam().parameter_support.supports_one_thread) {
608 const absl::StatusOr<SolveResult> result =
609 Solve(model, TestedSolver(), {.parameters = params});
610 if (!GetParam().parameter_support.supports_iteration_limit) {
612 HasSubstr(
"iteration_limit")));
618 .solve_result_support.termination_limit)));
624 <<
"This test does not work for HiGHS, which cannot disable cuts and "
625 "where disabling primal heuristics seems to have little effect, see "
626 "https://paste.googleplex.com/5694421105377280";
629 GTEST_SKIP() <<
"This test does not work with SCIP v900";
635 if (GetParam().parameter_support.supports_presolve) {
638 if (GetParam().parameter_support.supports_heuristics) {
641 if (GetParam().parameter_support.supports_cuts) {
644 const absl::StatusOr<SolveResult> result =
645 Solve(*model, GetParam().solver_type, {.parameters = params});
646 if (!GetParam().parameter_support.supports_node_limit) {
648 HasSubstr(
"node_limit")));
654 .solve_result_support.termination_limit)));
686absl::StatusOr<SolveResult> SolveForGapLimit(
const int k,
const int n,
689 Model model(
"Absolute gap limit IP");
690 std::vector<Variable>
x;
691 for (
int i = 0;
i < n; ++
i) {
692 x.push_back(model.AddBinaryVariable());
695 for (
int i = 0;
i < n; ++
i) {
696 for (
int j = i + 1; j < n; ++j) {
697 model.AddLinearConstraint(
x[i] +
x[j] <= 1);
701 model.AddContinuousVariable(1, std::numeric_limits<double>::infinity());
702 model.AddLinearConstraint(k *
Sum(
x) + y <= k + 1);
703 model.AddLinearConstraint(k *
Sum(
x) - y >= -1);
705 return Solve(model, solver_type, {.parameters = params});
711 <<
"This test does not work for HiGHS, we cannot weaken the root node "
712 "bound enough, see https://paste.googleplex.com/6416319233654784";
716 const double lp_opt = k / 2 + 1;
717 const double ip_opt = 1;
718 const double abs_lp_gap = lp_opt - ip_opt;
721 const double best_bound_differentiator = lp_opt - abs_lp_gap / 2.0;
726 const SolveResult default_result,
729 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
731 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
732 best_bound_differentiator);
740 if (GetParam().parameter_support.supports_presolve) {
743 if (GetParam().parameter_support.supports_one_thread) {
746 if (GetParam().parameter_support.supports_cuts) {
749 const absl::StatusOr<SolveResult> gap_tolerance_result =
750 SolveForGapLimit(k, n, TestedSolver(), params);
751 if (!GetParam().parameter_support.supports_absolute_gap_tolerance) {
753 StatusIs(absl::StatusCode::kInvalidArgument,
754 HasSubstr(
"absolute_gap_tolerance")));
757 EXPECT_EQ(gap_tolerance_result->termination.reason,
764 EXPECT_GT(gap_tolerance_result->termination.objective_bounds.dual_bound,
765 best_bound_differentiator);
772 <<
"This test does not work for HiGHS, we cannot weaken the root node "
773 "bound enough, see https://paste.googleplex.com/6416319233654784";
777 <<
"This test does not work for GLPK, not clear why this isn't "
778 "working, logs here: https://paste.googleplex.com/6080056622317568";
782 const double lp_opt = k / 2.0 + 1;
783 const double ip_opt = 1;
784 const double abs_lp_gap = lp_opt - ip_opt;
785 const double rel_lp_gap = (lp_opt - ip_opt) / ip_opt;
788 const double best_bound_differentiator = lp_opt - abs_lp_gap / 2.0;
793 const SolveResult default_result,
796 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
798 EXPECT_LT(default_result.termination.objective_bounds.dual_bound,
799 best_bound_differentiator);
807 if (GetParam().parameter_support.supports_presolve) {
810 if (GetParam().parameter_support.supports_one_thread) {
813 if (GetParam().parameter_support.supports_cuts) {
817 SolveForGapLimit(k, n, TestedSolver(), params));
818 EXPECT_EQ(gap_tolerance_result.termination.reason,
825 EXPECT_GT(gap_tolerance_result.termination.objective_bounds.dual_bound,
826 best_bound_differentiator);
832 const Variable x = model.AddBinaryVariable();
836 const absl::StatusOr<SolveResult> result =
Solve(
837 model, GetParam().solver_type, {.parameters = {.cutoff_limit = -1.0}});
838 if (!GetParam().parameter_support.supports_cutoff) {
840 HasSubstr(
"cutoff")));
850 {.parameters = {.cutoff_limit = 0.5}}),
859 if (GetParam().parameter_support.supports_presolve) {
868 const absl::StatusOr<SolveResult> result =
869 Solve(*model, GetParam().solver_type, {.parameters = params});
870 if (!GetParam().parameter_support.supports_objective_limit) {
872 HasSubstr(
"objective_limit")));
876 ASSERT_TRUE(result->has_primal_feasible_solution());
877 EXPECT_LE(result->objective_value(), 5.0 + 1.0e-5);
895 if (GetParam().parameter_support.supports_presolve) {
899 const absl::StatusOr<SolveResult> result =
900 Solve(*model, GetParam().solver_type, {.parameters = params});
901 if (!GetParam().parameter_support.supports_bound_limit) {
903 HasSubstr(
"best_bound_limit")));
907 EXPECT_LE(result->termination.objective_bounds.dual_bound, 60.0);
908 EXPECT_GE(result->termination.objective_bounds.dual_bound, 8.0);
918 if (!GetParam().hint_supported) {
919 GTEST_SKIP() <<
"Test requires a hint";
922 const Variable x = model.AddBinaryVariable();
925 model_params.
solution_hints.push_back({.variable_values = {{
x, 1.0}}});
927 if (GetParam().parameter_support.supports_presolve) {
933 if (GetParam().parameter_support.supports_heuristics) {
936 const absl::StatusOr<SolveResult> result =
937 Solve(model, GetParam().solver_type,
938 {.parameters = params, .model_parameters = model_params});
939 if (!GetParam().parameter_support.supports_solution_limit_one) {
941 HasSubstr(
"solution_limit")));
947 .solve_result_support.termination_limit)));
948 EXPECT_EQ(result->solutions.size(), 1);
950 .variable_values = {{
x, 1.0}},
951 .objective_value = 1.0,
956 if (!(GetParam().parameter_support.supports_cutoff &&
957 GetParam().parameter_support.supports_solution_limit_one)) {
961 if (!GetParam().hint_supported) {
962 GTEST_SKIP() <<
"Test requires a hint";
965 const Variable x = model.AddBinaryVariable();
966 const Variable y = model.AddBinaryVariable();
967 const Variable z = model.AddBinaryVariable();
969 model.AddLinearConstraint(
x + y + z <= 1);
979 if (GetParam().parameter_support.supports_presolve) {
984 if (GetParam().parameter_support.supports_one_thread) {
989 .variable_values = {{
x, 0.0}, {y, 1.0}, {z, 0.0}}});
991 .variable_values = {{
x, 1.0}, {y, 0.0}, {z, 0.0}}});
993 const SolveResult result,
994 Solve(model, GetParam().solver_type,
995 {.parameters = params, .model_parameters = model_params}));
999 .solve_result_support.termination_limit));
1000 ASSERT_TRUE(result.has_primal_feasible_solution());
1001 EXPECT_NEAR(result.objective_value(), 2.0, 1e-5);
1002 EXPECT_EQ(result.solutions.size(), 1);
1008 GTEST_SKIP() <<
"This test does not work with SCIP v900";
1010 if (!(GetParam().parameter_support.supports_cutoff)) {
1014 if (!GetParam().hint_supported) {
1015 GTEST_SKIP() <<
"Test requires a hint";
1023 const SolveResult result,
1024 Solve(*model, GetParam().solver_type,
1025 {.parameters = params, .model_parameters = model_params}));
1039absl::StatusOr<std::unique_ptr<Model>> LoadMiplibInstance(
1040 absl::string_view name) {
1042 const ModelProto model_proto,
1043 ReadMpsFile(absl::StrCat(
"ortools/math_opt/solver_tests/testdata/", name,
1050absl::StatusOr<std::unique_ptr<Model>>
1052 return LoadMiplibInstance(
"23588");
1055absl::StatusOr<std::unique_ptr<Model>>
1057 return LoadMiplibInstance(
"beavma");
1064 GTEST_SKIP() <<
"Test skipped, too slow unless compiled with -c opt.";
1074 SolveParameters params = GetParam().base_parameters;
1075 params.time_limit = absl::Milliseconds(1);
1077 const SolveResult result,
1078 Solve(*model, GetParam().solver_type, {.parameters = params}));
1080 GetParam().allow_limit_undetermined));
1084 EXPECT_LE(result.solve_stats.solve_time, absl::Seconds(1));
1091 const absl::StatusOr<SolveResult> result =
1092 Solve(*model, GetParam().solver_type, {.parameters = params});
1093 if (!GetParam().parameter_support.supports_iteration_limit) {
1095 HasSubstr(
"iteration_limit")));
1101 EXPECT_LE(result->solve_stats.simplex_iterations, 1);
1102 EXPECT_LE(result->solve_stats.barrier_iterations, 1);
1107 GTEST_SKIP() <<
"Ignoring this test as Highs 1.7+ returns unimplemented";
1112 const absl::StatusOr<SolveResult> result =
1113 Solve(*model, GetParam().solver_type, {.parameters = params});
1114 if (!GetParam().parameter_support.supports_node_limit) {
1116 HasSubstr(
"node_limit")));
1121 EXPECT_LE(result->solve_stats.node_count, 1);
1130 const absl::StatusOr<SolveResult> result =
1131 Solve(*model, GetParam().solver_type, {.parameters = params});
1132 if (!GetParam().parameter_support.supports_cutoff) {
1134 HasSubstr(
"cutoff_limit")));
1141 EXPECT_FALSE(result->has_primal_feasible_solution());
1158 const absl::StatusOr<SolveResult> result =
1159 Solve(*model, GetParam().solver_type, {.parameters = params});
1160 if (!GetParam().parameter_support.supports_objective_limit) {
1162 HasSubstr(
"objective_limit")));
1172 EXPECT_LE(result->objective_value(), params.objective_limit);
1176 EXPECT_GE(result->objective_value(), kOptimalObjective + 1.0);
1185 params.objective_limit = kOptimalObjective - 10.0;
1194 const absl::StatusOr<SolveResult> result =
1195 Solve(*model, GetParam().solver_type, {.parameters = params});
1196 if (!GetParam().parameter_support.supports_bound_limit) {
1198 HasSubstr(
"best_bound_limit")));
1207 EXPECT_LE(result->solve_stats.node_count, 1);
1210 EXPECT_GE(result->best_objective_bound(), params.best_bound_limit);
1213 EXPECT_GE(result->termination.objective_bounds.primal_bound,
1214 kOptimalObjective - 1.0);
1223 params.best_bound_limit = kOptimalObjective + 10.0;
1230 GTEST_SKIP() <<
"Ignoring this test as Highs 1.7+ returns unimplemented";
1235 const absl::StatusOr<SolveResult> result =
1236 Solve(*model, GetParam().solver_type, {.parameters = params});
1237 if (!GetParam().parameter_support.supports_solution_limit_one) {
1239 HasSubstr(
"solution_limit")));
1249 EXPECT_GE(result->objective_value() - result->best_objective_bound(), 1.0);
1264 const double absolute_lp_relax_gap =
1265 kOptimalObjective - kLpRelaxationObjective;
1267 const absl::StatusOr<SolveResult> result =
1268 Solve(*model, GetParam().solver_type, {.parameters = params});
1269 if (!GetParam().parameter_support.supports_absolute_gap_tolerance) {
1271 HasSubstr(
"absolute_gap_tolerance")));
1276 EXPECT_GE(result->termination.objective_bounds.primal_bound -
1277 result->termination.objective_bounds.dual_bound,
1278 absolute_lp_relax_gap / 40.0);
1289 const double absolute_lp_relax_gap =
1290 kOptimalObjective - kLpRelaxationObjective;
1292 const absl::StatusOr<SolveResult> result =
1293 Solve(*model, GetParam().solver_type, {.parameters = params});
1299 EXPECT_GE(result->termination.objective_bounds.primal_bound -
1300 result->termination.objective_bounds.dual_bound,
1301 absolute_lp_relax_gap / 40.0);
1305 if (!GetParam().parameter_support.supports_node_limit) {
1306 GTEST_SKIP() <<
"Skipping test, requires node_limit but is not supported.";
1314 const absl::StatusOr<SolveResult> result_cuts_off =
1315 Solve(*model, GetParam().solver_type, {.parameters = params});
1316 if (!GetParam().parameter_support.supports_cuts) {
1318 HasSubstr(
"cuts")));
1322 const double bound_cuts_off = result_cuts_off->best_objective_bound();
1326 const SolveResult result_cuts_on,
1327 Solve(*model, GetParam().solver_type, {.parameters = params}));
1328 const double bound_cuts_on = result_cuts_on.best_objective_bound();
1332 EXPECT_GE(bound_cuts_on, bound_cuts_off + 1.0);
#define ASSIGN_OR_RETURN(lhs, rexpr)
#define RETURN_IF_ERROR(expr)
void Maximize(Variable *obj, std::vector< Annotation > search_annotations)
Variable * AddVariable(absl::string_view name, const Domain &domain, bool defined)
--— Builder methods --—
void Minimize(Variable *obj, std::vector< Annotation > search_annotations)
absl::StatusOr< std::unique_ptr< Model > > LoadBeavma()
absl::StatusOr< std::unique_ptr< Model > > Load23588()
static absl::StatusOr< std::unique_ptr< Model > > FromModelProto(const ModelProto &model_proto)
An object oriented wrapper for quadratic constraints in ModelStorage.
EXPECT_THAT(ComputeInfeasibleSubsystem(model, GetParam().solver_type), IsOkAndHolds(IsInfeasible(true, ModelSubset{ .variable_bounds={{x, ModelSubset::Bounds{.lower=false,.upper=true}}},.linear_constraints={ {c, ModelSubset::Bounds{.lower=true,.upper=false}}}})))
TEST_P(InfeasibleSubsystemTest, CanComputeInfeasibleSubsystem)
SolverType
The solvers supported by MathOpt.
@ kOptimal
A provably optimal solution (up to numerical tolerances) has been found.
<=x<=1 IncrementalMipTest::IncrementalMipTest() :model_("incremental_solve_test"), x_(model_.AddContinuousVariable(0.0, 1.0, "x")), y_(model_.AddIntegerVariable(0.0, 2.0, "y")), c_(model_.AddLinearConstraint(0<=x_+y_<=1.5, "c")) { model_.Maximize(3.0 *x_+2.0 *y_+0.1);solver_=NewIncrementalSolver(&model_, TestedSolver()).value();const SolveResult first_solve=solver_->Solve().value();CHECK(first_solve.has_primal_feasible_solution());CHECK_LE(std::abs(first_solve.objective_value() - 3.6), kTolerance)<< first_solve.objective_value();} namespace { TEST_P(SimpleMipTest, OneVarMax) { Model model;const Variable x=model.AddVariable(0.0, 4.0, false, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(8.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 4.0}}));} TEST_P(SimpleMipTest, OneVarMin) { Model model;const Variable x=model.AddVariable(-2.4, 4.0, false, "x");model.Minimize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(-4.8));EXPECT_THAT(result.variable_values(), IsNear({{x, -2.4}}));} TEST_P(SimpleMipTest, OneIntegerVar) { Model model;const Variable x=model.AddVariable(0.0, 4.5, true, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(8.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 4.0}}));} TEST_P(SimpleMipTest, SimpleLinearConstraint) { Model model;const Variable x=model.AddBinaryVariable("x");const Variable y=model.AddBinaryVariable("y");model.Maximize(2.0 *x+y);model.AddLinearConstraint(0.0<=x+y<=1.5, "c");ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, IsOptimal(2.0));EXPECT_THAT(result.variable_values(), IsNear({{x, 1}, {y, 0}}));} TEST_P(SimpleMipTest, Unbounded) { Model model;const Variable x=model.AddVariable(0.0, kInf, true, "x");model.Maximize(2.0 *x);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));if(GetParam().report_unboundness_correctly) { ASSERT_THAT(result, TerminatesWithOneOf({TerminationReason::kUnbounded, TerminationReason::kInfeasibleOrUnbounded}));} else { ASSERT_THAT(result, TerminatesWith(TerminationReason::kOtherError));} } TEST_P(SimpleMipTest, Infeasible) { Model model;const Variable x=model.AddVariable(0.0, 3.0, true, "x");model.Maximize(2.0 *x);model.AddLinearConstraint(x >=4.0);ASSERT_OK_AND_ASSIGN(const SolveResult result, Solve(model, GetParam().solver_type));ASSERT_THAT(result, TerminatesWith(TerminationReason::kInfeasible));} TEST_P(SimpleMipTest, FractionalBoundsContainNoInteger) { if(GetParam().solver_type==SolverType::kGurobi) { GTEST_SKIP()<< "TODO(b/272298816): Gurobi bindings are broken here.";} Model model;const Variable x=model.AddIntegerVariable(0.5, 0.6, "x");model.Maximize(x);EXPECT_THAT(Solve(model, GetParam().solver_type), IsOkAndHolds(TerminatesWith(TerminationReason::kInfeasible)));} TEST_P(IncrementalMipTest, EmptyUpdate) { ASSERT_THAT(solver_->Update(), IsOkAndHolds(DidUpdate()));ASSERT_OK_AND_ASSIGN(const SolveResult result, solver_->SolveWithoutUpdate());ASSERT_THAT(result, IsOptimal(3.6));EXPECT_THAT(result.variable_values(), IsNear({{x_, 0.5}, {y_, 1.0}}));} TEST_P(IncrementalMipTest, MakeContinuous) { model_.set_continuous(y_);ASSERT_THAT(solver_->Update(), IsOkAndHolds(DidUpdate()));ASSERT_OK_AND_ASSIGN(const SolveResult result, solver_->SolveWithoutUpdate());ASSERT_THAT(result, IsOptimal(4.1));EXPECT_THAT(result.variable_values(), IsNear({{x_, 1.0}, {y_, 0.5}}));} TEST_P(IncrementalMipTest, DISABLED_MakeContinuousWithNonIntegralBounds) { solver_.reset();Model model("bounds");const Variable x=model.AddIntegerVariable(0.5, 1.5, "x");model.Maximize(x);ASSERT_OK_AND_ASSIGN(const auto solver, NewIncrementalSolver(&model, TestedSolver()));ASSERT_THAT(solver->Solve(), IsOkAndHolds(IsOptimal(1.0)));model.set_continuous(x);ASSERT_THAT(solver->Update(), IsOkAndHolds(DidUpdate()));ASSERT_THAT(solver-> IsOkAndHolds(IsOptimal(1.5)))
ASSERT_THAT(solver->Update(), IsOkAndHolds(DidUpdate()))
LPAlgorithm
Selects an algorithm for solving linear programs.
When the underlying default is used When the feature cannot be turned kOff will return an error If the feature is enabled by the solver default is typically If the feature is supported
mapped to kMedium.
LinearExpression Sum(const Iterable &items)
absl::StatusOr< SolveResult > Solve(const Model &model, const SolverType solver_type, const SolveArguments &solve_args, const SolverInitArguments &init_args)
std::ostream & operator<<(std::ostream &ostr, const IndicatorConstraint &constraint)
Matcher< SolveResult > HasSolution(PrimalSolution expected, const double tolerance)
SolveResult has a primal solution matching expected within tolerance.
@ kFeasible
Solver claims the solution is feasible.
testing::Matcher< SolveResult > TerminatesWithReasonFeasible(const Limit expected, const bool allow_limit_undetermined)
Matcher< SolveResult > TerminatesWith(const TerminationReason expected)
MessageCallback PrinterMessageCallback(std::ostream &output_stream, const absl::string_view prefix)
absl::StatusOr< ModelProto > ReadMpsFile(const absl::string_view filename)
testing::Matcher< SolveResult > TerminatesWithLimit(const Limit expected, const bool allow_limit_undetermined)
@ kTime
The algorithm stopped after a user-specified computation time.
std::unique_ptr< Model > DenseIndependentSet(const bool integer, const int n)
absl::string_view EnumToString(E value)
internal::StatusIsMatcher StatusIs(CodeMatcher code_matcher, MessageMatcher message_matcher)
ModelSolveParameters::SolutionHint DenseIndependentSetHint5(const Model &model)
Matcher< SolveResult > IsOptimal(const std::optional< double > expected_primal_objective, const double tolerance)
testing::Matcher< SolveResult > TerminatesWithReasonNoSolutionFound(const Limit expected, const bool allow_limit_undetermined)
In SWIG mode, we don't want anything besides these top-level includes.
std::string ProtobufShortDebugString(const P &message)
constexpr bool kAnyXsanEnabled
internal::StatusIsMatcher StatusIs(CodeMatcher code_matcher, MessageMatcher message_matcher)
internal::IsOkAndHoldsMatcher< typename std::decay< InnerMatcher >::type > IsOkAndHolds(InnerMatcher &&inner_matcher)
StatusBuilder InternalErrorBuilder()
#define ASSERT_OK(expression)
#define ASSERT_OK_AND_ASSIGN(lhs, rexpr)
ParameterSupport parameter_support
std::string presolved_regexp
SolverType solver_type
The tested solver.
SolveParameters stop_before_optimal
SolveResultSupport solve_result_support
ParameterSupport parameter_support
bool allow_limit_undetermined
SolverType solver_type
The tested solver.
SolveParameters base_parameters
std::vector< SolutionHint > solution_hints
bool supports_n_threads
Supports setting threads to an arbitrary value.
bool supports_one_thread
Supports setting threads = 1 (all but HiGHS support this).
bool supports_lp_algorithm_barrier
bool supports_iteration_limit
bool supports_objective_limit
bool supports_lp_algorithm_simplex
bool supports_absolute_gap_tolerance
bool supports_random_seed
bool supports_solution_limit_one
Indicates if setting solution_limit with value 1 is supported.
bool supports_bound_limit
SolveParameters parameters
Model independent parameters, e.g. time limit.
std::optional< int64_t > node_limit
std::optional< double > relative_gap_tolerance
std::optional< double > absolute_gap_tolerance
std::optional< int32_t > solution_limit
std::optional< int64_t > iteration_limit
SolveParametersProto Proto() const
std::optional< double > objective_limit
std::optional< Emphasis > presolve
std::optional< double > cutoff_limit
std::optional< double > best_bound_limit
bool node_count
If SolveStats reports the node count.
bool iteration_stats
If SolveStats reports iteration stats for LP/IPM/FOM.