26#include "absl/algorithm/container.h"
27#include "absl/container/btree_map.h"
28#include "absl/container/flat_hash_map.h"
29#include "absl/container/flat_hash_set.h"
30#include "absl/flags/flag.h"
31#include "absl/log/check.h"
32#include "absl/strings/str_cat.h"
33#include "absl/types/span.h"
44ABSL_FLAG(
bool, cp_model_check_dependent_variables,
false,
45 "When true, check that solutions can be computed only from their "
57#define RETURN_IF_NOT_EMPTY(statement) \
59 const std::string error_message = statement; \
60 if (!error_message.empty()) return error_message; \
63template <
typename ProtoWithDomain>
64bool DomainInProtoIsValid(
const ProtoWithDomain& proto) {
65 if (proto.domain().size() % 2)
return false;
66 std::vector<ClosedInterval> domain;
67 for (
int i = 0;
i < proto.domain_size();
i += 2) {
68 if (proto.domain(
i) > proto.domain(
i + 1))
return false;
69 domain.push_back({proto.domain(
i), proto.domain(
i + 1)});
74bool VariableReferenceIsValid(
const CpModelProto& model,
int reference) {
76 if (reference >= model.variables_size())
return false;
77 return reference >= -
static_cast<int>(model.variables_size());
84bool VariableIndexIsValid(
const CpModelProto& model,
int var) {
85 return var >= 0 && var < model.variables_size();
88bool LiteralReferenceIsValid(
const CpModelProto& model,
int reference) {
89 if (!VariableReferenceIsValid(model, reference))
return false;
90 const auto& var_proto = model.variables(
PositiveRef(reference));
91 const int64_t min_domain = var_proto.domain(0);
92 const int64_t max_domain = var_proto.domain(var_proto.domain_size() - 1);
93 return min_domain >= 0 && max_domain <= 1;
96std::string ValidateIntegerVariable(
const CpModelProto& model,
int v) {
98 if (proto.domain_size() == 0) {
99 return absl::StrCat(
"var #", v,
102 if (proto.domain_size() % 2 != 0) {
103 return absl::StrCat(
"var #", v,
" has an odd domain() size: ",
106 if (!DomainInProtoIsValid(proto)) {
107 return absl::StrCat(
"var #", v,
" has and invalid domain() format: ",
114 const int64_t lb = proto.
domain(0);
115 const int64_t ub = proto.domain(proto.domain_size() - 1);
116 if (lb < -std::numeric_limits<int64_t>::max() / 2 ||
117 ub > std::numeric_limits<int64_t>::max() / 2) {
119 "var #", v,
" domain do not fall in [-kint64max / 2, kint64max / 2]. ",
125 if (lb < 0 && lb + std::numeric_limits<int64_t>::max() < ub) {
128 " has a domain that is too large, i.e. |UB - LB| overflow an int64_t: ",
135std::string ValidateVariablesUsedInConstraint(
const CpModelProto& model,
139 for (
const int v : references.variables) {
140 if (!VariableReferenceIsValid(model, v)) {
141 return absl::StrCat(
"Out of bound integer variable ", v,
142 " in constraint #", c,
" : ",
146 for (
const int lit : ct.enforcement_literal()) {
147 if (!LiteralReferenceIsValid(model, lit)) {
148 return absl::StrCat(
"Invalid enforcement literal ", lit,
149 " in constraint #", c,
" : ",
153 for (
const int lit : references.literals) {
154 if (!LiteralReferenceIsValid(model, lit)) {
155 return absl::StrCat(
"Invalid literal ", lit,
" in constraint #", c,
" : ",
162std::string ValidateIntervalsUsedInConstraint(
bool after_presolve,
168 return absl::StrCat(
"Out of bound interval ",
i,
" in constraint #", c,
171 if (after_presolve &&
i >= c) {
172 return absl::StrCat(
"Interval ",
i,
" in constraint #", c,
173 " must appear before in the list of constraints :",
176 if (model.constraints(
i).constraint_case() !=
180 " does not refer to an interval constraint. Problematic constraint #",
190 return var_proto.domain(0);
192 return -var_proto.domain(var_proto.domain_size() - 1);
199 return var_proto.domain(var_proto.domain_size() - 1);
201 return -var_proto.domain(0);
205template <
class LinearExpressionProto>
208 int64_t sum_min = proto.offset();
209 for (
int i = 0;
i < proto.vars_size(); ++
i) {
210 const int ref = proto.vars(
i);
211 const int64_t coeff = proto.coeffs(
i);
213 CapAdd(sum_min, coeff >= 0 ?
CapProd(MinOfRef(model, ref), coeff)
214 :
CapProd(MaxOfRef(model, ref), coeff));
220template <
class LinearExpressionProto>
223 int64_t sum_max = proto.offset();
224 for (
int i = 0;
i < proto.vars_size(); ++
i) {
225 const int ref = proto.vars(
i);
226 const int64_t coeff = proto.coeffs(
i);
228 CapAdd(sum_max, coeff >= 0 ?
CapProd(MaxOfRef(model, ref), coeff)
229 :
CapProd(MinOfRef(model, ref), coeff));
237 for (
int i = 0;
i < expr.vars_size(); ++
i) {
238 if (expr.coeffs(
i) == 0)
continue;
240 if (var_proto.domain_size() != 2 ||
241 var_proto.domain(0) != var_proto.domain(1)) {
250 DCHECK(ExpressionIsFixed(model, expr));
251 return MinOfExpression(model, expr);
254int64_t IntervalSizeMax(
const CpModelProto& model,
int interval_index) {
256 model.constraints(interval_index).constraint_case());
258 model.constraints(interval_index).interval();
259 return MaxOfExpression(model, proto.size());
269 if (expr.coeffs_size() != expr.vars_size()) {
270 return absl::StrCat(
"coeffs_size() != vars_size() in linear expression: ",
275 return absl::StrCat(
"Possible overflow in linear expression: ",
278 for (
const int var : expr.vars()) {
280 return absl::StrCat(
"Invalid negated variable in linear expression: ",
287std::string ValidateLinearConstraint(
const CpModelProto& model,
289 if (!DomainInProtoIsValid(ct.linear())) {
290 return absl::StrCat(
"Invalid domain in constraint : ",
293 if (ct.linear().coeffs_size() != ct.linear().vars_size()) {
294 return absl::StrCat(
"coeffs_size() != vars_size() in constraint: ",
297 for (
const int var : ct.linear().vars()) {
299 return absl::StrCat(
"Invalid negated variable in linear constraint: ",
305 return "Possible integer overflow in constraint: " +
311std::string ValidateIntModConstraint(
const CpModelProto& model,
313 if (ct.int_mod().exprs().size() != 2) {
314 return absl::StrCat(
"An int_mod constraint should have exactly 2 terms: ",
317 if (!ct.int_mod().has_target()) {
318 return absl::StrCat(
"An int_mod constraint should have a target: ",
327 if (MinOfExpression(model, mod_expr) <= 0) {
329 "An int_mod must have a strictly positive modulo argument: ",
336std::string ValidateIntProdConstraint(
const CpModelProto& model,
338 if (!ct.int_prod().has_target()) {
339 return absl::StrCat(
"An int_prod constraint should have a target: ",
349 Domain product_domain(1);
351 const int64_t min_expr = MinOfExpression(model, expr);
352 const int64_t max_expr = MaxOfExpression(model, expr);
353 if (min_expr == 0 && max_expr == 0) {
358 product_domain.ContinuousMultiplicationBy({min_expr, max_expr});
361 if (product_domain.Max() <= -std ::numeric_limits<int64_t>::max() ||
362 product_domain.Min() >= std::numeric_limits<int64_t>::max()) {
363 return absl::StrCat(
"integer overflow in constraint: ",
369 if (ct.int_prod().exprs_size() > 2 &&
370 (product_domain.Max() >= std ::numeric_limits<int64_t>::max() ||
371 product_domain.Min() <= -std::numeric_limits<int64_t>::max())) {
372 return absl::StrCat(
"Potential integer overflow in constraint: ",
379std::string ValidateIntDivConstraint(
const CpModelProto& model,
381 if (ct.int_div().exprs().size() != 2) {
382 return absl::StrCat(
"An int_div constraint should have exactly 2 terms: ",
385 if (!ct.int_div().has_target()) {
386 return absl::StrCat(
"An int_div constraint should have a target: ",
395 const int64_t offset = denom.
offset();
396 if (ExpressionIsFixed(model, denom)) {
397 if (ExpressionFixedValue(model, denom) == 0) {
401 const int64_t coeff = denom.coeffs(0);
403 const int64_t inverse_of_zero = -offset / coeff;
404 if (inverse_of_zero * coeff + offset == 0 &&
405 DomainOfRef(model, denom.vars(0)).Contains(inverse_of_zero)) {
406 return absl::StrCat(
"The domain of the divisor cannot contain 0: ",
416 output->mutable_vars()->Add(
input.vars().begin(),
input.vars().end());
417 for (
const int64_t coeff :
input.coeffs()) {
418 output->add_coeffs(coeff * prod);
424 CapAdd(std::abs(output->offset()), std::abs(
input.offset())));
427std::string ValidateElementConstraint(
const CpModelProto& model,
432 element.has_linear_target() ||
433 !element.exprs().empty();
434 const bool in_legacy_format =
435 !element.vars().empty() || element.index() != 0 || element.target() != 0;
436 if (in_linear_format && in_legacy_format) {
438 "Inconsistent element with both legacy and new format defined",
442 if (element.vars().empty() && element.exprs().empty()) {
443 return "Empty element constraint is interpreted as vars[], thus invalid "
444 "since the index will be out of bounds.";
449 if (!element.vars().empty()) {
451 overflow_detection.
add_vars(element.target());
452 overflow_detection.add_coeffs(1);
453 overflow_detection.add_vars( 0);
454 overflow_detection.add_coeffs(-1);
455 for (
const int ref : element.vars()) {
456 if (!VariableIndexIsValid(model, ref)) {
457 return absl::StrCat(
"Element vars must be valid variables: ",
460 overflow_detection.set_vars(1, ref);
462 overflow_detection.coeffs())) {
464 "Domain of the variables involved in element constraint may cause "
471 if (in_legacy_format) {
472 if (!VariableIndexIsValid(model, element.index()) ||
473 !VariableIndexIsValid(model, element.target())) {
475 "Element constraint index and target must valid variables: ",
480 if (in_linear_format) {
488 AppendToOverflowValidator(expr, &overflow_detection, -1);
489 const int64_t offset =
CapSub(overflow_detection.offset(), expr.offset());
490 overflow_detection.set_offset(offset);
492 overflow_detection.coeffs(),
493 overflow_detection.offset())) {
495 "Domain of the variables involved in element constraint may cause "
504std::string ValidateInverseConstraint(
const CpModelProto& model,
506 if (ct.inverse().f_direct().size() != ct.inverse().f_inverse().size()) {
507 return absl::StrCat(
"Non-matching fields size in inverse: ",
511 for (
const auto* vars : {&inverse.f_direct(), &inverse.f_inverse()}) {
512 for (
const int var : *vars) {
513 if (!VariableIndexIsValid(model, var)) {
514 return absl::StrCat(
"Invalid variable index in inverse constraint: ",
522std::string ValidateTableConstraint(
const CpModelProto& model,
525 if (!arg.vars().empty() && !arg.exprs().empty()) {
527 "Inconsistent table with both legacy and new format defined: ",
530 if (arg.vars().empty() && arg.exprs().empty() && !arg.values().empty()) {
532 "Inconsistent table empty expressions and non-empty tuples: ",
535 if (arg.vars().empty() && arg.exprs().empty() && arg.values().empty()) {
538 const int arity = arg.
vars().empty() ? arg.exprs().size() : arg.vars().size();
539 if (arg.values().size() % arity != 0) {
541 "The flat encoding of a table constraint tuples must be a multiple of "
542 "the number of expressions: ",
545 for (
const int var : arg.vars()) {
546 if (!VariableIndexIsValid(model, var)) {
547 return absl::StrCat(
"Invalid variable index in table constraint: ", var);
556std::string ValidateAutomatonConstraint(
const CpModelProto& model,
559 if (!automaton.vars().empty() && !automaton.exprs().empty()) {
561 "Inconsistent automaton with both legacy and new format defined: ",
565 if (num_transistions != automaton.transition_head().size() ||
566 num_transistions != automaton.transition_label().size()) {
568 "The transitions repeated fields must have the same size: ",
571 for (
const int var : automaton.vars()) {
572 if (!VariableIndexIsValid(model, var)) {
573 return absl::StrCat(
"Invalid variable index in automaton constraint: ",
580 absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> tail_label_to_head;
581 for (
int i = 0;
i < num_transistions; ++
i) {
582 const int64_t tail = automaton.transition_tail(
i);
583 const int64_t head = automaton.transition_head(
i);
584 const int64_t label = automaton.transition_label(
i);
585 if (label <= std::numeric_limits<int64_t>::min() + 1 ||
586 label == std::numeric_limits<int64_t>::max()) {
587 return absl::StrCat(
"labels in the automaton constraint are too big: ",
590 const auto [it, inserted] =
591 tail_label_to_head.insert({{tail, label}, head});
593 if (it->second == head) {
594 return absl::StrCat(
"automaton: duplicate transition ", tail,
" --(",
595 label,
")--> ", head);
597 return absl::StrCat(
"automaton: incompatible transitions ", tail,
598 " --(", label,
")--> ", head,
" and ", tail,
" --(",
599 label,
")--> ", it->second);
606template <
typename GraphProto>
607std::string ValidateGraphInput(
bool is_route,
const GraphProto& graph) {
608 const int size = graph.tails().size();
609 if (graph.heads().size() != size || graph.literals().size() != size) {
610 return absl::StrCat(
"Wrong field sizes in graph: ",
615 absl::flat_hash_set<int> self_loops;
616 for (
int i = 0;
i < size; ++
i) {
617 if (graph.heads(
i) != graph.tails(
i))
continue;
618 if (!self_loops.insert(graph.heads(
i)).second) {
620 "Circuit/Route constraint contains multiple self-loop involving "
624 if (is_route && graph.tails(
i) == 0) {
626 "A route constraint cannot have a self-loop on the depot (node 0)");
633std::string ValidateRoutesConstraint(
const CpModelProto& model,
636 absl::flat_hash_set<int> nodes;
637 for (
const int node : ct.routes().tails()) {
639 return "All node in a route constraint must be in [0, num_nodes)";
642 max_node = std::max(max_node, node);
644 for (
const int node : ct.routes().heads()) {
646 return "All node in a route constraint must be in [0, num_nodes)";
649 max_node = std::max(max_node, node);
651 if (!nodes.empty() && max_node != nodes.size() - 1) {
653 "All nodes in a route constraint must have incident arcs");
657 ct.routes().dimensions()) {
658 if (dimension.exprs().size() != nodes.size()) {
660 "If the dimensions field in a route constraint is set, its elements "
661 "must be of size num_nodes:",
665 for (
const int v : expr.vars()) {
666 if (!VariableReferenceIsValid(model, v)) {
667 return absl::StrCat(
"Out of bound integer variable ", v,
668 " in route constraint ",
676 return ValidateGraphInput(
true, ct.routes());
679std::string ValidateIntervalConstraint(
const CpModelProto& model,
683 if (!arg.has_start()) {
684 return absl::StrCat(
"Interval must have a start expression: ",
687 if (!arg.has_size()) {
688 return absl::StrCat(
"Interval must have a size expression: ",
691 if (!arg.has_end()) {
692 return absl::StrCat(
"Interval must have a end expression: ",
697 if (arg.start().vars_size() > 1) {
698 return "Interval with a start expression containing more than one "
699 "variable are currently not supported.";
702 AppendToOverflowValidator(arg.start(), &for_overflow_validation);
703 if (arg.size().vars_size() > 1) {
704 return "Interval with a size expression containing more than one "
705 "variable are currently not supported.";
708 if (ct.enforcement_literal().empty() &&
709 MinOfExpression(model, arg.size()) < 0) {
711 "The size of a performed interval must be >= 0 in constraint: ",
714 AppendToOverflowValidator(arg.size(), &for_overflow_validation);
715 if (arg.end().vars_size() > 1) {
716 return "Interval with a end expression containing more than one "
717 "variable are currently not supported.";
720 AppendToOverflowValidator(arg.end(), &for_overflow_validation, -1);
723 for_overflow_validation.coeffs(),
724 for_overflow_validation.offset())) {
725 return absl::StrCat(
"Possible overflow in interval: ",
732std::string ValidateCumulativeConstraint(
const CpModelProto& model,
734 if (ct.cumulative().intervals_size() != ct.cumulative().demands_size()) {
735 return absl::StrCat(
"intervals_size() != demands_size() in constraint: ",
746 if (MinOfExpression(model, demand_expr) < 0) {
751 if (demand_expr.vars_size() > 1) {
753 " must be affine or constant in constraint: ",
757 if (ct.cumulative().capacity().vars_size() > 1) {
763 int64_t sum_max_demands = 0;
765 const int64_t demand_max = MaxOfExpression(model, demand_expr);
766 DCHECK_GE(demand_max, 0);
767 sum_max_demands =
CapAdd(sum_max_demands, demand_max);
768 if (sum_max_demands == std::numeric_limits<int64_t>::max()) {
769 return "The sum of max demands do not fit on an int64_t in constraint: " +
777std::string ValidateNoOverlap2DConstraint(
const CpModelProto& model,
779 const int size_x = ct.no_overlap_2d().x_intervals().size();
780 const int size_y = ct.no_overlap_2d().y_intervals().size();
781 if (size_x != size_y) {
782 return absl::StrCat(
"The two lists of intervals must have the same size: ",
787 int64_t sum_max_areas = 0;
788 for (
int i = 0;
i < ct.no_overlap_2d().x_intervals().size(); ++
i) {
789 const int64_t max_size_x =
790 IntervalSizeMax(model, ct.no_overlap_2d().x_intervals(
i));
791 const int64_t max_size_y =
792 IntervalSizeMax(model, ct.no_overlap_2d().y_intervals(
i));
793 sum_max_areas =
CapAdd(sum_max_areas,
CapProd(max_size_x, max_size_y));
794 if (sum_max_areas == std::numeric_limits<int64_t>::max()) {
795 return "Integer overflow when summing all areas in "
803std::string ValidateReservoirConstraint(
const CpModelProto& model,
805 if (ct.reservoir().time_exprs().size() !=
806 ct.reservoir().level_changes().size()) {
808 "time_exprs and level_changes fields must be of the same size: ",
814 if (MinOfExpression(model, expr) <=
815 -std::numeric_limits<int64_t>::max() / 4 ||
816 MaxOfExpression(model, expr) >=
817 std::numeric_limits<int64_t>::max() / 4) {
819 "Potential integer overflow on time_expr of a reservoir: ",
826 if (ct.reservoir().min_level() > 0) {
828 "The min level of a reservoir must be <= 0. Please use fixed events to "
829 "setup initial state: ",
832 if (ct.reservoir().max_level() < 0) {
834 "The max level of a reservoir must be >= 0. Please use fixed events to "
835 "setup initial state: ",
842 const int64_t demand_min = MinOfExpression(model, demand);
843 const int64_t demand_max = MaxOfExpression(model, demand);
845 if (sum_abs == std::numeric_limits<int64_t>::max()) {
846 return "Possible integer overflow in constraint: " +
850 if (ct.reservoir().active_literals_size() > 0 &&
851 ct.reservoir().active_literals_size() !=
852 ct.reservoir().time_exprs_size()) {
853 return "Wrong array length of active_literals variables";
855 if (ct.reservoir().level_changes_size() > 0 &&
856 ct.reservoir().level_changes_size() != ct.reservoir().time_exprs_size()) {
857 return "Wrong array length of level_changes variables";
864 if (!DomainInProtoIsValid(obj)) {
865 return absl::StrCat(
"The objective has and invalid domain() format: ",
868 if (obj.vars().size() != obj.coeffs().size()) {
869 return absl::StrCat(
"vars and coeffs size do not match in objective: ",
872 for (
const int v : obj.vars()) {
873 if (!VariableIndexIsValid(model, v)) {
874 return absl::StrCat(
"Out of bound integer variable ", v,
878 std::pair<int64_t, int64_t> bounds;
880 return "Possible integer overflow in objective: " +
883 if (!std::isfinite(model.objective().offset())) {
886 if (model.objective().scaling_factor() != 0 &&
887 model.objective().scaling_factor() != 1 &&
888 model.objective().scaling_factor() != -1) {
890 std::abs(model.objective().scaling_factor() * bounds.first) +
891 std::abs(model.objective().offset())) ||
893 std::abs(model.objective().scaling_factor() * bounds.second) +
894 std::abs(model.objective().offset()))) {
895 return "Possible floating point overflow in objective when multiplied by "
896 "the scaling factor: " +
903std::string ValidateFloatingPointObjective(
double max_valid_magnitude,
906 if (obj.vars().size() != obj.coeffs().size()) {
907 return absl::StrCat(
"vars and coeffs size do not match in objective: ",
910 for (
const int v : obj.vars()) {
911 if (!VariableIndexIsValid(model, v)) {
912 return absl::StrCat(
"Out of bound integer variable ", v,
916 for (
const double coeff : obj.coeffs()) {
917 if (!std::isfinite(coeff)) {
918 return absl::StrCat(
"Coefficients must be finite in objective: ",
921 if (std::abs(coeff) > max_valid_magnitude) {
923 "Coefficients larger than params.mip_max_valid_magnitude() [value = ",
928 if (!std::isfinite(obj.offset())) {
929 return absl::StrCat(
"Offset must be finite in objective: ",
932 double sum_min = obj.offset();
933 double sum_max = obj.offset();
934 for (
int i = 0;
i < obj.vars().size(); ++
i) {
935 const int ref = obj.vars(
i);
936 const auto& var_proto = model.variables(
PositiveRef(ref));
937 const int64_t min_domain = var_proto.domain(0);
938 const int64_t max_domain = var_proto.domain(var_proto.domain_size() - 1);
939 const double coeff =
RefIsPositive(ref) ? obj.coeffs(
i) : -obj.coeffs(
i);
940 const double prod1 = min_domain * coeff;
941 const double prod2 = max_domain * coeff;
946 sum_min += std::min(0.0, std::min(prod1, prod2));
947 sum_max += std::max(0.0, std::max(prod1, prod2));
949 if (!std::isfinite(2.0 * sum_min) || !std::isfinite(2.0 * sum_max)) {
950 return absl::StrCat(
"Possible floating point overflow in objective: ",
956std::string ValidateSearchStrategies(
const CpModelProto& model) {
958 const int vss = strategy.variable_selection_strategy();
965 "Unknown or unsupported variable_selection_strategy: ", vss);
967 const int drs = strategy.domain_reduction_strategy();
974 return absl::StrCat(
"Unknown or unsupported domain_reduction_strategy: ",
977 if (!strategy.variables().empty() && !strategy.exprs().empty()) {
978 return absl::StrCat(
"Strategy can't have both variables and exprs: ",
981 for (
const int ref : strategy.variables()) {
982 if (!VariableReferenceIsValid(model, ref)) {
983 return absl::StrCat(
"Invalid variable reference in strategy: ",
989 return absl::StrCat(
"Variable #",
PositiveRef(ref),
990 " has a domain too large to be used in a"
991 " SELECT_MEDIAN_VALUE value selection strategy");
995 if (expr.vars_size() > 1) {
996 return absl::StrCat(
"expression must be affine in strategy: ",
999 for (
const int var : expr.vars()) {
1000 if (!VariableReferenceIsValid(model, var)) {
1001 return absl::StrCat(
"Invalid variable reference in strategy: ",
1006 return absl::StrCat(
"Invalid affine expr in strategy: ",
1010 for (
const int var : expr.vars()) {
1012 return absl::StrCat(
1014 " has a domain too large to be used in a"
1015 " SELECT_MEDIAN_VALUE value selection strategy");
1024std::string ValidateSolutionHint(
const CpModelProto& model) {
1025 if (!model.has_solution_hint())
return "";
1026 const auto& hint = model.solution_hint();
1027 if (hint.vars().size() != hint.values().size()) {
1028 return "Invalid solution hint: vars and values do not have the same size.";
1030 for (
const int var : hint.vars()) {
1031 if (!VariableIndexIsValid(model, var)) {
1032 return absl::StrCat(
"Invalid variable in solution hint: ", var);
1037 absl::flat_hash_set<int> indices;
1038 for (
const int var : hint.vars()) {
1039 const auto insert = indices.insert(
PositiveRef(var));
1040 if (!insert.second) {
1041 return absl::StrCat(
1042 "The solution hint contains duplicate variables like the variable "
1049 for (
const int64_t value : hint.values()) {
1050 if (value == std::numeric_limits<int64_t>::min() ||
1051 value == std::numeric_limits<int64_t>::max()) {
1052 return "The solution hint cannot contains the INT_MIN or INT_MAX values.";
1062 absl::Span<const int> vars,
1063 absl::Span<const int64_t> coeffs, int64_t offset,
1064 std::pair<int64_t, int64_t>* implied_domain) {
1065 if (offset == std::numeric_limits<int64_t>::min())
return true;
1066 int64_t sum_min = -std::abs(offset);
1067 int64_t sum_max = +std::abs(offset);
1068 for (
int i = 0;
i < vars.size(); ++
i) {
1069 const int ref = vars[
i];
1070 const auto& var_proto = model.variables(
PositiveRef(ref));
1071 const int64_t min_domain = var_proto.domain(0);
1072 const int64_t max_domain = var_proto.domain(var_proto.domain_size() - 1);
1073 if (coeffs[
i] == std::numeric_limits<int64_t>::min())
return true;
1075 const int64_t prod1 =
CapProd(min_domain, coeff);
1076 const int64_t prod2 =
CapProd(max_domain, coeff);
1081 sum_min =
CapAdd(sum_min, std::min(int64_t{0}, std::min(prod1, prod2)));
1082 sum_max =
CapAdd(sum_max, std::max(int64_t{0}, std::max(prod1, prod2)));
1083 for (
const int64_t v : {prod1, prod2, sum_min, sum_max}) {
1094 if (sum_min < -std::numeric_limits<int64_t>::max() / 2)
return true;
1095 if (sum_max > std::numeric_limits<int64_t>::max() / 2)
return true;
1096 if (implied_domain) {
1097 *implied_domain = {sum_min, sum_max};
1102std::string
ValidateCpModel(
const CpModelProto& model,
bool after_presolve) {
1103 int64_t int128_overflow = 0;
1104 for (
int v = 0; v < model.variables_size(); ++v) {
1107 const auto& domain = model.variables(v).domain();
1108 const int64_t min = domain[0];
1109 const int64_t max = domain[domain.size() - 1];
1110 int128_overflow =
CapAdd(
1111 int128_overflow, std::max({std::abs(min), std::abs(max), max - min}));
1117 if (int128_overflow == std::numeric_limits<int64_t>::max()) {
1118 return "The sum of all variable domains do not fit on an int64_t. This is "
1119 "needed to prevent overflows.";
1124 std::vector<int> constraints_using_intervals;
1126 for (
int c = 0; c < model.constraints_size(); ++c) {
1130 const ConstraintProto& ct = model.constraints(c);
1131 switch (ct.constraint_case()) {
1143 ValidateLinearExpression(model, ct.lin_max().target()));
1144 for (
const LinearExpressionProto& expr : ct.lin_max().exprs()) {
1177 ValidateGraphInput(
false, ct.circuit()));
1186 constraints_using_intervals.push_back(c);
1189 constraints_using_intervals.push_back(c);
1192 constraints_using_intervals.push_back(c);
1198 return "The dummy constraint should never appear in a model.";
1205 for (
const int c : constraints_using_intervals) {
1207 ValidateIntervalsUsedInConstraint(after_presolve, model, c));
1210 switch (ct.constraint_case()) {
1220 LOG(DFATAL) <<
"Shouldn't be here";
1224 if (model.has_objective() && model.has_floating_point_objective()) {
1225 return "A model cannot have both an objective and a floating point "
1228 if (model.has_objective()) {
1229 if (model.objective().scaling_factor() != 0 &&
1230 !std::isnormal(model.objective().scaling_factor())) {
1231 return "A model cannot have an objective with a nan, inf or subnormal "
1237 if (model.objective().integer_scaling_factor() != 0 ||
1238 model.objective().integer_before_offset() != 0 ||
1239 model.objective().integer_after_offset() != 0) {
1241 if (model.objective().domain().empty()) {
1242 return absl::StrCat(
1243 "Objective integer scaling or offset is set without an objective "
1249 bool overflow =
false;
1250 for (
const int64_t v : model.objective().domain()) {
1251 int64_t t =
CapAdd(v, model.objective().integer_before_offset());
1256 t =
CapProd(t, model.objective().integer_scaling_factor());
1261 t =
CapAdd(t, model.objective().integer_after_offset());
1268 return absl::StrCat(
1269 "Internal fields related to the postsolve of the integer objective "
1270 "are causing a potential integer overflow: ",
1277 for (
const int ref : model.assumptions()) {
1278 if (!LiteralReferenceIsValid(model, ref)) {
1279 return absl::StrCat(
"Invalid literal reference ", ref,
1280 " in the 'assumptions' field.");
1289 if (model.has_floating_point_objective()) {
1291 ValidateFloatingPointObjective(params.mip_max_valid_magnitude(), model,
1292 model.floating_point_objective()));
1297#undef RETURN_IF_NOT_EMPTY
1305class ConstraintChecker {
1307 explicit ConstraintChecker(absl::Span<const int64_t> variable_values)
1308 : variable_values_(variable_values.
begin(), variable_values.
end()) {}
1310 bool LiteralIsTrue(
int l)
const {
1311 if (l >= 0)
return variable_values_[l] != 0;
1312 return variable_values_[-l - 1] == 0;
1315 bool LiteralIsFalse(
int l)
const {
return !LiteralIsTrue(l); }
1317 int64_t
Value(
int var)
const {
1318 if (var >= 0)
return variable_values_[var];
1319 return -variable_values_[-var - 1];
1322 bool ConstraintIsEnforced(
const ConstraintProto& ct) {
1323 for (
const int lit : ct.enforcement_literal()) {
1324 if (LiteralIsFalse(lit))
return false;
1329 bool BoolOrConstraintIsFeasible(
const ConstraintProto& ct) {
1330 for (
const int lit : ct.bool_or().literals()) {
1331 if (LiteralIsTrue(lit))
return true;
1336 bool BoolAndConstraintIsFeasible(
const ConstraintProto& ct) {
1337 for (
const int lit : ct.bool_and().literals()) {
1338 if (LiteralIsFalse(lit))
return false;
1343 bool AtMostOneConstraintIsFeasible(
const ConstraintProto& ct) {
1344 int num_true_literals = 0;
1345 for (
const int lit : ct.at_most_one().literals()) {
1346 if (LiteralIsTrue(lit)) ++num_true_literals;
1348 return num_true_literals <= 1;
1351 bool ExactlyOneConstraintIsFeasible(
const ConstraintProto& ct) {
1352 int num_true_literals = 0;
1353 for (
const int lit : ct.exactly_one().literals()) {
1354 if (LiteralIsTrue(lit)) ++num_true_literals;
1356 return num_true_literals == 1;
1359 bool BoolXorConstraintIsFeasible(
const ConstraintProto& ct) {
1361 for (
const int lit : ct.bool_xor().literals()) {
1362 sum ^= LiteralIsTrue(lit) ? 1 : 0;
1367 bool LinearConstraintIsFeasible(
const ConstraintProto& ct) {
1369 const int num_variables = ct.linear().coeffs_size();
1370 absl::Span<const int> vars = absl::MakeSpan(ct.linear().vars());
1371 absl::Span<const int64_t> coeffs = absl::MakeSpan(ct.linear().coeffs());
1372 for (
int i = 0;
i < num_variables; ++
i) {
1375 sum += variable_values_[vars[
i]] * coeffs[
i];
1379 VLOG(1) <<
"Activity: " << sum;
1384 int64_t LinearExpressionValue(
const LinearExpressionProto& expr)
const {
1385 int64_t sum = expr.offset();
1386 const int num_variables = expr.vars_size();
1387 for (
int i = 0;
i < num_variables; ++
i) {
1388 sum +=
Value(expr.vars(
i)) * expr.coeffs(
i);
1393 bool LinMaxConstraintIsFeasible(
const ConstraintProto& ct) {
1394 const int64_t max = LinearExpressionValue(ct.lin_max().target());
1395 int64_t actual_max = std::numeric_limits<int64_t>::min();
1396 for (
int i = 0;
i < ct.lin_max().exprs_size(); ++
i) {
1397 const int64_t expr_value = LinearExpressionValue(ct.lin_max().exprs(
i));
1398 actual_max = std::max(actual_max, expr_value);
1400 return max == actual_max;
1403 bool IntProdConstraintIsFeasible(
const ConstraintProto& ct) {
1404 const int64_t prod = LinearExpressionValue(ct.int_prod().target());
1405 int64_t actual_prod = 1;
1406 for (
const LinearExpressionProto& expr : ct.int_prod().exprs()) {
1407 actual_prod =
CapProd(actual_prod, LinearExpressionValue(expr));
1409 return prod == actual_prod;
1412 bool IntDivConstraintIsFeasible(
const ConstraintProto& ct) {
1413 return LinearExpressionValue(ct.int_div().target()) ==
1414 LinearExpressionValue(ct.int_div().exprs(0)) /
1415 LinearExpressionValue(ct.int_div().exprs(1));
1418 bool IntModConstraintIsFeasible(
const ConstraintProto& ct) {
1419 return LinearExpressionValue(ct.int_mod().target()) ==
1420 LinearExpressionValue(ct.int_mod().exprs(0)) %
1421 LinearExpressionValue(ct.int_mod().exprs(1));
1424 bool AllDiffConstraintIsFeasible(
const ConstraintProto& ct) {
1425 absl::flat_hash_set<int64_t> values;
1426 for (
const LinearExpressionProto& expr : ct.all_diff().exprs()) {
1427 const int64_t value = LinearExpressionValue(expr);
1428 const auto [it, inserted] = values.insert(value);
1429 if (!inserted)
return false;
1434 int64_t IntervalStart(
const IntervalConstraintProto& interval)
const {
1435 return LinearExpressionValue(interval.start());
1438 int64_t IntervalSize(
const IntervalConstraintProto& interval)
const {
1439 return LinearExpressionValue(interval.size());
1442 int64_t IntervalEnd(
const IntervalConstraintProto& interval)
const {
1443 return LinearExpressionValue(interval.end());
1446 bool IntervalConstraintIsFeasible(
const ConstraintProto& ct) {
1447 const int64_t size = IntervalSize(ct.interval());
1448 if (size < 0)
return false;
1449 return IntervalStart(ct.interval()) + size == IntervalEnd(ct.interval());
1452 bool NoOverlapConstraintIsFeasible(
const CpModelProto& model,
1453 const ConstraintProto& ct) {
1454 std::vector<std::pair<int64_t, int64_t>> start_durations_pairs;
1455 for (
const int i : ct.no_overlap().intervals()) {
1456 const ConstraintProto& interval_constraint = model.constraints(
i);
1457 if (ConstraintIsEnforced(interval_constraint)) {
1458 const IntervalConstraintProto& interval =
1459 interval_constraint.interval();
1460 start_durations_pairs.push_back(
1461 {IntervalStart(interval), IntervalSize(interval)});
1464 std::sort(start_durations_pairs.begin(), start_durations_pairs.end());
1465 int64_t previous_end = std::numeric_limits<int64_t>::min();
1466 for (
const auto& pair : start_durations_pairs) {
1467 if (pair.first < previous_end)
return false;
1468 previous_end = pair.first + pair.second;
1473 bool NoOverlap2DConstraintIsFeasible(
const CpModelProto& model,
1474 const ConstraintProto& ct) {
1475 const auto& arg = ct.no_overlap_2d();
1478 bool has_zero_sizes =
false;
1479 std::vector<Rectangle> enforced_rectangles;
1481 const int num_intervals = arg.x_intervals_size();
1482 CHECK_EQ(arg.y_intervals_size(), num_intervals);
1483 for (
int i = 0;
i < num_intervals; ++
i) {
1484 const ConstraintProto&
x = model.constraints(arg.x_intervals(
i));
1485 const ConstraintProto& y = model.constraints(arg.y_intervals(
i));
1486 if (ConstraintIsEnforced(x) && ConstraintIsEnforced(y)) {
1487 enforced_rectangles.push_back({.x_min = IntervalStart(
x.interval()),
1488 .x_max = IntervalEnd(
x.interval()),
1489 .y_min = IntervalStart(y.interval()),
1490 .y_max = IntervalEnd(y.interval())});
1491 const auto& rect = enforced_rectangles.back();
1492 if (rect.x_min == rect.x_max || rect.y_min == rect.y_max) {
1493 has_zero_sizes =
true;
1499 std::optional<std::pair<int, int>> one_intersection;
1500 absl::c_stable_sort(enforced_rectangles,
1501 [](
const Rectangle& a,
const Rectangle&
b) {
1502 return a.x_min <
b.x_min;
1504 if (has_zero_sizes) {
1511 if (one_intersection != std::nullopt) {
1512 VLOG(1) <<
"Rectangles " << one_intersection->first <<
"("
1513 << enforced_rectangles[one_intersection->first] <<
") and "
1514 << one_intersection->second <<
"("
1515 << enforced_rectangles[one_intersection->second]
1516 <<
") are not disjoint.";
1522 bool CumulativeConstraintIsFeasible(
const CpModelProto& model,
1523 const ConstraintProto& ct) {
1524 const int64_t capacity = LinearExpressionValue(ct.cumulative().capacity());
1525 if (capacity < 0)
return false;
1526 const int num_intervals = ct.cumulative().intervals_size();
1527 std::vector<std::pair<int64_t, int64_t>> events;
1528 for (
int i = 0;
i < num_intervals; ++
i) {
1529 const ConstraintProto& interval_constraint =
1530 model.constraints(ct.cumulative().intervals(
i));
1531 if (!ConstraintIsEnforced(interval_constraint))
continue;
1532 const int64_t start = IntervalStart(interval_constraint.interval());
1533 const int64_t duration = IntervalSize(interval_constraint.interval());
1534 const int64_t demand = LinearExpressionValue(ct.cumulative().demands(
i));
1535 if (duration == 0 || demand == 0)
continue;
1536 events.emplace_back(start, demand);
1537 events.emplace_back(start + duration, -demand);
1539 if (events.empty())
return true;
1541 std::sort(events.begin(), events.end());
1544 int64_t current_load = 0;
1545 for (
const auto& [time, delta] : events) {
1546 current_load += delta;
1547 if (current_load > capacity) {
1548 VLOG(1) <<
"Cumulative constraint: load: " << current_load
1549 <<
" capacity: " << capacity <<
" time: " << time;
1553 DCHECK_EQ(current_load, 0);
1557 bool ElementConstraintIsFeasible(
const ConstraintProto& ct) {
1558 if (!ct.element().vars().empty()) {
1559 const int index =
Value(ct.element().index());
1560 if (index < 0 || index >= ct.element().vars_size())
return false;
1561 return Value(ct.element().vars(index)) ==
Value(ct.element().target());
1564 if (!ct.element().exprs().empty()) {
1565 const int index = LinearExpressionValue(ct.element().linear_index());
1566 if (index < 0 || index >= ct.element().exprs_size())
return false;
1567 return LinearExpressionValue(ct.element().exprs(index)) ==
1568 LinearExpressionValue(ct.element().linear_target());
1574 bool TableConstraintIsFeasible(
const ConstraintProto& ct) {
1576 if (ct.table().exprs().empty()) {
1577 for (
int i = 0;
i < ct.table().vars_size(); ++
i) {
1581 for (
int i = 0;
i < ct.table().exprs_size(); ++
i) {
1582 solution.push_back(LinearExpressionValue(ct.table().exprs(
i)));
1590 for (
int row_start = 0; row_start < ct.table().values_size();
1591 row_start += size) {
1593 while (
solution[
i] == ct.table().values(row_start +
i)) {
1595 if (
i == size)
return !ct.table().negated();
1598 return ct.table().negated();
1601 bool AutomatonConstraintIsFeasible(
const ConstraintProto& ct) {
1603 const AutomatonConstraintProto& automaton = ct.automaton();
1604 absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> transition_map;
1605 const int num_transitions = automaton.transition_tail().size();
1606 for (
int i = 0;
i < num_transitions; ++
i) {
1607 transition_map[{automaton.transition_tail(
i),
1608 automaton.transition_label(
i)}] =
1609 automaton.transition_head(
i);
1613 int64_t current_state = automaton.starting_state();
1614 const int num_steps =
1615 std::max(automaton.vars_size(), automaton.exprs_size());
1616 for (
int i = 0;
i < num_steps; ++
i) {
1617 const std::pair<int64_t, int64_t> key = {
1618 current_state, automaton.vars().empty()
1619 ? LinearExpressionValue(automaton.exprs(
i))
1620 :
Value(automaton.vars(
i))};
1621 if (!transition_map.contains(key)) {
1624 current_state = transition_map[key];
1628 for (
const int64_t
final : automaton.final_states()) {
1629 if (current_state ==
final)
return true;
1634 bool CircuitConstraintIsFeasible(
const ConstraintProto& ct) {
1637 const int num_arcs = ct.circuit().tails_size();
1638 absl::flat_hash_set<int> nodes;
1639 absl::flat_hash_map<int, int> nexts;
1640 for (
int i = 0;
i < num_arcs; ++
i) {
1641 const int tail = ct.circuit().tails(
i);
1642 const int head = ct.circuit().heads(
i);
1645 if (LiteralIsFalse(ct.circuit().literals(
i)))
continue;
1646 if (nexts.contains(tail)) {
1647 VLOG(1) <<
"Node with two outgoing arcs";
1656 for (
const int node : nodes) {
1657 if (!nexts.contains(node)) {
1658 VLOG(1) <<
"Node with no next: " << node;
1661 if (nexts[node] == node)
continue;
1665 if (cycle_size == 0)
return true;
1669 absl::flat_hash_set<int> visited;
1670 int current = in_cycle;
1671 int num_visited = 0;
1672 while (!visited.contains(current)) {
1674 visited.insert(current);
1675 current = nexts[current];
1677 if (current != in_cycle) {
1678 VLOG(1) <<
"Rho shape";
1681 if (num_visited != cycle_size) {
1682 VLOG(1) <<
"More than one cycle";
1684 return num_visited == cycle_size;
1687 bool RoutesConstraintIsFeasible(
const ConstraintProto& ct) {
1688 const int num_arcs = ct.routes().tails_size();
1689 int num_used_arcs = 0;
1690 int num_self_arcs = 0;
1694 for (
int i = 0;
i < num_arcs; ++
i) {
1695 num_nodes = std::max(num_nodes, 1 + ct.routes().tails(
i));
1696 num_nodes = std::max(num_nodes, 1 + ct.routes().heads(
i));
1699 std::vector<int> tail_to_head(num_nodes, -1);
1700 std::vector<bool> has_incoming_arc(num_nodes,
false);
1701 std::vector<int> has_outgoing_arc(num_nodes,
false);
1702 std::vector<int> depot_nexts;
1703 for (
int i = 0;
i < num_arcs; ++
i) {
1704 const int tail = ct.routes().tails(
i);
1705 const int head = ct.routes().heads(
i);
1706 if (LiteralIsTrue(ct.routes().literals(
i))) {
1709 if (has_outgoing_arc[tail]) {
1710 VLOG(1) <<
"routes: node " << tail <<
"has two outgoing arcs";
1713 has_outgoing_arc[tail] =
true;
1716 if (has_incoming_arc[head]) {
1717 VLOG(1) <<
"routes: node " << head <<
"has two incoming arcs";
1720 has_incoming_arc[head] =
true;
1725 VLOG(1) <<
"Self loop on node 0 are forbidden.";
1733 depot_nexts.push_back(head);
1735 DCHECK_EQ(tail_to_head[tail], -1);
1736 tail_to_head[tail] = head;
1742 if (num_nodes == 0)
return true;
1746 for (
int start : depot_nexts) {
1748 while (start != 0) {
1749 if (tail_to_head[start] == -1)
return false;
1750 start = tail_to_head[start];
1755 if (count != num_used_arcs) {
1756 VLOG(1) <<
"count: " << count <<
" != num_used_arcs:" << num_used_arcs;
1764 if (count - depot_nexts.size() + 1 + num_self_arcs != num_nodes) {
1765 VLOG(1) <<
"Not all nodes are covered!";
1772 bool InverseConstraintIsFeasible(
const ConstraintProto& ct) {
1773 const int num_variables = ct.inverse().f_direct_size();
1774 if (num_variables != ct.inverse().f_inverse_size())
return false;
1776 for (
int i = 0;
i < num_variables;
i++) {
1777 const int fi =
Value(ct.inverse().f_direct(
i));
1778 if (fi < 0 || num_variables <= fi)
return false;
1779 if (
i !=
Value(ct.inverse().f_inverse(fi)))
return false;
1784 bool ReservoirConstraintIsFeasible(
const ConstraintProto& ct) {
1785 const int num_variables = ct.reservoir().time_exprs_size();
1786 const int64_t min_level = ct.reservoir().min_level();
1787 const int64_t max_level = ct.reservoir().max_level();
1788 absl::btree_map<int64_t, int64_t> deltas;
1789 const bool has_active_variables = ct.reservoir().active_literals_size() > 0;
1790 for (
int i = 0;
i < num_variables;
i++) {
1791 const int64_t time = LinearExpressionValue(ct.reservoir().time_exprs(
i));
1792 if (!has_active_variables ||
1793 Value(ct.reservoir().active_literals(
i)) == 1) {
1794 const int64_t level =
1795 LinearExpressionValue(ct.reservoir().level_changes(
i));
1796 deltas[time] += level;
1799 int64_t current_level = 0;
1800 for (
const auto& delta : deltas) {
1801 current_level += delta.second;
1802 if (current_level < min_level || current_level > max_level) {
1803 VLOG(1) <<
"Reservoir level " << current_level
1804 <<
" is out of bounds at time: " << delta.first;
1812 const ConstraintProto& ct) {
1814 if (!ConstraintIsEnforced(ct))
return true;
1819 return BoolOrConstraintIsFeasible(ct);
1821 return BoolAndConstraintIsFeasible(ct);
1823 return AtMostOneConstraintIsFeasible(ct);
1825 return ExactlyOneConstraintIsFeasible(ct);
1827 return BoolXorConstraintIsFeasible(ct);
1829 return LinearConstraintIsFeasible(ct);
1831 return IntProdConstraintIsFeasible(ct);
1833 return IntDivConstraintIsFeasible(ct);
1835 return IntModConstraintIsFeasible(ct);
1837 return LinMaxConstraintIsFeasible(ct);
1839 return AllDiffConstraintIsFeasible(ct);
1841 if (!IntervalConstraintIsFeasible(ct)) {
1842 if (ct.interval().has_start()) {
1848 VLOG(1) <<
"Warning, an interval constraint was likely used "
1849 "without a corresponding linear constraint linking "
1850 "its start, size and end.";
1856 return NoOverlapConstraintIsFeasible(model, ct);
1858 return NoOverlap2DConstraintIsFeasible(model, ct);
1860 return CumulativeConstraintIsFeasible(model, ct);
1862 return ElementConstraintIsFeasible(ct);
1864 return TableConstraintIsFeasible(ct);
1866 return AutomatonConstraintIsFeasible(ct);
1868 return CircuitConstraintIsFeasible(ct);
1870 return RoutesConstraintIsFeasible(ct);
1872 return InverseConstraintIsFeasible(ct);
1874 return ReservoirConstraintIsFeasible(ct);
1885 const std::vector<int64_t> variable_values_;
1892 absl::Span<const int64_t> variable_values) {
1893 ConstraintChecker checker(variable_values);
1894 return checker.ConstraintIsFeasible(model, constraint);
1898 absl::Span<const int64_t> variable_values,
1899 const CpModelProto* mapping_proto,
1900 const std::vector<int>* postsolve_mapping) {
1901 if (variable_values.size() != model.variables_size()) {
1902 VLOG(1) <<
"Wrong number of variables (" << variable_values.size()
1903 <<
") in the solution vector. It should be "
1904 << model.variables_size() <<
".";
1909 for (
int i = 0;
i < model.variables_size(); ++
i) {
1911 VLOG(1) <<
"Variable #" <<
i <<
" has value " << variable_values[
i]
1912 <<
" which do not fall in its domain: "
1918 CHECK_EQ(variable_values.size(), model.variables_size());
1919 ConstraintChecker checker(variable_values);
1921 for (
int c = 0;
c < model.constraints_size(); ++
c) {
1923 if (checker.ConstraintIsFeasible(model, ct))
continue;
1926 VLOG(1) <<
"Failing constraint #" <<
c <<
" : "
1928 if (mapping_proto !=
nullptr && postsolve_mapping !=
nullptr) {
1929 std::vector<int> reverse_map(mapping_proto->variables().size(), -1);
1930 for (
int var = 0; var < postsolve_mapping->size(); ++var) {
1931 reverse_map[(*postsolve_mapping)[var]] = var;
1934 VLOG(1) <<
"var: " << var <<
" mapped_to: " << reverse_map[var]
1935 <<
" value: " << variable_values[var] <<
" initial_domain: "
1937 <<
" postsolved_domain: "
1942 VLOG(1) <<
"var: " << var <<
" value: " << variable_values[var];
1953 if (model.has_objective()) {
1954 int64_t inner_objective = 0;
1955 const int num_variables = model.objective().coeffs_size();
1956 for (
int i = 0;
i < num_variables; ++
i) {
1957 inner_objective += checker.Value(model.objective().vars(
i)) *
1958 model.objective().coeffs(
i);
1960 if (!model.objective().domain().empty()) {
1962 VLOG(1) <<
"Objective value " << inner_objective <<
" not in domain! "
1967 double factor = model.objective().scaling_factor();
1968 if (factor == 0.0) factor = 1.0;
1969 const double scaled_objective =
1971 (
static_cast<double>(inner_objective) + model.objective().offset());
1972 VLOG(2) <<
"Checker inner objective = " << inner_objective;
1973 VLOG(2) <<
"Checker scaled objective = " << scaled_objective;
1980 absl::Span<const int64_t> variable_values) {
1981 if (absl::GetFlag(FLAGS_cp_model_check_dependent_variables)) {
1984 std::vector<int64_t> all_variables(variable_values.begin(),
1985 variable_values.end());
1986 for (
const int var : relationships.secondary_variables) {
1987 all_variables[var] = -999999;
1991 CHECK(absl::MakeSpan(all_variables) == variable_values);
::int64_t transition_tail(int index) const
static constexpr DomainReductionStrategy SELECT_MAX_VALUE
static constexpr DomainReductionStrategy SELECT_MIN_VALUE
static constexpr VariableSelectionStrategy CHOOSE_HIGHEST_MAX
static constexpr VariableSelectionStrategy CHOOSE_FIRST
static constexpr DomainReductionStrategy SELECT_MEDIAN_VALUE
static constexpr DomainReductionStrategy SELECT_UPPER_HALF
static constexpr VariableSelectionStrategy CHOOSE_LOWEST_MIN
static constexpr VariableSelectionStrategy CHOOSE_MAX_DOMAIN_SIZE
static constexpr VariableSelectionStrategy CHOOSE_MIN_DOMAIN_SIZE
static constexpr DomainReductionStrategy SELECT_LOWER_HALF
static constexpr DomainReductionStrategy SELECT_RANDOM_HALF
bool has_linear_index() const
::int64_t domain(int index) const
void add_vars(::int32_t value)
RoutesConstraintProto_NodeExpressions NodeExpressions
::int32_t vars(int index) const
#define RETURN_IF_NOT_EMPTY(statement)
ABSL_FLAG(bool, cp_model_check_dependent_variables, false, "When true, check that solutions can be computed only from their " "free variables.")
absl::Status ValidateLinearExpression(const LinearExpressionProto &expression, const IdNameBiMap &variable_universe)
std::string ValidateInputCpModel(const SatParameters ¶ms, const CpModelProto &model)
bool RefIsPositive(int ref)
std::string ValidateCpModel(const CpModelProto &model, bool after_presolve)
bool SolutionIsFeasible(const CpModelProto &model, absl::Span< const int64_t > variable_values, const CpModelProto *mapping_proto, const std::vector< int > *postsolve_mapping)
bool SolutionCanBeOptimal(const CpModelProto &model, absl::Span< const int64_t > variable_values)
bool ConstraintIsFeasible(const CpModelProto &model, const ConstraintProto &constraint, absl::Span< const int64_t > variable_values)
bool DomainInProtoContains(const ProtoWithDomain &proto, int64_t value)
std::optional< std::pair< int, int > > FindOneIntersectionIfPresent(absl::Span< const Rectangle > rectangles)
bool PossibleIntegerOverflow(const CpModelProto &model, absl::Span< const int > vars, absl::Span< const int64_t > coeffs, int64_t offset, std::pair< int64_t, int64_t > *implied_domain)
std::vector< int > UsedVariables(const ConstraintProto &ct)
std::vector< int > UsedIntervals(const ConstraintProto &ct)
std::function< int64_t(const Model &)> Value(IntegerVariable v)
Domain ReadDomainFromProto(const ProtoWithDomain &proto)
absl::string_view ConstraintCaseName(ConstraintProto::ConstraintCase constraint_case)
std::optional< std::pair< int, int > > FindOneIntersectionIfPresentWithZeroArea(absl::Span< const Rectangle > rectangles)
bool ComputeAllVariablesFromPrimaryVariables(const CpModelProto &model, const VariableRelationships &relationships, std::vector< int64_t > *solution)
IndexReferences GetReferencesUsedByConstraint(const ConstraintProto &ct)
VariableRelationships ComputeVariableRelationships(const CpModelProto &model)
bool AtMinOrMaxInt64(int64_t x)
int64_t CapAdd(int64_t x, int64_t y)
Select next search node to expand Select next item_i to add this new search node to the search Generate a new search node where item_i is not in the knapsack Check validity of this new partial solution(using propagators) - If valid
int64_t CapSub(int64_t x, int64_t y)
ClosedInterval::Iterator end(ClosedInterval interval)
std::string ProtobufShortDebugString(const P &message)
int64_t CapProd(int64_t x, int64_t y)
int64_t CapAbs(int64_t v)
bool IntervalsAreSortedAndNonAdjacent(absl::Span< const ClosedInterval > intervals)
std::string ProtobufDebugString(const P &message)
ClosedInterval::Iterator begin(ClosedInterval interval)
static int input(yyscan_t yyscanner)