Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
cp_model_checker.cc
Go to the documentation of this file.
1// Copyright 2010-2025 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
15
16#include <algorithm>
17#include <cmath>
18#include <cstdint>
19#include <limits>
20#include <optional>
21#include <string>
22#include <tuple>
23#include <utility>
24#include <vector>
25
26#include "absl/algorithm/container.h"
27#include "absl/container/btree_map.h"
28#include "absl/container/flat_hash_map.h"
29#include "absl/container/flat_hash_set.h"
30#include "absl/log/check.h"
31#include "absl/meta/type_traits.h"
32#include "absl/strings/str_cat.h"
33#include "absl/types/span.h"
36#include "ortools/sat/cp_model.pb.h"
39#include "ortools/sat/sat_parameters.pb.h"
42
43namespace operations_research {
44namespace sat {
45namespace {
46
47// =============================================================================
48// CpModelProto validation.
49// =============================================================================
50
51// If the string returned by "statement" is not empty, returns it.
52#define RETURN_IF_NOT_EMPTY(statement) \
53 do { \
54 const std::string error_message = statement; \
55 if (!error_message.empty()) return error_message; \
56 } while (false)
57
58template <typename ProtoWithDomain>
59bool DomainInProtoIsValid(const ProtoWithDomain& proto) {
60 if (proto.domain().size() % 2) return false;
61 std::vector<ClosedInterval> domain;
62 for (int i = 0; i < proto.domain_size(); i += 2) {
63 if (proto.domain(i) > proto.domain(i + 1)) return false;
64 domain.push_back({proto.domain(i), proto.domain(i + 1)});
65 }
67}
68
69bool VariableReferenceIsValid(const CpModelProto& model, int reference) {
70 // We do it this way to avoid overflow if reference is kint64min for instance.
71 if (reference >= model.variables_size()) return false;
72 return reference >= -static_cast<int>(model.variables_size());
73}
74
75// Note(user): Historically we always accepted positive or negative variable
76// reference everywhere, but now that we can always substitute affine relation,
77// we starts to transition to positive reference only, which are clearer. Note
78// that this doesn't concern literal reference though.
79bool VariableIndexIsValid(const CpModelProto& model, int var) {
80 return var >= 0 && var < model.variables_size();
81}
82
83bool LiteralReferenceIsValid(const CpModelProto& model, int reference) {
84 if (!VariableReferenceIsValid(model, reference)) return false;
85 const auto& var_proto = model.variables(PositiveRef(reference));
86 const int64_t min_domain = var_proto.domain(0);
87 const int64_t max_domain = var_proto.domain(var_proto.domain_size() - 1);
88 return min_domain >= 0 && max_domain <= 1;
89}
90
91std::string ValidateIntegerVariable(const CpModelProto& model, int v) {
92 const IntegerVariableProto& proto = model.variables(v);
93 if (proto.domain_size() == 0) {
94 return absl::StrCat("var #", v,
95 " has no domain(): ", ProtobufShortDebugString(proto));
96 }
97 if (proto.domain_size() % 2 != 0) {
98 return absl::StrCat("var #", v, " has an odd domain() size: ",
100 }
101 if (!DomainInProtoIsValid(proto)) {
102 return absl::StrCat("var #", v, " has and invalid domain() format: ",
104 }
105
106 // Internally, we often take the negation of a domain, and we also want to
107 // have sentinel values greater than the min/max of a variable domain, so
108 // the domain must fall in [-kint64max / 2, kint64max / 2].
109 const int64_t lb = proto.domain(0);
110 const int64_t ub = proto.domain(proto.domain_size() - 1);
111 if (lb < -std::numeric_limits<int64_t>::max() / 2 ||
112 ub > std::numeric_limits<int64_t>::max() / 2) {
113 return absl::StrCat(
114 "var #", v, " domain do not fall in [-kint64max / 2, kint64max / 2]. ",
116 }
117
118 // We do compute ub - lb in some place in the code and do not want to deal
119 // with overflow everywhere. This seems like a reasonable precondition anyway.
120 if (lb < 0 && lb + std::numeric_limits<int64_t>::max() < ub) {
121 return absl::StrCat(
122 "var #", v,
123 " has a domain that is too large, i.e. |UB - LB| overflow an int64_t: ",
125 }
126
127 return "";
128}
129
130std::string ValidateVariablesUsedInConstraint(const CpModelProto& model,
131 int c) {
132 const ConstraintProto& ct = model.constraints(c);
134 for (const int v : references.variables) {
135 if (!VariableReferenceIsValid(model, v)) {
136 return absl::StrCat("Out of bound integer variable ", v,
137 " in constraint #", c, " : ",
139 }
140 }
141 for (const int lit : ct.enforcement_literal()) {
142 if (!LiteralReferenceIsValid(model, lit)) {
143 return absl::StrCat("Invalid enforcement literal ", lit,
144 " in constraint #", c, " : ",
146 }
147 }
148 for (const int lit : references.literals) {
149 if (!LiteralReferenceIsValid(model, lit)) {
150 return absl::StrCat("Invalid literal ", lit, " in constraint #", c, " : ",
152 }
153 }
154 return "";
155}
156
157std::string ValidateIntervalsUsedInConstraint(bool after_presolve,
158 const CpModelProto& model,
159 int c) {
160 const ConstraintProto& ct = model.constraints(c);
161 for (const int i : UsedIntervals(ct)) {
162 if (i < 0 || i >= model.constraints_size()) {
163 return absl::StrCat("Out of bound interval ", i, " in constraint #", c,
164 " : ", ProtobufShortDebugString(ct));
165 }
166 if (after_presolve && i >= c) {
167 return absl::StrCat("Interval ", i, " in constraint #", c,
168 " must appear before in the list of constraints :",
170 }
171 if (model.constraints(i).constraint_case() !=
172 ConstraintProto::ConstraintCase::kInterval) {
173 return absl::StrCat(
174 "Interval ", i,
175 " does not refer to an interval constraint. Problematic constraint #",
176 c, " : ", ProtobufShortDebugString(ct));
177 }
178 }
179 return "";
180}
181
182int64_t MinOfRef(const CpModelProto& model, int ref) {
183 const IntegerVariableProto& var_proto = model.variables(PositiveRef(ref));
184 if (RefIsPositive(ref)) {
185 return var_proto.domain(0);
186 } else {
187 return -var_proto.domain(var_proto.domain_size() - 1);
188 }
189}
190
191int64_t MaxOfRef(const CpModelProto& model, int ref) {
192 const IntegerVariableProto& var_proto = model.variables(PositiveRef(ref));
193 if (RefIsPositive(ref)) {
194 return var_proto.domain(var_proto.domain_size() - 1);
195 } else {
196 return -var_proto.domain(0);
197 }
198}
199
200template <class LinearExpressionProto>
201int64_t MinOfExpression(const CpModelProto& model,
202 const LinearExpressionProto& proto) {
203 int64_t sum_min = proto.offset();
204 for (int i = 0; i < proto.vars_size(); ++i) {
205 const int ref = proto.vars(i);
206 const int64_t coeff = proto.coeffs(i);
207 sum_min =
208 CapAdd(sum_min, coeff >= 0 ? CapProd(MinOfRef(model, ref), coeff)
209 : CapProd(MaxOfRef(model, ref), coeff));
210 }
211
212 return sum_min;
213}
214
215template <class LinearExpressionProto>
216int64_t MaxOfExpression(const CpModelProto& model,
217 const LinearExpressionProto& proto) {
218 int64_t sum_max = proto.offset();
219 for (int i = 0; i < proto.vars_size(); ++i) {
220 const int ref = proto.vars(i);
221 const int64_t coeff = proto.coeffs(i);
222 sum_max =
223 CapAdd(sum_max, coeff >= 0 ? CapProd(MaxOfRef(model, ref), coeff)
224 : CapProd(MinOfRef(model, ref), coeff));
225 }
226
227 return sum_max;
228}
229
230bool ExpressionIsFixed(const CpModelProto& model,
231 const LinearExpressionProto& expr) {
232 for (int i = 0; i < expr.vars_size(); ++i) {
233 if (expr.coeffs(i) == 0) continue;
234 const IntegerVariableProto& var_proto = model.variables(expr.vars(i));
235 if (var_proto.domain_size() != 2 ||
236 var_proto.domain(0) != var_proto.domain(1)) {
237 return false;
238 }
239 }
240 return true;
241}
242
243int64_t ExpressionFixedValue(const CpModelProto& model,
244 const LinearExpressionProto& expr) {
245 DCHECK(ExpressionIsFixed(model, expr));
246 return MinOfExpression(model, expr);
247}
248
249int64_t IntervalSizeMax(const CpModelProto& model, int interval_index) {
250 DCHECK_EQ(ConstraintProto::ConstraintCase::kInterval,
251 model.constraints(interval_index).constraint_case());
252 const IntervalConstraintProto& proto =
253 model.constraints(interval_index).interval();
254 return MaxOfExpression(model, proto.size());
255}
256
257Domain DomainOfRef(const CpModelProto& model, int ref) {
258 const Domain domain = ReadDomainFromProto(model.variables(PositiveRef(ref)));
259 return RefIsPositive(ref) ? domain : domain.Negation();
260}
261
262std::string ValidateLinearExpression(const CpModelProto& model,
263 const LinearExpressionProto& expr) {
264 if (expr.coeffs_size() != expr.vars_size()) {
265 return absl::StrCat("coeffs_size() != vars_size() in linear expression: ",
267 }
268 if (PossibleIntegerOverflow(model, expr.vars(), expr.coeffs(),
269 expr.offset())) {
270 return absl::StrCat("Possible overflow in linear expression: ",
272 }
273 for (const int var : expr.vars()) {
274 if (!RefIsPositive(var)) {
275 return absl::StrCat("Invalid negated variable in linear expression: ",
277 }
278 }
279 return "";
280}
281
282std::string ValidateAffineExpression(const CpModelProto& model,
283 const LinearExpressionProto& expr) {
284 if (expr.vars_size() > 1) {
285 return absl::StrCat("expression must be affine: ",
287 }
288 return ValidateLinearExpression(model, expr);
289}
290
291std::string ValidateConstantAffineExpression(
292 const CpModelProto& model, const LinearExpressionProto& expr) {
293 if (!expr.vars().empty()) {
294 return absl::StrCat("expression must be constant: ",
296 }
297 return ValidateLinearExpression(model, expr);
298}
299
300std::string ValidateLinearConstraint(const CpModelProto& model,
301 const ConstraintProto& ct) {
302 if (!DomainInProtoIsValid(ct.linear())) {
303 return absl::StrCat("Invalid domain in constraint : ",
305 }
306 if (ct.linear().coeffs_size() != ct.linear().vars_size()) {
307 return absl::StrCat("coeffs_size() != vars_size() in constraint: ",
309 }
310 for (const int var : ct.linear().vars()) {
311 if (!RefIsPositive(var)) {
312 return absl::StrCat("Invalid negated variable in linear constraint: ",
314 }
315 }
316 const LinearConstraintProto& arg = ct.linear();
317 if (PossibleIntegerOverflow(model, arg.vars(), arg.coeffs())) {
318 return "Possible integer overflow in constraint: " +
320 }
321 return "";
322}
323
324std::string ValidateIntModConstraint(const CpModelProto& model,
325 const ConstraintProto& ct) {
326 if (ct.int_mod().exprs().size() != 2) {
327 return absl::StrCat("An int_mod constraint should have exactly 2 terms: ",
329 }
330 if (!ct.int_mod().has_target()) {
331 return absl::StrCat("An int_mod constraint should have a target: ",
333 }
334
335 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, ct.int_mod().exprs(0)));
336 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, ct.int_mod().exprs(1)));
337 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, ct.int_mod().target()));
338
339 const LinearExpressionProto mod_expr = ct.int_mod().exprs(1);
340 if (MinOfExpression(model, mod_expr) <= 0) {
341 return absl::StrCat(
342 "An int_mod must have a strictly positive modulo argument: ",
344 }
345
346 return "";
347}
348
349std::string ValidateIntProdConstraint(const CpModelProto& model,
350 const ConstraintProto& ct) {
351 if (!ct.int_prod().has_target()) {
352 return absl::StrCat("An int_prod constraint should have a target: ",
354 }
355
356 for (const LinearExpressionProto& expr : ct.int_prod().exprs()) {
357 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, expr));
358 }
359 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, ct.int_prod().target()));
360
361 // Detect potential overflow.
362 Domain product_domain(1);
363 for (const LinearExpressionProto& expr : ct.int_prod().exprs()) {
364 const int64_t min_expr = MinOfExpression(model, expr);
365 const int64_t max_expr = MaxOfExpression(model, expr);
366 if (min_expr == 0 && max_expr == 0) {
367 // An overflow multiplied by zero is still invalid.
368 continue;
369 }
370 product_domain =
371 product_domain.ContinuousMultiplicationBy({min_expr, max_expr});
372 }
373
374 if (product_domain.Max() <= -std ::numeric_limits<int64_t>::max() ||
375 product_domain.Min() >= std::numeric_limits<int64_t>::max()) {
376 return absl::StrCat("integer overflow in constraint: ",
378 }
379
380 // We need to expand the product when its arity is > 2. In that case, we must
381 // be strict with overflows.
382 if (ct.int_prod().exprs_size() > 2 &&
383 (product_domain.Max() >= std ::numeric_limits<int64_t>::max() ||
384 product_domain.Min() <= -std::numeric_limits<int64_t>::max())) {
385 return absl::StrCat("Potential integer overflow in constraint: ",
387 }
388
389 return "";
390}
391
392std::string ValidateIntDivConstraint(const CpModelProto& model,
393 const ConstraintProto& ct) {
394 if (ct.int_div().exprs().size() != 2) {
395 return absl::StrCat("An int_div constraint should have exactly 2 terms: ",
397 }
398 if (!ct.int_div().has_target()) {
399 return absl::StrCat("An int_div constraint should have a target: ",
401 }
402
403 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, ct.int_div().exprs(0)));
404 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, ct.int_div().exprs(1)));
405 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, ct.int_div().target()));
406
407 const LinearExpressionProto& denom = ct.int_div().exprs(1);
408 const int64_t offset = denom.offset();
409 if (ExpressionIsFixed(model, denom)) {
410 if (ExpressionFixedValue(model, denom) == 0) {
411 return absl::StrCat("Division by 0: ", ProtobufShortDebugString(ct));
412 }
413 } else {
414 const int64_t coeff = denom.coeffs(0);
415 CHECK_NE(coeff, 0);
416 const int64_t inverse_of_zero = -offset / coeff;
417 if (inverse_of_zero * coeff + offset == 0 &&
418 DomainOfRef(model, denom.vars(0)).Contains(inverse_of_zero)) {
419 return absl::StrCat("The domain of the divisor cannot contain 0: ",
421 }
422 }
423 return "";
424}
425
426void AppendToOverflowValidator(const LinearExpressionProto& input,
427 LinearExpressionProto* output,
428 int64_t prod = 1) {
429 output->mutable_vars()->Add(input.vars().begin(), input.vars().end());
430 for (const int64_t coeff : input.coeffs()) {
431 output->add_coeffs(coeff * prod);
432 }
433
434 // We add the absolute value to be sure that future computation will not
435 // overflow depending on the order they are performed in.
436 output->set_offset(
437 CapAdd(std::abs(output->offset()), std::abs(input.offset())));
438}
439
440std::string ValidateElementConstraint(const CpModelProto& model,
441 const ConstraintProto& ct) {
442 const ElementConstraintProto& element = ct.element();
443
444 const bool in_linear_format = element.has_linear_index() ||
445 element.has_linear_target() ||
446 !element.exprs().empty();
447 const bool in_legacy_format =
448 !element.vars().empty() || element.index() != 0 || element.target() != 0;
449 if (in_linear_format && in_legacy_format) {
450 return absl::StrCat(
451 "Inconsistent element with both legacy and new format defined",
453 }
454
455 if (element.vars().empty() && element.exprs().empty()) {
456 return "Empty element constraint is interpreted as vars[], thus invalid "
457 "since the index will be out of bounds.";
458 }
459
460 // We need to be able to manipulate expression like "target - var" without
461 // integer overflow.
462 if (!element.vars().empty()) {
463 LinearExpressionProto overflow_detection;
464 overflow_detection.add_vars(element.target());
465 overflow_detection.add_coeffs(1);
466 overflow_detection.add_vars(/*dummy*/ 0);
467 overflow_detection.add_coeffs(-1);
468 for (const int ref : element.vars()) {
469 if (!VariableIndexIsValid(model, ref)) {
470 return absl::StrCat("Element vars must be valid variables: ",
472 }
473 overflow_detection.set_vars(1, ref);
474 if (PossibleIntegerOverflow(model, overflow_detection.vars(),
475 overflow_detection.coeffs())) {
476 return absl::StrCat(
477 "Domain of the variables involved in element constraint may cause "
478 "overflow",
480 }
481 }
482 }
483
484 if (in_legacy_format) {
485 if (!VariableIndexIsValid(model, element.index()) ||
486 !VariableIndexIsValid(model, element.target())) {
487 return absl::StrCat(
488 "Element constraint index and target must valid variables: ",
490 }
491 }
492
493 if (in_linear_format) {
495 ValidateAffineExpression(model, element.linear_index()));
497 ValidateAffineExpression(model, element.linear_target()));
498 for (const LinearExpressionProto& expr : element.exprs()) {
499 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, expr));
500 LinearExpressionProto overflow_detection = ct.element().linear_target();
501 AppendToOverflowValidator(expr, &overflow_detection, -1);
502 overflow_detection.set_offset(overflow_detection.offset() -
503 expr.offset());
504 if (PossibleIntegerOverflow(model, overflow_detection.vars(),
505 overflow_detection.coeffs(),
506 overflow_detection.offset())) {
507 return absl::StrCat(
508 "Domain of the variables involved in element constraint may cause "
509 "overflow");
510 }
511 }
512 }
513
514 return "";
515}
516
517std::string ValidateTableConstraint(const CpModelProto& model,
518 const ConstraintProto& ct) {
519 const TableConstraintProto& arg = ct.table();
520 if (!arg.vars().empty() && !arg.exprs().empty()) {
521 return absl::StrCat(
522 "Inconsistent table with both legacy and new format defined: ",
524 }
525 if (arg.vars().empty() && arg.exprs().empty() && !arg.values().empty()) {
526 return absl::StrCat(
527 "Inconsistent table empty expressions and non-empty tuples: ",
529 }
530 if (arg.vars().empty() && arg.exprs().empty() && arg.values().empty()) {
531 return "";
532 }
533 const int arity = arg.vars().empty() ? arg.exprs().size() : arg.vars().size();
534 if (arg.values().size() % arity != 0) {
535 return absl::StrCat(
536 "The flat encoding of a table constraint tuples must be a multiple of "
537 "the number of expressions: ",
539 }
540 for (const int var : arg.vars()) {
541 if (!VariableIndexIsValid(model, var)) {
542 return absl::StrCat("Invalid variable index in table constraint: ", var);
543 }
544 }
545 for (const LinearExpressionProto& expr : arg.exprs()) {
546 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, expr));
547 }
548 return "";
549}
550
551std::string ValidateAutomatonConstraint(const CpModelProto& model,
552 const ConstraintProto& ct) {
553 const AutomatonConstraintProto& automaton = ct.automaton();
554 if (!automaton.vars().empty() && !automaton.exprs().empty()) {
555 return absl::StrCat(
556 "Inconsistent automaton with both legacy and new format defined: ",
558 }
559 const int num_transistions = automaton.transition_tail().size();
560 if (num_transistions != automaton.transition_head().size() ||
561 num_transistions != automaton.transition_label().size()) {
562 return absl::StrCat(
563 "The transitions repeated fields must have the same size: ",
565 }
566 for (const int var : automaton.vars()) {
567 if (!VariableIndexIsValid(model, var)) {
568 return absl::StrCat("Invalid variable index in automaton constraint: ",
569 var);
570 }
571 }
572 for (const LinearExpressionProto& expr : automaton.exprs()) {
573 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, expr));
574 }
575 absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> tail_label_to_head;
576 for (int i = 0; i < num_transistions; ++i) {
577 const int64_t tail = automaton.transition_tail(i);
578 const int64_t head = automaton.transition_head(i);
579 const int64_t label = automaton.transition_label(i);
580 if (label <= std::numeric_limits<int64_t>::min() + 1 ||
581 label == std::numeric_limits<int64_t>::max()) {
582 return absl::StrCat("labels in the automaton constraint are too big: ",
583 label);
584 }
585 const auto [it, inserted] =
586 tail_label_to_head.insert({{tail, label}, head});
587 if (!inserted) {
588 if (it->second == head) {
589 return absl::StrCat("automaton: duplicate transition ", tail, " --(",
590 label, ")--> ", head);
591 } else {
592 return absl::StrCat("automaton: incompatible transitions ", tail,
593 " --(", label, ")--> ", head, " and ", tail, " --(",
594 label, ")--> ", it->second);
595 }
596 }
597 }
598 return "";
599}
600
601template <typename GraphProto>
602std::string ValidateGraphInput(bool is_route, const GraphProto& graph) {
603 const int size = graph.tails().size();
604 if (graph.heads().size() != size || graph.literals().size() != size) {
605 return absl::StrCat("Wrong field sizes in graph: ",
607 }
608
609 // We currently disallow multiple self-loop on the same node.
610 absl::flat_hash_set<int> self_loops;
611 for (int i = 0; i < size; ++i) {
612 if (graph.heads(i) != graph.tails(i)) continue;
613 if (!self_loops.insert(graph.heads(i)).second) {
614 return absl::StrCat(
615 "Circuit/Route constraint contains multiple self-loop involving "
616 "node ",
617 graph.heads(i));
618 }
619 if (is_route && graph.tails(i) == 0) {
620 return absl::StrCat(
621 "A route constraint cannot have a self-loop on the depot (node 0)");
622 }
623 }
624
625 return "";
626}
627
628std::string ValidateRoutesConstraint(const ConstraintProto& ct) {
629 int max_node = 0;
630 absl::flat_hash_set<int> nodes;
631 for (const int node : ct.routes().tails()) {
632 if (node < 0) {
633 return "All node in a route constraint must be in [0, num_nodes)";
634 }
635 nodes.insert(node);
636 max_node = std::max(max_node, node);
637 }
638 for (const int node : ct.routes().heads()) {
639 if (node < 0) {
640 return "All node in a route constraint must be in [0, num_nodes)";
641 }
642 nodes.insert(node);
643 max_node = std::max(max_node, node);
644 }
645 if (!nodes.empty() && max_node != nodes.size() - 1) {
646 return absl::StrCat(
647 "All nodes in a route constraint must have incident arcs");
648 }
649
650 // If the demands field is present, it must be of size nodes.size().
651 if (!ct.routes().demands().empty() &&
652 ct.routes().demands().size() != nodes.size()) {
653 return absl::StrCat(
654 "If the demands fields is set, it must be of size num_nodes:",
655 nodes.size());
656 }
657
658 return ValidateGraphInput(/*is_route=*/true, ct.routes());
659}
660
661std::string ValidateIntervalConstraint(const CpModelProto& model,
662 const ConstraintProto& ct) {
663 if (ct.enforcement_literal().size() > 1) {
664 return absl::StrCat(
665 "Interval with more than one enforcement literals are currently not "
666 "supported: ",
668 }
669 const IntervalConstraintProto& arg = ct.interval();
670
671 if (!arg.has_start()) {
672 return absl::StrCat("Interval must have a start expression: ",
674 }
675 if (!arg.has_size()) {
676 return absl::StrCat("Interval must have a size expression: ",
678 }
679 if (!arg.has_end()) {
680 return absl::StrCat("Interval must have a end expression: ",
682 }
683
684 LinearExpressionProto for_overflow_validation;
685 if (arg.start().vars_size() > 1) {
686 return "Interval with a start expression containing more than one "
687 "variable are currently not supported.";
688 }
690 AppendToOverflowValidator(arg.start(), &for_overflow_validation);
691 if (arg.size().vars_size() > 1) {
692 return "Interval with a size expression containing more than one "
693 "variable are currently not supported.";
694 }
696 if (ct.enforcement_literal().empty() &&
697 MinOfExpression(model, arg.size()) < 0) {
698 return absl::StrCat(
699 "The size of a performed interval must be >= 0 in constraint: ",
701 }
702 AppendToOverflowValidator(arg.size(), &for_overflow_validation);
703 if (arg.end().vars_size() > 1) {
704 return "Interval with a end expression containing more than one "
705 "variable are currently not supported.";
706 }
708 AppendToOverflowValidator(arg.end(), &for_overflow_validation, -1);
709
710 if (PossibleIntegerOverflow(model, for_overflow_validation.vars(),
711 for_overflow_validation.coeffs(),
712 for_overflow_validation.offset())) {
713 return absl::StrCat("Possible overflow in interval: ",
714 ProtobufShortDebugString(ct.interval()));
715 }
716
717 return "";
718}
719
720std::string ValidateCumulativeConstraint(const CpModelProto& model,
721 const ConstraintProto& ct) {
722 if (ct.cumulative().intervals_size() != ct.cumulative().demands_size()) {
723 return absl::StrCat("intervals_size() != demands_size() in constraint: ",
725 }
726
728 ValidateLinearExpression(model, ct.cumulative().capacity()));
729 for (const LinearExpressionProto& demand : ct.cumulative().demands()) {
731 }
732
733 for (const LinearExpressionProto& demand_expr : ct.cumulative().demands()) {
734 if (MinOfExpression(model, demand_expr) < 0) {
735 return absl::StrCat(
736 "Demand ", ProtobufDebugString(demand_expr),
737 " must be positive in constraint: ", ProtobufDebugString(ct));
738 }
739 if (demand_expr.vars_size() > 1) {
740 return absl::StrCat("Demand ", ProtobufDebugString(demand_expr),
741 " must be affine or constant in constraint: ",
743 }
744 }
745 if (ct.cumulative().capacity().vars_size() > 1) {
746 return absl::StrCat(
747 "capacity ", ProtobufDebugString(ct.cumulative().capacity()),
748 " must be affine or constant in constraint: ", ProtobufDebugString(ct));
749 }
750
751 int64_t sum_max_demands = 0;
752 for (const LinearExpressionProto& demand_expr : ct.cumulative().demands()) {
753 const int64_t demand_max = MaxOfExpression(model, demand_expr);
754 DCHECK_GE(demand_max, 0);
755 sum_max_demands = CapAdd(sum_max_demands, demand_max);
756 if (sum_max_demands == std::numeric_limits<int64_t>::max()) {
757 return "The sum of max demands do not fit on an int64_t in constraint: " +
759 }
760 }
761
762 return "";
763}
764
765std::string ValidateNoOverlap2DConstraint(const CpModelProto& model,
766 const ConstraintProto& ct) {
767 const int size_x = ct.no_overlap_2d().x_intervals().size();
768 const int size_y = ct.no_overlap_2d().y_intervals().size();
769 if (size_x != size_y) {
770 return absl::StrCat("The two lists of intervals must have the same size: ",
772 }
773
774 // Checks if the sum of max areas of each rectangle can overflow.
775 int64_t sum_max_areas = 0;
776 for (int i = 0; i < ct.no_overlap_2d().x_intervals().size(); ++i) {
777 const int64_t max_size_x =
778 IntervalSizeMax(model, ct.no_overlap_2d().x_intervals(i));
779 const int64_t max_size_y =
780 IntervalSizeMax(model, ct.no_overlap_2d().y_intervals(i));
781 sum_max_areas = CapAdd(sum_max_areas, CapProd(max_size_x, max_size_y));
782 if (sum_max_areas == std::numeric_limits<int64_t>::max()) {
783 return "Integer overflow when summing all areas in "
784 "constraint: " +
786 }
787 }
788 return "";
789}
790
791std::string ValidateReservoirConstraint(const CpModelProto& model,
792 const ConstraintProto& ct) {
793 if (ct.enforcement_literal_size() > 0) {
794 return "Reservoir does not support enforcement literals.";
795 }
796 if (ct.reservoir().time_exprs().size() !=
797 ct.reservoir().level_changes().size()) {
798 return absl::StrCat(
799 "time_exprs and level_changes fields must be of the same size: ",
801 }
802 for (const LinearExpressionProto& expr : ct.reservoir().time_exprs()) {
803 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, expr));
804 // We want to be able to safely put time_exprs[i]-time_exprs[j] in a linear.
805 if (MinOfExpression(model, expr) <=
806 -std::numeric_limits<int64_t>::max() / 4 ||
807 MaxOfExpression(model, expr) >=
808 std::numeric_limits<int64_t>::max() / 4) {
809 return absl::StrCat(
810 "Potential integer overflow on time_expr of a reservoir: ",
812 }
813 }
814 for (const LinearExpressionProto& expr : ct.reservoir().level_changes()) {
815 RETURN_IF_NOT_EMPTY(ValidateConstantAffineExpression(model, expr));
816 }
817 if (ct.reservoir().min_level() > 0) {
818 return absl::StrCat(
819 "The min level of a reservoir must be <= 0. Please use fixed events to "
820 "setup initial state: ",
822 }
823 if (ct.reservoir().max_level() < 0) {
824 return absl::StrCat(
825 "The max level of a reservoir must be >= 0. Please use fixed events to "
826 "setup initial state: ",
828 }
829
830 int64_t sum_abs = 0;
831 for (const LinearExpressionProto& demand : ct.reservoir().level_changes()) {
832 // We test for min int64_t before the abs().
833 const int64_t demand_min = MinOfExpression(model, demand);
834 const int64_t demand_max = MaxOfExpression(model, demand);
835 sum_abs = CapAdd(sum_abs, std::max(CapAbs(demand_min), CapAbs(demand_max)));
836 if (sum_abs == std::numeric_limits<int64_t>::max()) {
837 return "Possible integer overflow in constraint: " +
839 }
840 }
841 if (ct.reservoir().active_literals_size() > 0 &&
842 ct.reservoir().active_literals_size() !=
843 ct.reservoir().time_exprs_size()) {
844 return "Wrong array length of active_literals variables";
845 }
846 if (ct.reservoir().level_changes_size() > 0 &&
847 ct.reservoir().level_changes_size() != ct.reservoir().time_exprs_size()) {
848 return "Wrong array length of level_changes variables";
849 }
850 return "";
851}
852
853std::string ValidateObjective(const CpModelProto& model,
854 const CpObjectiveProto& obj) {
855 if (!DomainInProtoIsValid(obj)) {
856 return absl::StrCat("The objective has and invalid domain() format: ",
858 }
859 if (obj.vars().size() != obj.coeffs().size()) {
860 return absl::StrCat("vars and coeffs size do not match in objective: ",
862 }
863 for (const int v : obj.vars()) {
864 if (!VariableReferenceIsValid(model, v)) {
865 return absl::StrCat("Out of bound integer variable ", v,
866 " in objective: ", ProtobufShortDebugString(obj));
867 }
868 }
869 if (PossibleIntegerOverflow(model, obj.vars(), obj.coeffs())) {
870 return "Possible integer overflow in objective: " +
872 }
873 return "";
874}
875
876std::string ValidateFloatingPointObjective(double max_valid_magnitude,
877 const CpModelProto& model,
878 const FloatObjectiveProto& obj) {
879 if (obj.vars().size() != obj.coeffs().size()) {
880 return absl::StrCat("vars and coeffs size do not match in objective: ",
882 }
883 for (const int v : obj.vars()) {
884 if (!VariableIndexIsValid(model, v)) {
885 return absl::StrCat("Out of bound integer variable ", v,
886 " in objective: ", ProtobufShortDebugString(obj));
887 }
888 }
889 for (const double coeff : obj.coeffs()) {
890 if (!std::isfinite(coeff)) {
891 return absl::StrCat("Coefficients must be finite in objective: ",
893 }
894 if (std::abs(coeff) > max_valid_magnitude) {
895 return absl::StrCat(
896 "Coefficients larger than params.mip_max_valid_magnitude() [value = ",
897 max_valid_magnitude,
898 "] in objective: ", ProtobufShortDebugString(obj));
899 }
900 }
901 if (!std::isfinite(obj.offset())) {
902 return absl::StrCat("Offset must be finite in objective: ",
904 }
905 return "";
906}
907
908std::string ValidateSearchStrategies(const CpModelProto& model) {
909 for (const DecisionStrategyProto& strategy : model.search_strategy()) {
910 const int vss = strategy.variable_selection_strategy();
911 if (vss != DecisionStrategyProto::CHOOSE_FIRST &&
912 vss != DecisionStrategyProto::CHOOSE_LOWEST_MIN &&
913 vss != DecisionStrategyProto::CHOOSE_HIGHEST_MAX &&
914 vss != DecisionStrategyProto::CHOOSE_MIN_DOMAIN_SIZE &&
915 vss != DecisionStrategyProto::CHOOSE_MAX_DOMAIN_SIZE) {
916 return absl::StrCat(
917 "Unknown or unsupported variable_selection_strategy: ", vss);
918 }
919 const int drs = strategy.domain_reduction_strategy();
920 if (drs != DecisionStrategyProto::SELECT_MIN_VALUE &&
921 drs != DecisionStrategyProto::SELECT_MAX_VALUE &&
922 drs != DecisionStrategyProto::SELECT_LOWER_HALF &&
923 drs != DecisionStrategyProto::SELECT_UPPER_HALF &&
924 drs != DecisionStrategyProto::SELECT_MEDIAN_VALUE &&
925 drs != DecisionStrategyProto::SELECT_RANDOM_HALF) {
926 return absl::StrCat("Unknown or unsupported domain_reduction_strategy: ",
927 drs);
928 }
929 if (!strategy.variables().empty() && !strategy.exprs().empty()) {
930 return absl::StrCat("Strategy can't have both variables and exprs: ",
931 ProtobufShortDebugString(strategy));
932 }
933 for (const int ref : strategy.variables()) {
934 if (!VariableReferenceIsValid(model, ref)) {
935 return absl::StrCat("Invalid variable reference in strategy: ",
936 ProtobufShortDebugString(strategy));
937 }
938 if (drs == DecisionStrategyProto::SELECT_MEDIAN_VALUE &&
939 ReadDomainFromProto(model.variables(PositiveRef(ref))).Size() >
940 100000) {
941 return absl::StrCat("Variable #", PositiveRef(ref),
942 " has a domain too large to be used in a"
943 " SELECT_MEDIAN_VALUE value selection strategy");
944 }
945 }
946 for (const LinearExpressionProto& expr : strategy.exprs()) {
947 for (const int var : expr.vars()) {
948 if (!VariableReferenceIsValid(model, var)) {
949 return absl::StrCat("Invalid variable reference in strategy: ",
950 ProtobufShortDebugString(strategy));
951 }
952 }
953 if (!ValidateAffineExpression(model, expr).empty()) {
954 return absl::StrCat("Invalid affine expr in strategy: ",
955 ProtobufShortDebugString(strategy));
956 }
957 if (drs == DecisionStrategyProto::SELECT_MEDIAN_VALUE) {
958 for (const int var : expr.vars()) {
959 if (ReadDomainFromProto(model.variables(var)).Size() > 100000) {
960 return absl::StrCat(
961 "Variable #", var,
962 " has a domain too large to be used in a"
963 " SELECT_MEDIAN_VALUE value selection strategy");
964 }
965 }
966 }
967 }
968 }
969 return "";
970}
971
972std::string ValidateSolutionHint(const CpModelProto& model) {
973 if (!model.has_solution_hint()) return "";
974 const auto& hint = model.solution_hint();
975 if (hint.vars().size() != hint.values().size()) {
976 return "Invalid solution hint: vars and values do not have the same size.";
977 }
978 for (const int var : hint.vars()) {
979 if (!VariableIndexIsValid(model, var)) {
980 return absl::StrCat("Invalid variable in solution hint: ", var);
981 }
982 }
983
984 // Reject hints with duplicate variables as this is likely a user error.
985 absl::flat_hash_set<int> indices;
986 for (const int var : hint.vars()) {
987 const auto insert = indices.insert(PositiveRef(var));
988 if (!insert.second) {
989 return absl::StrCat(
990 "The solution hint contains duplicate variables like the variable "
991 "with index #",
992 PositiveRef(var));
993 }
994 }
995
996 // Reject hints equals to INT_MIN or INT_MAX.
997 for (const int64_t value : hint.values()) {
998 if (value == std::numeric_limits<int64_t>::min() ||
999 value == std::numeric_limits<int64_t>::max()) {
1000 return "The solution hint cannot contains the INT_MIN or INT_MAX values.";
1001 }
1002 }
1003
1004 return "";
1005}
1006
1007} // namespace
1008
1009bool PossibleIntegerOverflow(const CpModelProto& model,
1010 absl::Span<const int> vars,
1011 absl::Span<const int64_t> coeffs, int64_t offset) {
1012 if (offset == std::numeric_limits<int64_t>::min()) return true;
1013 int64_t sum_min = -std::abs(offset);
1014 int64_t sum_max = +std::abs(offset);
1015 for (int i = 0; i < vars.size(); ++i) {
1016 const int ref = vars[i];
1017 const auto& var_proto = model.variables(PositiveRef(ref));
1018 const int64_t min_domain = var_proto.domain(0);
1019 const int64_t max_domain = var_proto.domain(var_proto.domain_size() - 1);
1020 if (coeffs[i] == std::numeric_limits<int64_t>::min()) return true;
1021 const int64_t coeff = RefIsPositive(ref) ? coeffs[i] : -coeffs[i];
1022 const int64_t prod1 = CapProd(min_domain, coeff);
1023 const int64_t prod2 = CapProd(max_domain, coeff);
1024
1025 // Note that we use min/max with zero to disallow "alternative" terms and
1026 // be sure that we cannot have an overflow if we do the computation in a
1027 // different order.
1028 sum_min = CapAdd(sum_min, std::min(int64_t{0}, std::min(prod1, prod2)));
1029 sum_max = CapAdd(sum_max, std::max(int64_t{0}, std::max(prod1, prod2)));
1030 for (const int64_t v : {prod1, prod2, sum_min, sum_max}) {
1031 if (AtMinOrMaxInt64(v)) return true;
1032 }
1033 }
1034
1035 // In addition to computing the min/max possible sum, we also often compare
1036 // it with the constraint bounds, so we do not want max - min to overflow.
1037 // We might also create an intermediate variable to represent the sum.
1038 //
1039 // Note that it is important to be symmetric here, as we do not want expr to
1040 // pass but not -expr!
1041 if (sum_min < -std::numeric_limits<int64_t>::max() / 2) return true;
1042 if (sum_max > std::numeric_limits<int64_t>::max() / 2) return true;
1043 return false;
1044}
1045
1046std::string ValidateCpModel(const CpModelProto& model, bool after_presolve) {
1047 int64_t int128_overflow = 0;
1048 for (int v = 0; v < model.variables_size(); ++v) {
1049 RETURN_IF_NOT_EMPTY(ValidateIntegerVariable(model, v));
1050
1051 const auto& domain = model.variables(v).domain();
1052 const int64_t min = domain[0];
1053 const int64_t max = domain[domain.size() - 1];
1054 int128_overflow = CapAdd(
1055 int128_overflow, std::max({std::abs(min), std::abs(max), max - min}));
1056 }
1057
1058 // We require this precondition so that we can take any linear combination of
1059 // variable with coefficient in int64_t and compute the activity on an int128
1060 // with no overflow. This is useful during cut computation.
1061 if (int128_overflow == std::numeric_limits<int64_t>::max()) {
1062 return "The sum of all variable domains do not fit on an int64_t. This is "
1063 "needed to prevent overflows.";
1064 }
1065
1066 // We need to validate the intervals used first, so we add these constraints
1067 // here so that we can validate them in a second pass.
1068 std::vector<int> constraints_using_intervals;
1069
1070 for (int c = 0; c < model.constraints_size(); ++c) {
1071 RETURN_IF_NOT_EMPTY(ValidateVariablesUsedInConstraint(model, c));
1072
1073 // By default, a constraint does not support enforcement literals except if
1074 // explicitly stated by setting this to true below.
1075 bool support_enforcement = false;
1076
1077 // Other non-generic validations.
1078 const ConstraintProto& ct = model.constraints(c);
1079 switch (ct.constraint_case()) {
1080 case ConstraintProto::ConstraintCase::kBoolOr:
1081 support_enforcement = true;
1082 break;
1083 case ConstraintProto::ConstraintCase::kBoolAnd:
1084 support_enforcement = true;
1085 break;
1086 case ConstraintProto::ConstraintCase::kLinear:
1087 support_enforcement = true;
1088 RETURN_IF_NOT_EMPTY(ValidateLinearConstraint(model, ct));
1089 break;
1090 case ConstraintProto::ConstraintCase::kLinMax: {
1092 ValidateLinearExpression(model, ct.lin_max().target()));
1093 for (const LinearExpressionProto& expr : ct.lin_max().exprs()) {
1094 RETURN_IF_NOT_EMPTY(ValidateLinearExpression(model, expr));
1095 }
1096 break;
1097 }
1098 case ConstraintProto::ConstraintCase::kIntProd:
1099 RETURN_IF_NOT_EMPTY(ValidateIntProdConstraint(model, ct));
1100 break;
1101 case ConstraintProto::ConstraintCase::kIntDiv:
1102 RETURN_IF_NOT_EMPTY(ValidateIntDivConstraint(model, ct));
1103 break;
1104 case ConstraintProto::ConstraintCase::kIntMod:
1105 RETURN_IF_NOT_EMPTY(ValidateIntModConstraint(model, ct));
1106 break;
1107 case ConstraintProto::ConstraintCase::kInverse:
1108 if (ct.inverse().f_direct().size() != ct.inverse().f_inverse().size()) {
1109 return absl::StrCat("Non-matching fields size in inverse: ",
1111 }
1112 break;
1113 case ConstraintProto::ConstraintCase::kAllDiff:
1114 for (const LinearExpressionProto& expr : ct.all_diff().exprs()) {
1115 RETURN_IF_NOT_EMPTY(ValidateAffineExpression(model, expr));
1116 }
1117 break;
1118 case ConstraintProto::ConstraintCase::kElement:
1119 RETURN_IF_NOT_EMPTY(ValidateElementConstraint(model, ct));
1120 break;
1121 case ConstraintProto::ConstraintCase::kTable:
1122 RETURN_IF_NOT_EMPTY(ValidateTableConstraint(model, ct));
1123 support_enforcement = true;
1124 break;
1125 case ConstraintProto::ConstraintCase::kAutomaton:
1126 RETURN_IF_NOT_EMPTY(ValidateAutomatonConstraint(model, ct));
1127 break;
1128 case ConstraintProto::ConstraintCase::kCircuit:
1130 ValidateGraphInput(/*is_route=*/false, ct.circuit()));
1131 break;
1132 case ConstraintProto::ConstraintCase::kRoutes:
1133 RETURN_IF_NOT_EMPTY(ValidateRoutesConstraint(ct));
1134 break;
1135 case ConstraintProto::ConstraintCase::kInterval:
1136 RETURN_IF_NOT_EMPTY(ValidateIntervalConstraint(model, ct));
1137 support_enforcement = true;
1138 break;
1139 case ConstraintProto::ConstraintCase::kCumulative:
1140 constraints_using_intervals.push_back(c);
1141 break;
1142 case ConstraintProto::ConstraintCase::kNoOverlap:
1143 constraints_using_intervals.push_back(c);
1144 break;
1145 case ConstraintProto::ConstraintCase::kNoOverlap2D:
1146 constraints_using_intervals.push_back(c);
1147 break;
1148 case ConstraintProto::ConstraintCase::kReservoir:
1149 RETURN_IF_NOT_EMPTY(ValidateReservoirConstraint(model, ct));
1150 break;
1151 case ConstraintProto::ConstraintCase::kDummyConstraint:
1152 return "The dummy constraint should never appear in a model.";
1153 default:
1154 break;
1155 }
1156
1157 // Because some client set fixed enforcement literal which are supported
1158 // in the presolve for all constraints, we just check that there is no
1159 // non-fixed enforcement.
1160 if (!support_enforcement && !ct.enforcement_literal().empty()) {
1161 for (const int ref : ct.enforcement_literal()) {
1162 const int var = PositiveRef(ref);
1163 const Domain domain = ReadDomainFromProto(model.variables(var));
1164 if (domain.Size() != 1) {
1165 return absl::StrCat(
1166 "Enforcement literal not supported in constraint: ",
1168 }
1169 }
1170 }
1171 }
1172
1173 // Extra validation for constraint using intervals.
1174 for (const int c : constraints_using_intervals) {
1176 ValidateIntervalsUsedInConstraint(after_presolve, model, c));
1177
1178 const ConstraintProto& ct = model.constraints(c);
1179 switch (ct.constraint_case()) {
1180 case ConstraintProto::ConstraintCase::kCumulative:
1181 RETURN_IF_NOT_EMPTY(ValidateCumulativeConstraint(model, ct));
1182 break;
1183 case ConstraintProto::ConstraintCase::kNoOverlap:
1184 break;
1185 case ConstraintProto::ConstraintCase::kNoOverlap2D:
1186 RETURN_IF_NOT_EMPTY(ValidateNoOverlap2DConstraint(model, ct));
1187 break;
1188 default:
1189 LOG(DFATAL) << "Shouldn't be here";
1190 }
1191 }
1192
1193 if (model.has_objective() && model.has_floating_point_objective()) {
1194 return "A model cannot have both an objective and a floating point "
1195 "objective.";
1196 }
1197 if (model.has_objective()) {
1198 RETURN_IF_NOT_EMPTY(ValidateObjective(model, model.objective()));
1199
1200 if (model.objective().integer_scaling_factor() != 0 ||
1201 model.objective().integer_before_offset() != 0 ||
1202 model.objective().integer_after_offset() != 0) {
1203 // If any of these fields are set, the domain must be set.
1204 if (model.objective().domain().empty()) {
1205 return absl::StrCat(
1206 "Objective integer scaling or offset is set without an objective "
1207 "domain.");
1208 }
1209
1210 // Check that we can transform any value in the objective domain without
1211 // overflow. We only check the bounds which is enough.
1212 bool overflow = false;
1213 for (const int64_t v : model.objective().domain()) {
1214 int64_t t = CapAdd(v, model.objective().integer_before_offset());
1215 if (AtMinOrMaxInt64(t)) {
1216 overflow = true;
1217 break;
1218 }
1219 t = CapProd(t, model.objective().integer_scaling_factor());
1220 if (AtMinOrMaxInt64(t)) {
1221 overflow = true;
1222 break;
1223 }
1224 t = CapAdd(t, model.objective().integer_after_offset());
1225 if (AtMinOrMaxInt64(t)) {
1226 overflow = true;
1227 break;
1228 }
1229 }
1230 if (overflow) {
1231 return absl::StrCat(
1232 "Internal fields related to the postsolve of the integer objective "
1233 "are causing a potential integer overflow: ",
1234 ProtobufShortDebugString(model.objective()));
1235 }
1236 }
1237 }
1238 RETURN_IF_NOT_EMPTY(ValidateSearchStrategies(model));
1239 RETURN_IF_NOT_EMPTY(ValidateSolutionHint(model));
1240 for (const int ref : model.assumptions()) {
1241 if (!LiteralReferenceIsValid(model, ref)) {
1242 return absl::StrCat("Invalid literal reference ", ref,
1243 " in the 'assumptions' field.");
1244 }
1245 }
1246 return "";
1247}
1248
1249std::string ValidateInputCpModel(const SatParameters& params,
1250 const CpModelProto& model) {
1252 if (model.has_floating_point_objective()) {
1254 ValidateFloatingPointObjective(params.mip_max_valid_magnitude(), model,
1255 model.floating_point_objective()));
1256 }
1257 return "";
1258}
1259
1260#undef RETURN_IF_NOT_EMPTY
1261
1262// =============================================================================
1263// Solution Feasibility.
1264// =============================================================================
1265
1266namespace {
1267
1268class ConstraintChecker {
1269 public:
1270 explicit ConstraintChecker(absl::Span<const int64_t> variable_values)
1271 : variable_values_(variable_values.begin(), variable_values.end()) {}
1272
1273 bool LiteralIsTrue(int l) const {
1274 if (l >= 0) return variable_values_[l] != 0;
1275 return variable_values_[-l - 1] == 0;
1276 }
1277
1278 bool LiteralIsFalse(int l) const { return !LiteralIsTrue(l); }
1279
1280 int64_t Value(int var) const {
1281 if (var >= 0) return variable_values_[var];
1282 return -variable_values_[-var - 1];
1283 }
1284
1285 bool ConstraintIsEnforced(const ConstraintProto& ct) {
1286 for (const int lit : ct.enforcement_literal()) {
1287 if (LiteralIsFalse(lit)) return false;
1288 }
1289 return true;
1290 }
1291
1292 bool BoolOrConstraintIsFeasible(const ConstraintProto& ct) {
1293 for (const int lit : ct.bool_or().literals()) {
1294 if (LiteralIsTrue(lit)) return true;
1295 }
1296 return false;
1297 }
1298
1299 bool BoolAndConstraintIsFeasible(const ConstraintProto& ct) {
1300 for (const int lit : ct.bool_and().literals()) {
1301 if (LiteralIsFalse(lit)) return false;
1302 }
1303 return true;
1304 }
1305
1306 bool AtMostOneConstraintIsFeasible(const ConstraintProto& ct) {
1307 int num_true_literals = 0;
1308 for (const int lit : ct.at_most_one().literals()) {
1309 if (LiteralIsTrue(lit)) ++num_true_literals;
1310 }
1311 return num_true_literals <= 1;
1312 }
1313
1314 bool ExactlyOneConstraintIsFeasible(const ConstraintProto& ct) {
1315 int num_true_literals = 0;
1316 for (const int lit : ct.exactly_one().literals()) {
1317 if (LiteralIsTrue(lit)) ++num_true_literals;
1318 }
1319 return num_true_literals == 1;
1320 }
1321
1322 bool BoolXorConstraintIsFeasible(const ConstraintProto& ct) {
1323 int sum = 0;
1324 for (const int lit : ct.bool_xor().literals()) {
1325 sum ^= LiteralIsTrue(lit) ? 1 : 0;
1326 }
1327 return sum == 1;
1328 }
1329
1330 bool LinearConstraintIsFeasible(const ConstraintProto& ct) {
1331 int64_t sum = 0;
1332 const int num_variables = ct.linear().coeffs_size();
1333 const int* const vars = ct.linear().vars().data();
1334 const int64_t* const coeffs = ct.linear().coeffs().data();
1335 for (int i = 0; i < num_variables; ++i) {
1336 // We know we only have positive reference now.
1337 DCHECK(RefIsPositive(vars[i]));
1338 sum += variable_values_[vars[i]] * coeffs[i];
1339 }
1340 const bool result = DomainInProtoContains(ct.linear(), sum);
1341 if (!result) {
1342 VLOG(1) << "Activity: " << sum;
1343 }
1344 return result;
1345 }
1346
1347 int64_t LinearExpressionValue(const LinearExpressionProto& expr) const {
1348 int64_t sum = expr.offset();
1349 const int num_variables = expr.vars_size();
1350 for (int i = 0; i < num_variables; ++i) {
1351 sum += Value(expr.vars(i)) * expr.coeffs(i);
1352 }
1353 return sum;
1354 }
1355
1356 bool LinMaxConstraintIsFeasible(const ConstraintProto& ct) {
1357 const int64_t max = LinearExpressionValue(ct.lin_max().target());
1358 int64_t actual_max = std::numeric_limits<int64_t>::min();
1359 for (int i = 0; i < ct.lin_max().exprs_size(); ++i) {
1360 const int64_t expr_value = LinearExpressionValue(ct.lin_max().exprs(i));
1361 actual_max = std::max(actual_max, expr_value);
1362 }
1363 return max == actual_max;
1364 }
1365
1366 bool IntProdConstraintIsFeasible(const ConstraintProto& ct) {
1367 const int64_t prod = LinearExpressionValue(ct.int_prod().target());
1368 int64_t actual_prod = 1;
1369 for (const LinearExpressionProto& expr : ct.int_prod().exprs()) {
1370 actual_prod = CapProd(actual_prod, LinearExpressionValue(expr));
1371 }
1372 return prod == actual_prod;
1373 }
1374
1375 bool IntDivConstraintIsFeasible(const ConstraintProto& ct) {
1376 return LinearExpressionValue(ct.int_div().target()) ==
1377 LinearExpressionValue(ct.int_div().exprs(0)) /
1378 LinearExpressionValue(ct.int_div().exprs(1));
1379 }
1380
1381 bool IntModConstraintIsFeasible(const ConstraintProto& ct) {
1382 return LinearExpressionValue(ct.int_mod().target()) ==
1383 LinearExpressionValue(ct.int_mod().exprs(0)) %
1384 LinearExpressionValue(ct.int_mod().exprs(1));
1385 }
1386
1387 bool AllDiffConstraintIsFeasible(const ConstraintProto& ct) {
1388 absl::flat_hash_set<int64_t> values;
1389 for (const LinearExpressionProto& expr : ct.all_diff().exprs()) {
1390 const int64_t value = LinearExpressionValue(expr);
1391 const auto [it, inserted] = values.insert(value);
1392 if (!inserted) return false;
1393 }
1394 return true;
1395 }
1396
1397 int64_t IntervalStart(const IntervalConstraintProto& interval) const {
1398 return LinearExpressionValue(interval.start());
1399 }
1400
1401 int64_t IntervalSize(const IntervalConstraintProto& interval) const {
1402 return LinearExpressionValue(interval.size());
1403 }
1404
1405 int64_t IntervalEnd(const IntervalConstraintProto& interval) const {
1406 return LinearExpressionValue(interval.end());
1407 }
1408
1409 bool IntervalConstraintIsFeasible(const ConstraintProto& ct) {
1410 const int64_t size = IntervalSize(ct.interval());
1411 if (size < 0) return false;
1412 return IntervalStart(ct.interval()) + size == IntervalEnd(ct.interval());
1413 }
1414
1415 bool NoOverlapConstraintIsFeasible(const CpModelProto& model,
1416 const ConstraintProto& ct) {
1417 std::vector<std::pair<int64_t, int64_t>> start_durations_pairs;
1418 for (const int i : ct.no_overlap().intervals()) {
1419 const ConstraintProto& interval_constraint = model.constraints(i);
1420 if (ConstraintIsEnforced(interval_constraint)) {
1421 const IntervalConstraintProto& interval =
1422 interval_constraint.interval();
1423 start_durations_pairs.push_back(
1424 {IntervalStart(interval), IntervalSize(interval)});
1425 }
1426 }
1427 std::sort(start_durations_pairs.begin(), start_durations_pairs.end());
1428 int64_t previous_end = std::numeric_limits<int64_t>::min();
1429 for (const auto& pair : start_durations_pairs) {
1430 if (pair.first < previous_end) return false;
1431 previous_end = pair.first + pair.second;
1432 }
1433 return true;
1434 }
1435
1436 bool NoOverlap2DConstraintIsFeasible(const CpModelProto& model,
1437 const ConstraintProto& ct) {
1438 const auto& arg = ct.no_overlap_2d();
1439 // Those intervals from arg.x_intervals and arg.y_intervals where both
1440 // the x and y intervals are enforced.
1441 bool has_zero_sizes = false;
1442 std::vector<Rectangle> enforced_rectangles;
1443 {
1444 const int num_intervals = arg.x_intervals_size();
1445 CHECK_EQ(arg.y_intervals_size(), num_intervals);
1446 for (int i = 0; i < num_intervals; ++i) {
1447 const ConstraintProto& x = model.constraints(arg.x_intervals(i));
1448 const ConstraintProto& y = model.constraints(arg.y_intervals(i));
1449 if (ConstraintIsEnforced(x) && ConstraintIsEnforced(y)) {
1450 enforced_rectangles.push_back({.x_min = IntervalStart(x.interval()),
1451 .x_max = IntervalEnd(x.interval()),
1452 .y_min = IntervalStart(y.interval()),
1453 .y_max = IntervalEnd(y.interval())});
1454 const auto& rect = enforced_rectangles.back();
1455 if (rect.x_min == rect.x_max || rect.y_min == rect.y_max) {
1456 has_zero_sizes = true;
1457 }
1458 }
1459 }
1460 }
1461
1462 std::optional<std::pair<int, int>> one_intersection;
1463 absl::c_stable_sort(enforced_rectangles,
1464 [](const Rectangle& a, const Rectangle& b) {
1465 return a.x_min < b.x_min;
1466 });
1467 if (has_zero_sizes) {
1468 one_intersection =
1469 FindOneIntersectionIfPresentWithZeroArea(enforced_rectangles);
1470 } else {
1471 one_intersection = FindOneIntersectionIfPresent(enforced_rectangles);
1472 }
1473
1474 if (one_intersection != std::nullopt) {
1475 VLOG(1) << "Rectangles " << one_intersection->first << "("
1476 << enforced_rectangles[one_intersection->first] << ") and "
1477 << one_intersection->second << "("
1478 << enforced_rectangles[one_intersection->second]
1479 << ") are not disjoint.";
1480 return false;
1481 }
1482 return true;
1483 }
1484
1485 bool CumulativeConstraintIsFeasible(const CpModelProto& model,
1486 const ConstraintProto& ct) {
1487 const int64_t capacity = LinearExpressionValue(ct.cumulative().capacity());
1488 if (capacity < 0) return false;
1489 const int num_intervals = ct.cumulative().intervals_size();
1490 std::vector<std::pair<int64_t, int64_t>> events;
1491 for (int i = 0; i < num_intervals; ++i) {
1492 const ConstraintProto& interval_constraint =
1493 model.constraints(ct.cumulative().intervals(i));
1494 if (!ConstraintIsEnforced(interval_constraint)) continue;
1495 const int64_t start = IntervalStart(interval_constraint.interval());
1496 const int64_t duration = IntervalSize(interval_constraint.interval());
1497 const int64_t demand = LinearExpressionValue(ct.cumulative().demands(i));
1498 if (duration == 0 || demand == 0) continue;
1499 events.emplace_back(start, demand);
1500 events.emplace_back(start + duration, -demand);
1501 }
1502 if (events.empty()) return true;
1503
1504 std::sort(events.begin(), events.end());
1505
1506 // This works because we will process negative demands first.
1507 int64_t current_load = 0;
1508 for (const auto& [time, delta] : events) {
1509 current_load += delta;
1510 if (current_load > capacity) {
1511 VLOG(1) << "Cumulative constraint: load: " << current_load
1512 << " capacity: " << capacity << " time: " << time;
1513 return false;
1514 }
1515 }
1516 DCHECK_EQ(current_load, 0);
1517 return true;
1518 }
1519
1520 bool ElementConstraintIsFeasible(const ConstraintProto& ct) {
1521 if (!ct.element().vars().empty()) {
1522 const int index = Value(ct.element().index());
1523 if (index < 0 || index >= ct.element().vars_size()) return false;
1524 return Value(ct.element().vars(index)) == Value(ct.element().target());
1525 }
1526
1527 if (!ct.element().exprs().empty()) {
1528 const int index = LinearExpressionValue(ct.element().linear_index());
1529 if (index < 0 || index >= ct.element().exprs_size()) return false;
1530 return LinearExpressionValue(ct.element().exprs(index)) ==
1531 LinearExpressionValue(ct.element().linear_target());
1532 }
1533
1534 return false;
1535 }
1536
1537 bool TableConstraintIsFeasible(const ConstraintProto& ct) {
1538 std::vector<int64_t> solution;
1539 if (ct.table().exprs().empty()) {
1540 for (int i = 0; i < ct.table().vars_size(); ++i) {
1541 solution.push_back(Value(ct.table().vars(i)));
1542 }
1543 } else {
1544 for (int i = 0; i < ct.table().exprs_size(); ++i) {
1545 solution.push_back(LinearExpressionValue(ct.table().exprs(i)));
1546 }
1547 }
1548
1549 // No expression -> always feasible.
1550 if (solution.empty()) return true;
1551 const int size = solution.size();
1552
1553 for (int row_start = 0; row_start < ct.table().values_size();
1554 row_start += size) {
1555 int i = 0;
1556 while (solution[i] == ct.table().values(row_start + i)) {
1557 ++i;
1558 if (i == size) return !ct.table().negated();
1559 }
1560 }
1561 return ct.table().negated();
1562 }
1563
1564 bool AutomatonConstraintIsFeasible(const ConstraintProto& ct) {
1565 // Build the transition table {tail, label} -> head.
1566 const AutomatonConstraintProto& automaton = ct.automaton();
1567 absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> transition_map;
1568 const int num_transitions = automaton.transition_tail().size();
1569 for (int i = 0; i < num_transitions; ++i) {
1570 transition_map[{automaton.transition_tail(i),
1571 automaton.transition_label(i)}] =
1572 automaton.transition_head(i);
1573 }
1574
1575 // Walk the automaton.
1576 int64_t current_state = automaton.starting_state();
1577 const int num_steps =
1578 std::max(automaton.vars_size(), automaton.exprs_size());
1579 for (int i = 0; i < num_steps; ++i) {
1580 const std::pair<int64_t, int64_t> key = {
1581 current_state, automaton.vars().empty()
1582 ? LinearExpressionValue(automaton.exprs(i))
1583 : Value(automaton.vars(i))};
1584 if (!transition_map.contains(key)) {
1585 return false;
1586 }
1587 current_state = transition_map[key];
1588 }
1589
1590 // Check we are now in a final state.
1591 for (const int64_t final : automaton.final_states()) {
1592 if (current_state == final) return true;
1593 }
1594 return false;
1595 }
1596
1597 bool CircuitConstraintIsFeasible(const ConstraintProto& ct) {
1598 // Compute the set of relevant nodes for the constraint and set the next of
1599 // each of them. This also detects duplicate nexts.
1600 const int num_arcs = ct.circuit().tails_size();
1601 absl::flat_hash_set<int> nodes;
1602 absl::flat_hash_map<int, int> nexts;
1603 for (int i = 0; i < num_arcs; ++i) {
1604 const int tail = ct.circuit().tails(i);
1605 const int head = ct.circuit().heads(i);
1606 nodes.insert(tail);
1607 nodes.insert(head);
1608 if (LiteralIsFalse(ct.circuit().literals(i))) continue;
1609 if (nexts.contains(tail)) {
1610 VLOG(1) << "Node with two outgoing arcs";
1611 return false; // Duplicate.
1612 }
1613 nexts[tail] = head;
1614 }
1615
1616 // All node must have a next.
1617 int in_cycle;
1618 int cycle_size = 0;
1619 for (const int node : nodes) {
1620 if (!nexts.contains(node)) {
1621 VLOG(1) << "Node with no next: " << node;
1622 return false; // No next.
1623 }
1624 if (nexts[node] == node) continue; // skip self-loop.
1625 in_cycle = node;
1626 ++cycle_size;
1627 }
1628 if (cycle_size == 0) return true;
1629
1630 // Check that we have only one cycle. visited is used to not loop forever if
1631 // we have a "rho" shape instead of a cycle.
1632 absl::flat_hash_set<int> visited;
1633 int current = in_cycle;
1634 int num_visited = 0;
1635 while (!visited.contains(current)) {
1636 ++num_visited;
1637 visited.insert(current);
1638 current = nexts[current];
1639 }
1640 if (current != in_cycle) {
1641 VLOG(1) << "Rho shape";
1642 return false; // Rho shape.
1643 }
1644 if (num_visited != cycle_size) {
1645 VLOG(1) << "More than one cycle";
1646 }
1647 return num_visited == cycle_size; // Another cycle somewhere if false.
1648 }
1649
1650 bool RoutesConstraintIsFeasible(const ConstraintProto& ct) {
1651 const int num_arcs = ct.routes().tails_size();
1652 int num_used_arcs = 0;
1653 int num_self_arcs = 0;
1654
1655 // Compute the number of nodes.
1656 int num_nodes = 0;
1657 for (int i = 0; i < num_arcs; ++i) {
1658 num_nodes = std::max(num_nodes, 1 + ct.routes().tails(i));
1659 num_nodes = std::max(num_nodes, 1 + ct.routes().heads(i));
1660 }
1661
1662 std::vector<int> tail_to_head(num_nodes, -1);
1663 std::vector<bool> has_incoming_arc(num_nodes, false);
1664 std::vector<int> has_outgoing_arc(num_nodes, false);
1665 std::vector<int> depot_nexts;
1666 for (int i = 0; i < num_arcs; ++i) {
1667 const int tail = ct.routes().tails(i);
1668 const int head = ct.routes().heads(i);
1669 if (LiteralIsTrue(ct.routes().literals(i))) {
1670 // Check for loops.
1671 if (tail != 0) {
1672 if (has_outgoing_arc[tail]) {
1673 VLOG(1) << "routes: node " << tail << "has two outgoing arcs";
1674 return false;
1675 }
1676 has_outgoing_arc[tail] = true;
1677 }
1678 if (head != 0) {
1679 if (has_incoming_arc[head]) {
1680 VLOG(1) << "routes: node " << head << "has two incoming arcs";
1681 return false;
1682 }
1683 has_incoming_arc[head] = true;
1684 }
1685
1686 if (tail == head) {
1687 if (tail == 0) {
1688 VLOG(1) << "Self loop on node 0 are forbidden.";
1689 return false;
1690 }
1691 ++num_self_arcs;
1692 continue;
1693 }
1694 ++num_used_arcs;
1695 if (tail == 0) {
1696 depot_nexts.push_back(head);
1697 } else {
1698 DCHECK_EQ(tail_to_head[tail], -1);
1699 tail_to_head[tail] = head;
1700 }
1701 }
1702 }
1703
1704 // An empty constraint with no node to visit should be feasible.
1705 if (num_nodes == 0) return true;
1706
1707 // Make sure each routes from the depot go back to it, and count such arcs.
1708 int count = 0;
1709 for (int start : depot_nexts) {
1710 ++count;
1711 while (start != 0) {
1712 if (tail_to_head[start] == -1) return false;
1713 start = tail_to_head[start];
1714 ++count;
1715 }
1716 }
1717
1718 if (count != num_used_arcs) {
1719 VLOG(1) << "count: " << count << " != num_used_arcs:" << num_used_arcs;
1720 return false;
1721 }
1722
1723 // Each routes cover as many node as there is arcs, but this way we count
1724 // multiple time_exprs the depot. So the number of nodes covered are:
1725 // count - depot_nexts.size() + 1.
1726 // And this number + the self arcs should be num_nodes.
1727 if (count - depot_nexts.size() + 1 + num_self_arcs != num_nodes) {
1728 VLOG(1) << "Not all nodes are covered!";
1729 return false;
1730 }
1731
1732 return true;
1733 }
1734
1735 bool InverseConstraintIsFeasible(const ConstraintProto& ct) {
1736 const int num_variables = ct.inverse().f_direct_size();
1737 if (num_variables != ct.inverse().f_inverse_size()) return false;
1738 // Check that f_inverse(f_direct(i)) == i; this is sufficient.
1739 for (int i = 0; i < num_variables; i++) {
1740 const int fi = Value(ct.inverse().f_direct(i));
1741 if (fi < 0 || num_variables <= fi) return false;
1742 if (i != Value(ct.inverse().f_inverse(fi))) return false;
1743 }
1744 return true;
1745 }
1746
1747 bool ReservoirConstraintIsFeasible(const ConstraintProto& ct) {
1748 const int num_variables = ct.reservoir().time_exprs_size();
1749 const int64_t min_level = ct.reservoir().min_level();
1750 const int64_t max_level = ct.reservoir().max_level();
1751 absl::btree_map<int64_t, int64_t> deltas;
1752 const bool has_active_variables = ct.reservoir().active_literals_size() > 0;
1753 for (int i = 0; i < num_variables; i++) {
1754 const int64_t time = LinearExpressionValue(ct.reservoir().time_exprs(i));
1755 if (!has_active_variables ||
1756 Value(ct.reservoir().active_literals(i)) == 1) {
1757 const int64_t level =
1758 LinearExpressionValue(ct.reservoir().level_changes(i));
1759 deltas[time] += level;
1760 }
1761 }
1762 int64_t current_level = 0;
1763 for (const auto& delta : deltas) {
1764 current_level += delta.second;
1765 if (current_level < min_level || current_level > max_level) {
1766 VLOG(1) << "Reservoir level " << current_level
1767 << " is out of bounds at time: " << delta.first;
1768 return false;
1769 }
1770 }
1771 return true;
1772 }
1773
1774 bool ConstraintIsFeasible(const CpModelProto& model,
1775 const ConstraintProto& ct) {
1776 // A non-enforced constraint is always feasible.
1777 if (!ConstraintIsEnforced(ct)) return true;
1778
1779 const ConstraintProto::ConstraintCase type = ct.constraint_case();
1780 switch (type) {
1781 case ConstraintProto::ConstraintCase::kBoolOr:
1782 return BoolOrConstraintIsFeasible(ct);
1783 case ConstraintProto::ConstraintCase::kBoolAnd:
1784 return BoolAndConstraintIsFeasible(ct);
1785 case ConstraintProto::ConstraintCase::kAtMostOne:
1786 return AtMostOneConstraintIsFeasible(ct);
1787 case ConstraintProto::ConstraintCase::kExactlyOne:
1788 return ExactlyOneConstraintIsFeasible(ct);
1789 case ConstraintProto::ConstraintCase::kBoolXor:
1790 return BoolXorConstraintIsFeasible(ct);
1791 case ConstraintProto::ConstraintCase::kLinear:
1792 return LinearConstraintIsFeasible(ct);
1793 case ConstraintProto::ConstraintCase::kIntProd:
1794 return IntProdConstraintIsFeasible(ct);
1795 case ConstraintProto::ConstraintCase::kIntDiv:
1796 return IntDivConstraintIsFeasible(ct);
1797 case ConstraintProto::ConstraintCase::kIntMod:
1798 return IntModConstraintIsFeasible(ct);
1799 case ConstraintProto::ConstraintCase::kLinMax:
1800 return LinMaxConstraintIsFeasible(ct);
1801 case ConstraintProto::ConstraintCase::kAllDiff:
1802 return AllDiffConstraintIsFeasible(ct);
1803 case ConstraintProto::ConstraintCase::kInterval:
1804 if (!IntervalConstraintIsFeasible(ct)) {
1805 if (ct.interval().has_start()) {
1806 // Tricky: For simplified presolve, we require that a separate
1807 // constraint is added to the model to enforce the "interval".
1808 // This indicates that such a constraint was not added to the model.
1809 // It should probably be a validation error, but it is hard to
1810 // detect beforehand.
1811 VLOG(1) << "Warning, an interval constraint was likely used "
1812 "without a corresponding linear constraint linking "
1813 "its start, size and end.";
1814 }
1815 return false;
1816 }
1817 return true;
1818 case ConstraintProto::ConstraintCase::kNoOverlap:
1819 return NoOverlapConstraintIsFeasible(model, ct);
1820 case ConstraintProto::ConstraintCase::kNoOverlap2D:
1821 return NoOverlap2DConstraintIsFeasible(model, ct);
1822 case ConstraintProto::ConstraintCase::kCumulative:
1823 return CumulativeConstraintIsFeasible(model, ct);
1824 case ConstraintProto::ConstraintCase::kElement:
1825 return ElementConstraintIsFeasible(ct);
1826 case ConstraintProto::ConstraintCase::kTable:
1827 return TableConstraintIsFeasible(ct);
1828 case ConstraintProto::ConstraintCase::kAutomaton:
1829 return AutomatonConstraintIsFeasible(ct);
1830 case ConstraintProto::ConstraintCase::kCircuit:
1831 return CircuitConstraintIsFeasible(ct);
1832 case ConstraintProto::ConstraintCase::kRoutes:
1833 return RoutesConstraintIsFeasible(ct);
1834 case ConstraintProto::ConstraintCase::kInverse:
1835 return InverseConstraintIsFeasible(ct);
1836 case ConstraintProto::ConstraintCase::kReservoir:
1837 return ReservoirConstraintIsFeasible(ct);
1838 case ConstraintProto::ConstraintCase::CONSTRAINT_NOT_SET:
1839 // Empty constraint is always feasible.
1840 return true;
1841 default:
1842 LOG(FATAL) << "Unuspported constraint: " << ConstraintCaseName(type);
1843 return false;
1844 }
1845 }
1846
1847 private:
1848 const std::vector<int64_t> variable_values_;
1849};
1850
1851} // namespace
1852
1853bool ConstraintIsFeasible(const CpModelProto& model,
1854 const ConstraintProto& constraint,
1855 absl::Span<const int64_t> variable_values) {
1856 ConstraintChecker checker(variable_values);
1857 return checker.ConstraintIsFeasible(model, constraint);
1858}
1859
1860bool SolutionIsFeasible(const CpModelProto& model,
1861 absl::Span<const int64_t> variable_values,
1862 const CpModelProto* mapping_proto,
1863 const std::vector<int>* postsolve_mapping) {
1864 if (variable_values.size() != model.variables_size()) {
1865 VLOG(1) << "Wrong number of variables (" << variable_values.size()
1866 << ") in the solution vector. It should be "
1867 << model.variables_size() << ".";
1868 return false;
1869 }
1870
1871 // Check that all values fall in the variable domains.
1872 for (int i = 0; i < model.variables_size(); ++i) {
1873 if (!DomainInProtoContains(model.variables(i), variable_values[i])) {
1874 VLOG(1) << "Variable #" << i << " has value " << variable_values[i]
1875 << " which do not fall in its domain: "
1876 << ProtobufShortDebugString(model.variables(i));
1877 return false;
1878 }
1879 }
1880
1881 CHECK_EQ(variable_values.size(), model.variables_size());
1882 ConstraintChecker checker(variable_values);
1883
1884 for (int c = 0; c < model.constraints_size(); ++c) {
1885 const ConstraintProto& ct = model.constraints(c);
1886 if (checker.ConstraintIsFeasible(model, ct)) continue;
1887
1888 // Display a message to help debugging.
1889 VLOG(1) << "Failing constraint #" << c << " : "
1890 << ProtobufShortDebugString(model.constraints(c));
1891 if (mapping_proto != nullptr && postsolve_mapping != nullptr) {
1892 std::vector<int> reverse_map(mapping_proto->variables().size(), -1);
1893 for (int var = 0; var < postsolve_mapping->size(); ++var) {
1894 reverse_map[(*postsolve_mapping)[var]] = var;
1895 }
1896 for (const int var : UsedVariables(model.constraints(c))) {
1897 VLOG(1) << "var: " << var << " mapped_to: " << reverse_map[var]
1898 << " value: " << variable_values[var] << " initial_domain: "
1899 << ReadDomainFromProto(model.variables(var))
1900 << " postsolved_domain: "
1901 << ReadDomainFromProto(mapping_proto->variables(var));
1902 }
1903 } else {
1904 for (const int var : UsedVariables(model.constraints(c))) {
1905 VLOG(1) << "var: " << var << " value: " << variable_values[var];
1906 }
1907 }
1908 return false;
1909 }
1910
1911 // Check that the objective is within its domain.
1912 //
1913 // TODO(user): This is not really a "feasibility" question, but we should
1914 // probably check that the response objective matches with the one we can
1915 // compute here. This might better be done in another function though.
1916 if (model.has_objective()) {
1917 int64_t inner_objective = 0;
1918 const int num_variables = model.objective().coeffs_size();
1919 for (int i = 0; i < num_variables; ++i) {
1920 inner_objective += checker.Value(model.objective().vars(i)) *
1921 model.objective().coeffs(i);
1922 }
1923 if (!model.objective().domain().empty()) {
1924 if (!DomainInProtoContains(model.objective(), inner_objective)) {
1925 VLOG(1) << "Objective value " << inner_objective << " not in domain! "
1926 << ReadDomainFromProto(model.objective());
1927 return false;
1928 }
1929 }
1930 double factor = model.objective().scaling_factor();
1931 if (factor == 0.0) factor = 1.0;
1932 const double scaled_objective =
1933 factor *
1934 (static_cast<double>(inner_objective) + model.objective().offset());
1935 VLOG(2) << "Checker inner objective = " << inner_objective;
1936 VLOG(2) << "Checker scaled objective = " << scaled_objective;
1937 }
1938
1939 return true;
1940}
1941
1942} // namespace sat
1943} // namespace operations_research
#define RETURN_IF_NOT_EMPTY(statement)
If the string returned by "statement" is not empty, returns it.
absl::Status ValidateLinearExpression(const LinearExpressionProto &expression, const IdNameBiMap &variable_universe)
std::string ValidateInputCpModel(const SatParameters &params, const CpModelProto &model)
std::string ValidateCpModel(const CpModelProto &model, bool after_presolve)
bool SolutionIsFeasible(const CpModelProto &model, absl::Span< const int64_t > variable_values, const CpModelProto *mapping_proto, const std::vector< int > *postsolve_mapping)
bool ConstraintIsFeasible(const CpModelProto &model, const ConstraintProto &constraint, absl::Span< const int64_t > variable_values)
bool DomainInProtoContains(const ProtoWithDomain &proto, int64_t value)
std::optional< std::pair< int, int > > FindOneIntersectionIfPresent(absl::Span< const Rectangle > rectangles)
std::vector< int > UsedVariables(const ConstraintProto &ct)
std::vector< int > UsedIntervals(const ConstraintProto &ct)
Returns the sorted list of interval used by a constraint.
bool PossibleIntegerOverflow(const CpModelProto &model, absl::Span< const int > vars, absl::Span< const int64_t > coeffs, int64_t offset)
std::function< int64_t(const Model &)> Value(IntegerVariable v)
This checks that the variable is fixed.
Definition integer.h:1559
Domain ReadDomainFromProto(const ProtoWithDomain &proto)
Reads a Domain from the domain field of a proto.
absl::string_view ConstraintCaseName(ConstraintProto::ConstraintCase constraint_case)
std::optional< std::pair< int, int > > FindOneIntersectionIfPresentWithZeroArea(absl::Span< const Rectangle > rectangles)
IndexReferences GetReferencesUsedByConstraint(const ConstraintProto &ct)
In SWIG mode, we don't want anything besides these top-level includes.
bool AtMinOrMaxInt64(int64_t x)
Checks if x is equal to the min or the max value of an int64_t.
int64_t CapAdd(int64_t x, int64_t y)
Select next search node to expand Select next item_i to add this new search node to the search Generate a new search node where item_i is not in the knapsack Check validity of this new partial solution(using propagators) - If valid
std::string ProtobufShortDebugString(const P &message)
Definition proto_utils.h:41
int64_t CapProd(int64_t x, int64_t y)
int64_t CapAbs(int64_t v)
bool IntervalsAreSortedAndNonAdjacent(absl::Span< const ClosedInterval > intervals)
std::string ProtobufDebugString(const P &message)
Definition proto_utils.h:32
static int input(yyscan_t yyscanner)