26#include "absl/algorithm/container.h"
27#include "absl/container/btree_map.h"
28#include "absl/container/flat_hash_map.h"
29#include "absl/container/flat_hash_set.h"
30#include "absl/log/check.h"
31#include "absl/meta/type_traits.h"
32#include "absl/strings/str_cat.h"
33#include "absl/types/span.h"
36#include "ortools/sat/cp_model.pb.h"
39#include "ortools/sat/sat_parameters.pb.h"
52#define RETURN_IF_NOT_EMPTY(statement) \
54 const std::string error_message = statement; \
55 if (!error_message.empty()) return error_message; \
58template <
typename ProtoWithDomain>
59bool DomainInProtoIsValid(
const ProtoWithDomain& proto) {
60 if (proto.domain().size() % 2)
return false;
61 std::vector<ClosedInterval> domain;
62 for (
int i = 0;
i < proto.domain_size();
i += 2) {
63 if (proto.domain(
i) > proto.domain(
i + 1))
return false;
64 domain.push_back({proto.domain(
i), proto.domain(
i + 1)});
69bool VariableReferenceIsValid(
const CpModelProto& model,
int reference) {
71 if (reference >= model.variables_size())
return false;
72 return reference >= -
static_cast<int>(model.variables_size());
79bool VariableIndexIsValid(
const CpModelProto& model,
int var) {
80 return var >= 0 && var < model.variables_size();
83bool LiteralReferenceIsValid(
const CpModelProto& model,
int reference) {
84 if (!VariableReferenceIsValid(model, reference))
return false;
85 const auto& var_proto = model.variables(
PositiveRef(reference));
86 const int64_t min_domain = var_proto.domain(0);
87 const int64_t max_domain = var_proto.domain(var_proto.domain_size() - 1);
88 return min_domain >= 0 && max_domain <= 1;
91std::string ValidateIntegerVariable(
const CpModelProto& model,
int v) {
92 const IntegerVariableProto& proto = model.variables(v);
93 if (proto.domain_size() == 0) {
94 return absl::StrCat(
"var #", v,
97 if (proto.domain_size() % 2 != 0) {
98 return absl::StrCat(
"var #", v,
" has an odd domain() size: ",
101 if (!DomainInProtoIsValid(proto)) {
102 return absl::StrCat(
"var #", v,
" has and invalid domain() format: ",
109 const int64_t lb = proto.domain(0);
110 const int64_t ub = proto.domain(proto.domain_size() - 1);
111 if (lb < -std::numeric_limits<int64_t>::max() / 2 ||
112 ub > std::numeric_limits<int64_t>::max() / 2) {
114 "var #", v,
" domain do not fall in [-kint64max / 2, kint64max / 2]. ",
120 if (lb < 0 && lb + std::numeric_limits<int64_t>::max() < ub) {
123 " has a domain that is too large, i.e. |UB - LB| overflow an int64_t: ",
130std::string ValidateVariablesUsedInConstraint(
const CpModelProto& model,
132 const ConstraintProto& ct = model.constraints(c);
134 for (
const int v : references.variables) {
135 if (!VariableReferenceIsValid(model, v)) {
136 return absl::StrCat(
"Out of bound integer variable ", v,
137 " in constraint #", c,
" : ",
141 for (
const int lit : ct.enforcement_literal()) {
142 if (!LiteralReferenceIsValid(model, lit)) {
143 return absl::StrCat(
"Invalid enforcement literal ", lit,
144 " in constraint #", c,
" : ",
148 for (
const int lit : references.literals) {
149 if (!LiteralReferenceIsValid(model, lit)) {
150 return absl::StrCat(
"Invalid literal ", lit,
" in constraint #", c,
" : ",
157std::string ValidateIntervalsUsedInConstraint(
bool after_presolve,
158 const CpModelProto& model,
160 const ConstraintProto& ct = model.constraints(c);
163 return absl::StrCat(
"Out of bound interval ",
i,
" in constraint #", c,
166 if (after_presolve &&
i >= c) {
167 return absl::StrCat(
"Interval ",
i,
" in constraint #", c,
168 " must appear before in the list of constraints :",
171 if (model.constraints(
i).constraint_case() !=
172 ConstraintProto::ConstraintCase::kInterval) {
175 " does not refer to an interval constraint. Problematic constraint #",
182int64_t MinOfRef(
const CpModelProto& model,
int ref) {
183 const IntegerVariableProto& var_proto = model.variables(
PositiveRef(ref));
185 return var_proto.domain(0);
187 return -var_proto.domain(var_proto.domain_size() - 1);
191int64_t MaxOfRef(
const CpModelProto& model,
int ref) {
192 const IntegerVariableProto& var_proto = model.variables(
PositiveRef(ref));
194 return var_proto.domain(var_proto.domain_size() - 1);
196 return -var_proto.domain(0);
200template <
class LinearExpressionProto>
201int64_t MinOfExpression(
const CpModelProto& model,
202 const LinearExpressionProto& proto) {
203 int64_t sum_min = proto.offset();
204 for (
int i = 0;
i < proto.vars_size(); ++
i) {
205 const int ref = proto.vars(
i);
206 const int64_t coeff = proto.coeffs(
i);
208 CapAdd(sum_min, coeff >= 0 ?
CapProd(MinOfRef(model, ref), coeff)
209 :
CapProd(MaxOfRef(model, ref), coeff));
215template <
class LinearExpressionProto>
216int64_t MaxOfExpression(
const CpModelProto& model,
217 const LinearExpressionProto& proto) {
218 int64_t sum_max = proto.offset();
219 for (
int i = 0;
i < proto.vars_size(); ++
i) {
220 const int ref = proto.vars(
i);
221 const int64_t coeff = proto.coeffs(
i);
223 CapAdd(sum_max, coeff >= 0 ?
CapProd(MaxOfRef(model, ref), coeff)
224 :
CapProd(MinOfRef(model, ref), coeff));
230bool ExpressionIsFixed(
const CpModelProto& model,
231 const LinearExpressionProto& expr) {
232 for (
int i = 0;
i < expr.vars_size(); ++
i) {
233 if (expr.coeffs(
i) == 0)
continue;
234 const IntegerVariableProto& var_proto = model.variables(expr.vars(
i));
235 if (var_proto.domain_size() != 2 ||
236 var_proto.domain(0) != var_proto.domain(1)) {
243int64_t ExpressionFixedValue(
const CpModelProto& model,
244 const LinearExpressionProto& expr) {
245 DCHECK(ExpressionIsFixed(model, expr));
246 return MinOfExpression(model, expr);
249int64_t IntervalSizeMax(
const CpModelProto& model,
int interval_index) {
250 DCHECK_EQ(ConstraintProto::ConstraintCase::kInterval,
251 model.constraints(interval_index).constraint_case());
252 const IntervalConstraintProto& proto =
253 model.constraints(interval_index).interval();
254 return MaxOfExpression(model, proto.size());
257Domain DomainOfRef(
const CpModelProto& model,
int ref) {
263 const LinearExpressionProto& expr) {
264 if (expr.coeffs_size() != expr.vars_size()) {
265 return absl::StrCat(
"coeffs_size() != vars_size() in linear expression: ",
270 return absl::StrCat(
"Possible overflow in linear expression: ",
273 for (
const int var : expr.vars()) {
275 return absl::StrCat(
"Invalid negated variable in linear expression: ",
282std::string ValidateAffineExpression(
const CpModelProto& model,
283 const LinearExpressionProto& expr) {
284 if (expr.vars_size() > 1) {
285 return absl::StrCat(
"expression must be affine: ",
291std::string ValidateConstantAffineExpression(
292 const CpModelProto& model,
const LinearExpressionProto& expr) {
293 if (!expr.vars().empty()) {
294 return absl::StrCat(
"expression must be constant: ",
300std::string ValidateLinearConstraint(
const CpModelProto& model,
301 const ConstraintProto& ct) {
302 if (!DomainInProtoIsValid(ct.linear())) {
303 return absl::StrCat(
"Invalid domain in constraint : ",
306 if (ct.linear().coeffs_size() != ct.linear().vars_size()) {
307 return absl::StrCat(
"coeffs_size() != vars_size() in constraint: ",
310 for (
const int var : ct.linear().vars()) {
312 return absl::StrCat(
"Invalid negated variable in linear constraint: ",
316 const LinearConstraintProto& arg = ct.linear();
318 return "Possible integer overflow in constraint: " +
324std::string ValidateIntModConstraint(
const CpModelProto& model,
325 const ConstraintProto& ct) {
326 if (ct.int_mod().exprs().size() != 2) {
327 return absl::StrCat(
"An int_mod constraint should have exactly 2 terms: ",
330 if (!ct.int_mod().has_target()) {
331 return absl::StrCat(
"An int_mod constraint should have a target: ",
339 const LinearExpressionProto mod_expr = ct.int_mod().exprs(1);
340 if (MinOfExpression(model, mod_expr) <= 0) {
342 "An int_mod must have a strictly positive modulo argument: ",
349std::string ValidateIntProdConstraint(
const CpModelProto& model,
350 const ConstraintProto& ct) {
351 if (!ct.int_prod().has_target()) {
352 return absl::StrCat(
"An int_prod constraint should have a target: ",
356 for (
const LinearExpressionProto& expr : ct.int_prod().exprs()) {
362 Domain product_domain(1);
363 for (
const LinearExpressionProto& expr : ct.int_prod().exprs()) {
364 const int64_t min_expr = MinOfExpression(model, expr);
365 const int64_t max_expr = MaxOfExpression(model, expr);
366 if (min_expr == 0 && max_expr == 0) {
371 product_domain.ContinuousMultiplicationBy({min_expr, max_expr});
374 if (product_domain.Max() <= -std ::numeric_limits<int64_t>::max() ||
375 product_domain.Min() >= std::numeric_limits<int64_t>::max()) {
376 return absl::StrCat(
"integer overflow in constraint: ",
382 if (ct.int_prod().exprs_size() > 2 &&
383 (product_domain.Max() >= std ::numeric_limits<int64_t>::max() ||
384 product_domain.Min() <= -std::numeric_limits<int64_t>::max())) {
385 return absl::StrCat(
"Potential integer overflow in constraint: ",
392std::string ValidateIntDivConstraint(
const CpModelProto& model,
393 const ConstraintProto& ct) {
394 if (ct.int_div().exprs().size() != 2) {
395 return absl::StrCat(
"An int_div constraint should have exactly 2 terms: ",
398 if (!ct.int_div().has_target()) {
399 return absl::StrCat(
"An int_div constraint should have a target: ",
407 const LinearExpressionProto& denom = ct.int_div().exprs(1);
408 const int64_t offset = denom.offset();
409 if (ExpressionIsFixed(model, denom)) {
410 if (ExpressionFixedValue(model, denom) == 0) {
414 const int64_t coeff = denom.coeffs(0);
416 const int64_t inverse_of_zero = -offset / coeff;
417 if (inverse_of_zero * coeff + offset == 0 &&
418 DomainOfRef(model, denom.vars(0)).Contains(inverse_of_zero)) {
419 return absl::StrCat(
"The domain of the divisor cannot contain 0: ",
426void AppendToOverflowValidator(
const LinearExpressionProto&
input,
427 LinearExpressionProto* output,
429 output->mutable_vars()->Add(
input.vars().begin(),
input.vars().end());
430 for (
const int64_t coeff :
input.coeffs()) {
431 output->add_coeffs(coeff * prod);
437 CapAdd(std::abs(output->offset()), std::abs(
input.offset())));
440std::string ValidateElementConstraint(
const CpModelProto& model,
441 const ConstraintProto& ct) {
442 const ElementConstraintProto& element = ct.element();
444 const bool in_linear_format = element.has_linear_index() ||
445 element.has_linear_target() ||
446 !element.exprs().empty();
447 const bool in_legacy_format =
448 !element.vars().empty() || element.index() != 0 || element.target() != 0;
449 if (in_linear_format && in_legacy_format) {
451 "Inconsistent element with both legacy and new format defined",
455 if (element.vars().empty() && element.exprs().empty()) {
456 return "Empty element constraint is interpreted as vars[], thus invalid "
457 "since the index will be out of bounds.";
462 if (!element.vars().empty()) {
463 LinearExpressionProto overflow_detection;
464 overflow_detection.add_vars(element.target());
465 overflow_detection.add_coeffs(1);
466 overflow_detection.add_vars( 0);
467 overflow_detection.add_coeffs(-1);
468 for (
const int ref : element.vars()) {
469 if (!VariableIndexIsValid(model, ref)) {
470 return absl::StrCat(
"Element vars must be valid variables: ",
473 overflow_detection.set_vars(1, ref);
475 overflow_detection.coeffs())) {
477 "Domain of the variables involved in element constraint may cause "
484 if (in_legacy_format) {
485 if (!VariableIndexIsValid(model, element.index()) ||
486 !VariableIndexIsValid(model, element.target())) {
488 "Element constraint index and target must valid variables: ",
493 if (in_linear_format) {
495 ValidateAffineExpression(model, element.linear_index()));
497 ValidateAffineExpression(model, element.linear_target()));
498 for (
const LinearExpressionProto& expr : element.exprs()) {
500 LinearExpressionProto overflow_detection = ct.element().linear_target();
501 AppendToOverflowValidator(expr, &overflow_detection, -1);
502 overflow_detection.set_offset(overflow_detection.offset() -
505 overflow_detection.coeffs(),
506 overflow_detection.offset())) {
508 "Domain of the variables involved in element constraint may cause "
517std::string ValidateTableConstraint(
const CpModelProto& model,
518 const ConstraintProto& ct) {
519 const TableConstraintProto& arg = ct.table();
520 if (!arg.vars().empty() && !arg.exprs().empty()) {
522 "Inconsistent table with both legacy and new format defined: ",
525 if (arg.vars().empty() && arg.exprs().empty() && !arg.values().empty()) {
527 "Inconsistent table empty expressions and non-empty tuples: ",
530 if (arg.vars().empty() && arg.exprs().empty() && arg.values().empty()) {
533 const int arity = arg.vars().empty() ? arg.exprs().size() : arg.vars().size();
534 if (arg.values().size() % arity != 0) {
536 "The flat encoding of a table constraint tuples must be a multiple of "
537 "the number of expressions: ",
540 for (
const int var : arg.vars()) {
541 if (!VariableIndexIsValid(model, var)) {
542 return absl::StrCat(
"Invalid variable index in table constraint: ", var);
545 for (
const LinearExpressionProto& expr : arg.exprs()) {
551std::string ValidateAutomatonConstraint(
const CpModelProto& model,
552 const ConstraintProto& ct) {
553 const AutomatonConstraintProto& automaton = ct.automaton();
554 if (!automaton.vars().empty() && !automaton.exprs().empty()) {
556 "Inconsistent automaton with both legacy and new format defined: ",
559 const int num_transistions = automaton.transition_tail().size();
560 if (num_transistions != automaton.transition_head().size() ||
561 num_transistions != automaton.transition_label().size()) {
563 "The transitions repeated fields must have the same size: ",
566 for (
const int var : automaton.vars()) {
567 if (!VariableIndexIsValid(model, var)) {
568 return absl::StrCat(
"Invalid variable index in automaton constraint: ",
572 for (
const LinearExpressionProto& expr : automaton.exprs()) {
575 absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> tail_label_to_head;
576 for (
int i = 0;
i < num_transistions; ++
i) {
577 const int64_t tail = automaton.transition_tail(
i);
578 const int64_t head = automaton.transition_head(
i);
579 const int64_t label = automaton.transition_label(
i);
580 if (label <= std::numeric_limits<int64_t>::min() + 1 ||
581 label == std::numeric_limits<int64_t>::max()) {
582 return absl::StrCat(
"labels in the automaton constraint are too big: ",
585 const auto [it, inserted] =
586 tail_label_to_head.insert({{tail, label}, head});
588 if (it->second == head) {
589 return absl::StrCat(
"automaton: duplicate transition ", tail,
" --(",
590 label,
")--> ", head);
592 return absl::StrCat(
"automaton: incompatible transitions ", tail,
593 " --(", label,
")--> ", head,
" and ", tail,
" --(",
594 label,
")--> ", it->second);
601template <
typename GraphProto>
602std::string ValidateGraphInput(
bool is_route,
const GraphProto& graph) {
603 const int size = graph.tails().size();
604 if (graph.heads().size() != size || graph.literals().size() != size) {
605 return absl::StrCat(
"Wrong field sizes in graph: ",
610 absl::flat_hash_set<int> self_loops;
611 for (
int i = 0;
i < size; ++
i) {
612 if (graph.heads(
i) != graph.tails(
i))
continue;
613 if (!self_loops.insert(graph.heads(
i)).second) {
615 "Circuit/Route constraint contains multiple self-loop involving "
619 if (is_route && graph.tails(
i) == 0) {
621 "A route constraint cannot have a self-loop on the depot (node 0)");
628std::string ValidateRoutesConstraint(
const ConstraintProto& ct) {
630 absl::flat_hash_set<int> nodes;
631 for (
const int node : ct.routes().tails()) {
633 return "All node in a route constraint must be in [0, num_nodes)";
636 max_node = std::max(max_node, node);
638 for (
const int node : ct.routes().heads()) {
640 return "All node in a route constraint must be in [0, num_nodes)";
643 max_node = std::max(max_node, node);
645 if (!nodes.empty() && max_node != nodes.size() - 1) {
647 "All nodes in a route constraint must have incident arcs");
651 if (!ct.routes().demands().empty() &&
652 ct.routes().demands().size() != nodes.size()) {
654 "If the demands fields is set, it must be of size num_nodes:",
658 return ValidateGraphInput(
true, ct.routes());
661std::string ValidateIntervalConstraint(
const CpModelProto& model,
662 const ConstraintProto& ct) {
663 if (ct.enforcement_literal().size() > 1) {
665 "Interval with more than one enforcement literals are currently not "
669 const IntervalConstraintProto& arg = ct.interval();
671 if (!arg.has_start()) {
672 return absl::StrCat(
"Interval must have a start expression: ",
675 if (!arg.has_size()) {
676 return absl::StrCat(
"Interval must have a size expression: ",
679 if (!arg.has_end()) {
680 return absl::StrCat(
"Interval must have a end expression: ",
684 LinearExpressionProto for_overflow_validation;
685 if (arg.start().vars_size() > 1) {
686 return "Interval with a start expression containing more than one "
687 "variable are currently not supported.";
690 AppendToOverflowValidator(arg.start(), &for_overflow_validation);
691 if (arg.size().vars_size() > 1) {
692 return "Interval with a size expression containing more than one "
693 "variable are currently not supported.";
696 if (ct.enforcement_literal().empty() &&
697 MinOfExpression(model, arg.size()) < 0) {
699 "The size of a performed interval must be >= 0 in constraint: ",
702 AppendToOverflowValidator(arg.size(), &for_overflow_validation);
703 if (arg.end().vars_size() > 1) {
704 return "Interval with a end expression containing more than one "
705 "variable are currently not supported.";
708 AppendToOverflowValidator(arg.end(), &for_overflow_validation, -1);
711 for_overflow_validation.coeffs(),
712 for_overflow_validation.offset())) {
713 return absl::StrCat(
"Possible overflow in interval: ",
720std::string ValidateCumulativeConstraint(
const CpModelProto& model,
721 const ConstraintProto& ct) {
722 if (ct.cumulative().intervals_size() != ct.cumulative().demands_size()) {
723 return absl::StrCat(
"intervals_size() != demands_size() in constraint: ",
729 for (
const LinearExpressionProto& demand : ct.cumulative().demands()) {
733 for (
const LinearExpressionProto& demand_expr : ct.cumulative().demands()) {
734 if (MinOfExpression(model, demand_expr) < 0) {
739 if (demand_expr.vars_size() > 1) {
741 " must be affine or constant in constraint: ",
745 if (ct.cumulative().capacity().vars_size() > 1) {
751 int64_t sum_max_demands = 0;
752 for (
const LinearExpressionProto& demand_expr : ct.cumulative().demands()) {
753 const int64_t demand_max = MaxOfExpression(model, demand_expr);
754 DCHECK_GE(demand_max, 0);
755 sum_max_demands =
CapAdd(sum_max_demands, demand_max);
756 if (sum_max_demands == std::numeric_limits<int64_t>::max()) {
757 return "The sum of max demands do not fit on an int64_t in constraint: " +
765std::string ValidateNoOverlap2DConstraint(
const CpModelProto& model,
766 const ConstraintProto& ct) {
767 const int size_x = ct.no_overlap_2d().x_intervals().size();
768 const int size_y = ct.no_overlap_2d().y_intervals().size();
769 if (size_x != size_y) {
770 return absl::StrCat(
"The two lists of intervals must have the same size: ",
775 int64_t sum_max_areas = 0;
776 for (
int i = 0;
i < ct.no_overlap_2d().x_intervals().size(); ++
i) {
777 const int64_t max_size_x =
778 IntervalSizeMax(model, ct.no_overlap_2d().x_intervals(
i));
779 const int64_t max_size_y =
780 IntervalSizeMax(model, ct.no_overlap_2d().y_intervals(
i));
781 sum_max_areas =
CapAdd(sum_max_areas,
CapProd(max_size_x, max_size_y));
782 if (sum_max_areas == std::numeric_limits<int64_t>::max()) {
783 return "Integer overflow when summing all areas in "
791std::string ValidateReservoirConstraint(
const CpModelProto& model,
792 const ConstraintProto& ct) {
793 if (ct.enforcement_literal_size() > 0) {
794 return "Reservoir does not support enforcement literals.";
796 if (ct.reservoir().time_exprs().size() !=
797 ct.reservoir().level_changes().size()) {
799 "time_exprs and level_changes fields must be of the same size: ",
802 for (
const LinearExpressionProto& expr : ct.reservoir().time_exprs()) {
805 if (MinOfExpression(model, expr) <=
806 -std::numeric_limits<int64_t>::max() / 4 ||
807 MaxOfExpression(model, expr) >=
808 std::numeric_limits<int64_t>::max() / 4) {
810 "Potential integer overflow on time_expr of a reservoir: ",
814 for (
const LinearExpressionProto& expr : ct.reservoir().level_changes()) {
817 if (ct.reservoir().min_level() > 0) {
819 "The min level of a reservoir must be <= 0. Please use fixed events to "
820 "setup initial state: ",
823 if (ct.reservoir().max_level() < 0) {
825 "The max level of a reservoir must be >= 0. Please use fixed events to "
826 "setup initial state: ",
831 for (
const LinearExpressionProto& demand : ct.reservoir().level_changes()) {
833 const int64_t demand_min = MinOfExpression(model, demand);
834 const int64_t demand_max = MaxOfExpression(model, demand);
836 if (sum_abs == std::numeric_limits<int64_t>::max()) {
837 return "Possible integer overflow in constraint: " +
841 if (ct.reservoir().active_literals_size() > 0 &&
842 ct.reservoir().active_literals_size() !=
843 ct.reservoir().time_exprs_size()) {
844 return "Wrong array length of active_literals variables";
846 if (ct.reservoir().level_changes_size() > 0 &&
847 ct.reservoir().level_changes_size() != ct.reservoir().time_exprs_size()) {
848 return "Wrong array length of level_changes variables";
853std::string ValidateObjective(
const CpModelProto& model,
854 const CpObjectiveProto& obj) {
855 if (!DomainInProtoIsValid(obj)) {
856 return absl::StrCat(
"The objective has and invalid domain() format: ",
859 if (obj.vars().size() != obj.coeffs().size()) {
860 return absl::StrCat(
"vars and coeffs size do not match in objective: ",
863 for (
const int v : obj.vars()) {
864 if (!VariableReferenceIsValid(model, v)) {
865 return absl::StrCat(
"Out of bound integer variable ", v,
870 return "Possible integer overflow in objective: " +
876std::string ValidateFloatingPointObjective(
double max_valid_magnitude,
877 const CpModelProto& model,
878 const FloatObjectiveProto& obj) {
879 if (obj.vars().size() != obj.coeffs().size()) {
880 return absl::StrCat(
"vars and coeffs size do not match in objective: ",
883 for (
const int v : obj.vars()) {
884 if (!VariableIndexIsValid(model, v)) {
885 return absl::StrCat(
"Out of bound integer variable ", v,
889 for (
const double coeff : obj.coeffs()) {
890 if (!std::isfinite(coeff)) {
891 return absl::StrCat(
"Coefficients must be finite in objective: ",
894 if (std::abs(coeff) > max_valid_magnitude) {
896 "Coefficients larger than params.mip_max_valid_magnitude() [value = ",
901 if (!std::isfinite(obj.offset())) {
902 return absl::StrCat(
"Offset must be finite in objective: ",
908std::string ValidateSearchStrategies(
const CpModelProto& model) {
909 for (
const DecisionStrategyProto& strategy : model.search_strategy()) {
910 const int vss = strategy.variable_selection_strategy();
911 if (vss != DecisionStrategyProto::CHOOSE_FIRST &&
912 vss != DecisionStrategyProto::CHOOSE_LOWEST_MIN &&
913 vss != DecisionStrategyProto::CHOOSE_HIGHEST_MAX &&
914 vss != DecisionStrategyProto::CHOOSE_MIN_DOMAIN_SIZE &&
915 vss != DecisionStrategyProto::CHOOSE_MAX_DOMAIN_SIZE) {
917 "Unknown or unsupported variable_selection_strategy: ", vss);
919 const int drs = strategy.domain_reduction_strategy();
920 if (drs != DecisionStrategyProto::SELECT_MIN_VALUE &&
921 drs != DecisionStrategyProto::SELECT_MAX_VALUE &&
922 drs != DecisionStrategyProto::SELECT_LOWER_HALF &&
923 drs != DecisionStrategyProto::SELECT_UPPER_HALF &&
924 drs != DecisionStrategyProto::SELECT_MEDIAN_VALUE &&
925 drs != DecisionStrategyProto::SELECT_RANDOM_HALF) {
926 return absl::StrCat(
"Unknown or unsupported domain_reduction_strategy: ",
929 if (!strategy.variables().empty() && !strategy.exprs().empty()) {
930 return absl::StrCat(
"Strategy can't have both variables and exprs: ",
933 for (
const int ref : strategy.variables()) {
934 if (!VariableReferenceIsValid(model, ref)) {
935 return absl::StrCat(
"Invalid variable reference in strategy: ",
938 if (drs == DecisionStrategyProto::SELECT_MEDIAN_VALUE &&
941 return absl::StrCat(
"Variable #",
PositiveRef(ref),
942 " has a domain too large to be used in a"
943 " SELECT_MEDIAN_VALUE value selection strategy");
946 for (
const LinearExpressionProto& expr : strategy.exprs()) {
947 for (
const int var : expr.vars()) {
948 if (!VariableReferenceIsValid(model, var)) {
949 return absl::StrCat(
"Invalid variable reference in strategy: ",
953 if (!ValidateAffineExpression(model, expr).empty()) {
954 return absl::StrCat(
"Invalid affine expr in strategy: ",
957 if (drs == DecisionStrategyProto::SELECT_MEDIAN_VALUE) {
958 for (
const int var : expr.vars()) {
962 " has a domain too large to be used in a"
963 " SELECT_MEDIAN_VALUE value selection strategy");
972std::string ValidateSolutionHint(
const CpModelProto& model) {
973 if (!model.has_solution_hint())
return "";
974 const auto& hint = model.solution_hint();
975 if (hint.vars().size() != hint.values().size()) {
976 return "Invalid solution hint: vars and values do not have the same size.";
978 for (
const int var : hint.vars()) {
979 if (!VariableIndexIsValid(model, var)) {
980 return absl::StrCat(
"Invalid variable in solution hint: ", var);
985 absl::flat_hash_set<int> indices;
986 for (
const int var : hint.vars()) {
987 const auto insert = indices.insert(
PositiveRef(var));
988 if (!insert.second) {
990 "The solution hint contains duplicate variables like the variable "
997 for (
const int64_t value : hint.values()) {
998 if (value == std::numeric_limits<int64_t>::min() ||
999 value == std::numeric_limits<int64_t>::max()) {
1000 return "The solution hint cannot contains the INT_MIN or INT_MAX values.";
1010 absl::Span<const int> vars,
1011 absl::Span<const int64_t> coeffs, int64_t offset) {
1012 if (offset == std::numeric_limits<int64_t>::min())
return true;
1013 int64_t sum_min = -std::abs(offset);
1014 int64_t sum_max = +std::abs(offset);
1015 for (
int i = 0;
i < vars.size(); ++
i) {
1016 const int ref = vars[
i];
1017 const auto& var_proto = model.variables(
PositiveRef(ref));
1018 const int64_t min_domain = var_proto.domain(0);
1019 const int64_t max_domain = var_proto.domain(var_proto.domain_size() - 1);
1020 if (coeffs[
i] == std::numeric_limits<int64_t>::min())
return true;
1022 const int64_t prod1 =
CapProd(min_domain, coeff);
1023 const int64_t prod2 =
CapProd(max_domain, coeff);
1028 sum_min =
CapAdd(sum_min, std::min(int64_t{0}, std::min(prod1, prod2)));
1029 sum_max =
CapAdd(sum_max, std::max(int64_t{0}, std::max(prod1, prod2)));
1030 for (
const int64_t v : {prod1, prod2, sum_min, sum_max}) {
1041 if (sum_min < -std::numeric_limits<int64_t>::max() / 2)
return true;
1042 if (sum_max > std::numeric_limits<int64_t>::max() / 2)
return true;
1046std::string
ValidateCpModel(
const CpModelProto& model,
bool after_presolve) {
1047 int64_t int128_overflow = 0;
1048 for (
int v = 0; v < model.variables_size(); ++v) {
1051 const auto& domain = model.variables(v).domain();
1052 const int64_t min = domain[0];
1053 const int64_t max = domain[domain.size() - 1];
1054 int128_overflow =
CapAdd(
1055 int128_overflow, std::max({std::abs(min), std::abs(max), max - min}));
1061 if (int128_overflow == std::numeric_limits<int64_t>::max()) {
1062 return "The sum of all variable domains do not fit on an int64_t. This is "
1063 "needed to prevent overflows.";
1068 std::vector<int> constraints_using_intervals;
1070 for (
int c = 0; c < model.constraints_size(); ++c) {
1075 bool support_enforcement =
false;
1078 const ConstraintProto& ct = model.constraints(c);
1079 switch (ct.constraint_case()) {
1080 case ConstraintProto::ConstraintCase::kBoolOr:
1081 support_enforcement =
true;
1083 case ConstraintProto::ConstraintCase::kBoolAnd:
1084 support_enforcement =
true;
1086 case ConstraintProto::ConstraintCase::kLinear:
1087 support_enforcement =
true;
1090 case ConstraintProto::ConstraintCase::kLinMax: {
1092 ValidateLinearExpression(model, ct.lin_max().target()));
1093 for (
const LinearExpressionProto& expr : ct.lin_max().exprs()) {
1098 case ConstraintProto::ConstraintCase::kIntProd:
1101 case ConstraintProto::ConstraintCase::kIntDiv:
1104 case ConstraintProto::ConstraintCase::kIntMod:
1107 case ConstraintProto::ConstraintCase::kInverse:
1108 if (ct.inverse().f_direct().size() != ct.inverse().f_inverse().size()) {
1109 return absl::StrCat(
"Non-matching fields size in inverse: ",
1113 case ConstraintProto::ConstraintCase::kAllDiff:
1114 for (
const LinearExpressionProto& expr : ct.all_diff().exprs()) {
1118 case ConstraintProto::ConstraintCase::kElement:
1121 case ConstraintProto::ConstraintCase::kTable:
1123 support_enforcement =
true;
1125 case ConstraintProto::ConstraintCase::kAutomaton:
1128 case ConstraintProto::ConstraintCase::kCircuit:
1130 ValidateGraphInput(
false, ct.circuit()));
1132 case ConstraintProto::ConstraintCase::kRoutes:
1135 case ConstraintProto::ConstraintCase::kInterval:
1137 support_enforcement =
true;
1139 case ConstraintProto::ConstraintCase::kCumulative:
1140 constraints_using_intervals.push_back(c);
1142 case ConstraintProto::ConstraintCase::kNoOverlap:
1143 constraints_using_intervals.push_back(c);
1145 case ConstraintProto::ConstraintCase::kNoOverlap2D:
1146 constraints_using_intervals.push_back(c);
1148 case ConstraintProto::ConstraintCase::kReservoir:
1151 case ConstraintProto::ConstraintCase::kDummyConstraint:
1152 return "The dummy constraint should never appear in a model.";
1160 if (!support_enforcement && !ct.enforcement_literal().empty()) {
1161 for (
const int ref : ct.enforcement_literal()) {
1164 if (domain.Size() != 1) {
1165 return absl::StrCat(
1166 "Enforcement literal not supported in constraint: ",
1174 for (
const int c : constraints_using_intervals) {
1176 ValidateIntervalsUsedInConstraint(after_presolve, model, c));
1178 const ConstraintProto& ct = model.constraints(c);
1179 switch (ct.constraint_case()) {
1180 case ConstraintProto::ConstraintCase::kCumulative:
1183 case ConstraintProto::ConstraintCase::kNoOverlap:
1185 case ConstraintProto::ConstraintCase::kNoOverlap2D:
1189 LOG(DFATAL) <<
"Shouldn't be here";
1193 if (model.has_objective() && model.has_floating_point_objective()) {
1194 return "A model cannot have both an objective and a floating point "
1197 if (model.has_objective()) {
1200 if (model.objective().integer_scaling_factor() != 0 ||
1201 model.objective().integer_before_offset() != 0 ||
1202 model.objective().integer_after_offset() != 0) {
1204 if (model.objective().domain().empty()) {
1205 return absl::StrCat(
1206 "Objective integer scaling or offset is set without an objective "
1212 bool overflow =
false;
1213 for (
const int64_t v : model.objective().domain()) {
1214 int64_t t =
CapAdd(v, model.objective().integer_before_offset());
1219 t =
CapProd(t, model.objective().integer_scaling_factor());
1224 t =
CapAdd(t, model.objective().integer_after_offset());
1231 return absl::StrCat(
1232 "Internal fields related to the postsolve of the integer objective "
1233 "are causing a potential integer overflow: ",
1240 for (
const int ref : model.assumptions()) {
1241 if (!LiteralReferenceIsValid(model, ref)) {
1242 return absl::StrCat(
"Invalid literal reference ", ref,
1243 " in the 'assumptions' field.");
1250 const CpModelProto& model) {
1252 if (model.has_floating_point_objective()) {
1254 ValidateFloatingPointObjective(params.mip_max_valid_magnitude(), model,
1255 model.floating_point_objective()));
1260#undef RETURN_IF_NOT_EMPTY
1268class ConstraintChecker {
1270 explicit ConstraintChecker(absl::Span<const int64_t> variable_values)
1271 : variable_values_(variable_values.begin(), variable_values.end()) {}
1273 bool LiteralIsTrue(
int l)
const {
1274 if (l >= 0)
return variable_values_[l] != 0;
1275 return variable_values_[-l - 1] == 0;
1278 bool LiteralIsFalse(
int l)
const {
return !LiteralIsTrue(l); }
1280 int64_t
Value(
int var)
const {
1281 if (var >= 0)
return variable_values_[var];
1282 return -variable_values_[-var - 1];
1285 bool ConstraintIsEnforced(
const ConstraintProto& ct) {
1286 for (
const int lit : ct.enforcement_literal()) {
1287 if (LiteralIsFalse(lit))
return false;
1292 bool BoolOrConstraintIsFeasible(
const ConstraintProto& ct) {
1293 for (
const int lit : ct.bool_or().literals()) {
1294 if (LiteralIsTrue(lit))
return true;
1299 bool BoolAndConstraintIsFeasible(
const ConstraintProto& ct) {
1300 for (
const int lit : ct.bool_and().literals()) {
1301 if (LiteralIsFalse(lit))
return false;
1306 bool AtMostOneConstraintIsFeasible(
const ConstraintProto& ct) {
1307 int num_true_literals = 0;
1308 for (
const int lit : ct.at_most_one().literals()) {
1309 if (LiteralIsTrue(lit)) ++num_true_literals;
1311 return num_true_literals <= 1;
1314 bool ExactlyOneConstraintIsFeasible(
const ConstraintProto& ct) {
1315 int num_true_literals = 0;
1316 for (
const int lit : ct.exactly_one().literals()) {
1317 if (LiteralIsTrue(lit)) ++num_true_literals;
1319 return num_true_literals == 1;
1322 bool BoolXorConstraintIsFeasible(
const ConstraintProto& ct) {
1324 for (
const int lit : ct.bool_xor().literals()) {
1325 sum ^= LiteralIsTrue(lit) ? 1 : 0;
1330 bool LinearConstraintIsFeasible(
const ConstraintProto& ct) {
1332 const int num_variables = ct.linear().coeffs_size();
1333 const int*
const vars = ct.linear().vars().data();
1334 const int64_t*
const coeffs = ct.linear().coeffs().data();
1335 for (
int i = 0;
i < num_variables; ++
i) {
1338 sum += variable_values_[vars[
i]] * coeffs[
i];
1342 VLOG(1) <<
"Activity: " << sum;
1347 int64_t LinearExpressionValue(
const LinearExpressionProto& expr)
const {
1348 int64_t sum = expr.offset();
1349 const int num_variables = expr.vars_size();
1350 for (
int i = 0;
i < num_variables; ++
i) {
1351 sum +=
Value(expr.vars(
i)) * expr.coeffs(
i);
1356 bool LinMaxConstraintIsFeasible(
const ConstraintProto& ct) {
1357 const int64_t max = LinearExpressionValue(ct.lin_max().target());
1358 int64_t actual_max = std::numeric_limits<int64_t>::min();
1359 for (
int i = 0;
i < ct.lin_max().exprs_size(); ++
i) {
1360 const int64_t expr_value = LinearExpressionValue(ct.lin_max().exprs(
i));
1361 actual_max = std::max(actual_max, expr_value);
1363 return max == actual_max;
1366 bool IntProdConstraintIsFeasible(
const ConstraintProto& ct) {
1367 const int64_t prod = LinearExpressionValue(ct.int_prod().target());
1368 int64_t actual_prod = 1;
1369 for (
const LinearExpressionProto& expr : ct.int_prod().exprs()) {
1370 actual_prod =
CapProd(actual_prod, LinearExpressionValue(expr));
1372 return prod == actual_prod;
1375 bool IntDivConstraintIsFeasible(
const ConstraintProto& ct) {
1376 return LinearExpressionValue(ct.int_div().target()) ==
1377 LinearExpressionValue(ct.int_div().exprs(0)) /
1378 LinearExpressionValue(ct.int_div().exprs(1));
1381 bool IntModConstraintIsFeasible(
const ConstraintProto& ct) {
1382 return LinearExpressionValue(ct.int_mod().target()) ==
1383 LinearExpressionValue(ct.int_mod().exprs(0)) %
1384 LinearExpressionValue(ct.int_mod().exprs(1));
1387 bool AllDiffConstraintIsFeasible(
const ConstraintProto& ct) {
1388 absl::flat_hash_set<int64_t> values;
1389 for (
const LinearExpressionProto& expr : ct.all_diff().exprs()) {
1390 const int64_t value = LinearExpressionValue(expr);
1391 const auto [it, inserted] = values.insert(value);
1392 if (!inserted)
return false;
1397 int64_t IntervalStart(
const IntervalConstraintProto& interval)
const {
1398 return LinearExpressionValue(interval.start());
1401 int64_t IntervalSize(
const IntervalConstraintProto& interval)
const {
1402 return LinearExpressionValue(interval.size());
1405 int64_t IntervalEnd(
const IntervalConstraintProto& interval)
const {
1406 return LinearExpressionValue(interval.end());
1409 bool IntervalConstraintIsFeasible(
const ConstraintProto& ct) {
1410 const int64_t size = IntervalSize(ct.interval());
1411 if (size < 0)
return false;
1412 return IntervalStart(ct.interval()) + size == IntervalEnd(ct.interval());
1415 bool NoOverlapConstraintIsFeasible(
const CpModelProto& model,
1416 const ConstraintProto& ct) {
1417 std::vector<std::pair<int64_t, int64_t>> start_durations_pairs;
1418 for (
const int i : ct.no_overlap().intervals()) {
1419 const ConstraintProto& interval_constraint = model.constraints(
i);
1420 if (ConstraintIsEnforced(interval_constraint)) {
1421 const IntervalConstraintProto& interval =
1422 interval_constraint.interval();
1423 start_durations_pairs.push_back(
1424 {IntervalStart(interval), IntervalSize(interval)});
1427 std::sort(start_durations_pairs.begin(), start_durations_pairs.end());
1428 int64_t previous_end = std::numeric_limits<int64_t>::min();
1429 for (
const auto& pair : start_durations_pairs) {
1430 if (pair.first < previous_end)
return false;
1431 previous_end = pair.first + pair.second;
1436 bool NoOverlap2DConstraintIsFeasible(
const CpModelProto& model,
1437 const ConstraintProto& ct) {
1438 const auto& arg = ct.no_overlap_2d();
1441 bool has_zero_sizes =
false;
1442 std::vector<Rectangle> enforced_rectangles;
1444 const int num_intervals = arg.x_intervals_size();
1445 CHECK_EQ(arg.y_intervals_size(), num_intervals);
1446 for (
int i = 0;
i < num_intervals; ++
i) {
1447 const ConstraintProto&
x = model.constraints(arg.x_intervals(
i));
1448 const ConstraintProto& y = model.constraints(arg.y_intervals(
i));
1449 if (ConstraintIsEnforced(x) && ConstraintIsEnforced(y)) {
1450 enforced_rectangles.push_back({.x_min = IntervalStart(
x.interval()),
1451 .x_max = IntervalEnd(
x.interval()),
1452 .y_min = IntervalStart(y.interval()),
1453 .y_max = IntervalEnd(y.interval())});
1454 const auto& rect = enforced_rectangles.back();
1455 if (rect.x_min == rect.x_max || rect.y_min == rect.y_max) {
1456 has_zero_sizes =
true;
1462 std::optional<std::pair<int, int>> one_intersection;
1463 absl::c_stable_sort(enforced_rectangles,
1464 [](
const Rectangle& a,
const Rectangle&
b) {
1465 return a.x_min <
b.x_min;
1467 if (has_zero_sizes) {
1474 if (one_intersection != std::nullopt) {
1475 VLOG(1) <<
"Rectangles " << one_intersection->first <<
"("
1476 << enforced_rectangles[one_intersection->first] <<
") and "
1477 << one_intersection->second <<
"("
1478 << enforced_rectangles[one_intersection->second]
1479 <<
") are not disjoint.";
1485 bool CumulativeConstraintIsFeasible(
const CpModelProto& model,
1486 const ConstraintProto& ct) {
1487 const int64_t capacity = LinearExpressionValue(ct.cumulative().capacity());
1488 if (capacity < 0)
return false;
1489 const int num_intervals = ct.cumulative().intervals_size();
1490 std::vector<std::pair<int64_t, int64_t>> events;
1491 for (
int i = 0;
i < num_intervals; ++
i) {
1492 const ConstraintProto& interval_constraint =
1493 model.constraints(ct.cumulative().intervals(
i));
1494 if (!ConstraintIsEnforced(interval_constraint))
continue;
1495 const int64_t start = IntervalStart(interval_constraint.interval());
1496 const int64_t duration = IntervalSize(interval_constraint.interval());
1497 const int64_t demand = LinearExpressionValue(ct.cumulative().demands(
i));
1498 if (duration == 0 || demand == 0)
continue;
1499 events.emplace_back(start, demand);
1500 events.emplace_back(start + duration, -demand);
1502 if (events.empty())
return true;
1504 std::sort(events.begin(), events.end());
1507 int64_t current_load = 0;
1508 for (
const auto& [time, delta] : events) {
1509 current_load += delta;
1510 if (current_load > capacity) {
1511 VLOG(1) <<
"Cumulative constraint: load: " << current_load
1512 <<
" capacity: " << capacity <<
" time: " << time;
1516 DCHECK_EQ(current_load, 0);
1520 bool ElementConstraintIsFeasible(
const ConstraintProto& ct) {
1521 if (!ct.element().vars().empty()) {
1522 const int index =
Value(ct.element().index());
1523 if (index < 0 || index >= ct.element().vars_size())
return false;
1524 return Value(ct.element().vars(index)) ==
Value(ct.element().target());
1527 if (!ct.element().exprs().empty()) {
1528 const int index = LinearExpressionValue(ct.element().linear_index());
1529 if (index < 0 || index >= ct.element().exprs_size())
return false;
1530 return LinearExpressionValue(ct.element().exprs(index)) ==
1531 LinearExpressionValue(ct.element().linear_target());
1537 bool TableConstraintIsFeasible(
const ConstraintProto& ct) {
1539 if (ct.table().exprs().empty()) {
1540 for (
int i = 0;
i < ct.table().vars_size(); ++
i) {
1544 for (
int i = 0;
i < ct.table().exprs_size(); ++
i) {
1545 solution.push_back(LinearExpressionValue(ct.table().exprs(
i)));
1553 for (
int row_start = 0; row_start < ct.table().values_size();
1554 row_start += size) {
1556 while (
solution[
i] == ct.table().values(row_start +
i)) {
1558 if (
i == size)
return !ct.table().negated();
1561 return ct.table().negated();
1564 bool AutomatonConstraintIsFeasible(
const ConstraintProto& ct) {
1566 const AutomatonConstraintProto& automaton = ct.automaton();
1567 absl::flat_hash_map<std::pair<int64_t, int64_t>, int64_t> transition_map;
1568 const int num_transitions = automaton.transition_tail().size();
1569 for (
int i = 0;
i < num_transitions; ++
i) {
1570 transition_map[{automaton.transition_tail(
i),
1571 automaton.transition_label(
i)}] =
1572 automaton.transition_head(
i);
1576 int64_t current_state = automaton.starting_state();
1577 const int num_steps =
1578 std::max(automaton.vars_size(), automaton.exprs_size());
1579 for (
int i = 0;
i < num_steps; ++
i) {
1580 const std::pair<int64_t, int64_t> key = {
1581 current_state, automaton.vars().empty()
1582 ? LinearExpressionValue(automaton.exprs(
i))
1583 :
Value(automaton.vars(
i))};
1584 if (!transition_map.contains(key)) {
1587 current_state = transition_map[key];
1591 for (
const int64_t
final : automaton.final_states()) {
1592 if (current_state ==
final)
return true;
1597 bool CircuitConstraintIsFeasible(
const ConstraintProto& ct) {
1600 const int num_arcs = ct.circuit().tails_size();
1601 absl::flat_hash_set<int> nodes;
1602 absl::flat_hash_map<int, int> nexts;
1603 for (
int i = 0;
i < num_arcs; ++
i) {
1604 const int tail = ct.circuit().tails(
i);
1605 const int head = ct.circuit().heads(
i);
1608 if (LiteralIsFalse(ct.circuit().literals(
i)))
continue;
1609 if (nexts.contains(tail)) {
1610 VLOG(1) <<
"Node with two outgoing arcs";
1619 for (
const int node : nodes) {
1620 if (!nexts.contains(node)) {
1621 VLOG(1) <<
"Node with no next: " << node;
1624 if (nexts[node] == node)
continue;
1628 if (cycle_size == 0)
return true;
1632 absl::flat_hash_set<int> visited;
1633 int current = in_cycle;
1634 int num_visited = 0;
1635 while (!visited.contains(current)) {
1637 visited.insert(current);
1638 current = nexts[current];
1640 if (current != in_cycle) {
1641 VLOG(1) <<
"Rho shape";
1644 if (num_visited != cycle_size) {
1645 VLOG(1) <<
"More than one cycle";
1647 return num_visited == cycle_size;
1650 bool RoutesConstraintIsFeasible(
const ConstraintProto& ct) {
1651 const int num_arcs = ct.routes().tails_size();
1652 int num_used_arcs = 0;
1653 int num_self_arcs = 0;
1657 for (
int i = 0;
i < num_arcs; ++
i) {
1658 num_nodes = std::max(num_nodes, 1 + ct.routes().tails(
i));
1659 num_nodes = std::max(num_nodes, 1 + ct.routes().heads(
i));
1662 std::vector<int> tail_to_head(num_nodes, -1);
1663 std::vector<bool> has_incoming_arc(num_nodes,
false);
1664 std::vector<int> has_outgoing_arc(num_nodes,
false);
1665 std::vector<int> depot_nexts;
1666 for (
int i = 0;
i < num_arcs; ++
i) {
1667 const int tail = ct.routes().tails(
i);
1668 const int head = ct.routes().heads(
i);
1669 if (LiteralIsTrue(ct.routes().literals(
i))) {
1672 if (has_outgoing_arc[tail]) {
1673 VLOG(1) <<
"routes: node " << tail <<
"has two outgoing arcs";
1676 has_outgoing_arc[tail] =
true;
1679 if (has_incoming_arc[head]) {
1680 VLOG(1) <<
"routes: node " << head <<
"has two incoming arcs";
1683 has_incoming_arc[head] =
true;
1688 VLOG(1) <<
"Self loop on node 0 are forbidden.";
1696 depot_nexts.push_back(head);
1698 DCHECK_EQ(tail_to_head[tail], -1);
1699 tail_to_head[tail] = head;
1705 if (num_nodes == 0)
return true;
1709 for (
int start : depot_nexts) {
1711 while (start != 0) {
1712 if (tail_to_head[start] == -1)
return false;
1713 start = tail_to_head[start];
1718 if (count != num_used_arcs) {
1719 VLOG(1) <<
"count: " << count <<
" != num_used_arcs:" << num_used_arcs;
1727 if (count - depot_nexts.size() + 1 + num_self_arcs != num_nodes) {
1728 VLOG(1) <<
"Not all nodes are covered!";
1735 bool InverseConstraintIsFeasible(
const ConstraintProto& ct) {
1736 const int num_variables = ct.inverse().f_direct_size();
1737 if (num_variables != ct.inverse().f_inverse_size())
return false;
1739 for (
int i = 0;
i < num_variables;
i++) {
1740 const int fi =
Value(ct.inverse().f_direct(
i));
1741 if (fi < 0 || num_variables <= fi)
return false;
1742 if (
i !=
Value(ct.inverse().f_inverse(fi)))
return false;
1747 bool ReservoirConstraintIsFeasible(
const ConstraintProto& ct) {
1748 const int num_variables = ct.reservoir().time_exprs_size();
1749 const int64_t min_level = ct.reservoir().min_level();
1750 const int64_t max_level = ct.reservoir().max_level();
1751 absl::btree_map<int64_t, int64_t> deltas;
1752 const bool has_active_variables = ct.reservoir().active_literals_size() > 0;
1753 for (
int i = 0;
i < num_variables;
i++) {
1754 const int64_t time = LinearExpressionValue(ct.reservoir().time_exprs(
i));
1755 if (!has_active_variables ||
1756 Value(ct.reservoir().active_literals(
i)) == 1) {
1757 const int64_t level =
1758 LinearExpressionValue(ct.reservoir().level_changes(
i));
1759 deltas[time] += level;
1762 int64_t current_level = 0;
1763 for (
const auto& delta : deltas) {
1764 current_level += delta.second;
1765 if (current_level < min_level || current_level > max_level) {
1766 VLOG(1) <<
"Reservoir level " << current_level
1767 <<
" is out of bounds at time: " << delta.first;
1775 const ConstraintProto& ct) {
1777 if (!ConstraintIsEnforced(ct))
return true;
1779 const ConstraintProto::ConstraintCase type = ct.constraint_case();
1781 case ConstraintProto::ConstraintCase::kBoolOr:
1782 return BoolOrConstraintIsFeasible(ct);
1783 case ConstraintProto::ConstraintCase::kBoolAnd:
1784 return BoolAndConstraintIsFeasible(ct);
1785 case ConstraintProto::ConstraintCase::kAtMostOne:
1786 return AtMostOneConstraintIsFeasible(ct);
1787 case ConstraintProto::ConstraintCase::kExactlyOne:
1788 return ExactlyOneConstraintIsFeasible(ct);
1789 case ConstraintProto::ConstraintCase::kBoolXor:
1790 return BoolXorConstraintIsFeasible(ct);
1791 case ConstraintProto::ConstraintCase::kLinear:
1792 return LinearConstraintIsFeasible(ct);
1793 case ConstraintProto::ConstraintCase::kIntProd:
1794 return IntProdConstraintIsFeasible(ct);
1795 case ConstraintProto::ConstraintCase::kIntDiv:
1796 return IntDivConstraintIsFeasible(ct);
1797 case ConstraintProto::ConstraintCase::kIntMod:
1798 return IntModConstraintIsFeasible(ct);
1799 case ConstraintProto::ConstraintCase::kLinMax:
1800 return LinMaxConstraintIsFeasible(ct);
1801 case ConstraintProto::ConstraintCase::kAllDiff:
1802 return AllDiffConstraintIsFeasible(ct);
1803 case ConstraintProto::ConstraintCase::kInterval:
1804 if (!IntervalConstraintIsFeasible(ct)) {
1805 if (ct.interval().has_start()) {
1811 VLOG(1) <<
"Warning, an interval constraint was likely used "
1812 "without a corresponding linear constraint linking "
1813 "its start, size and end.";
1818 case ConstraintProto::ConstraintCase::kNoOverlap:
1819 return NoOverlapConstraintIsFeasible(model, ct);
1820 case ConstraintProto::ConstraintCase::kNoOverlap2D:
1821 return NoOverlap2DConstraintIsFeasible(model, ct);
1822 case ConstraintProto::ConstraintCase::kCumulative:
1823 return CumulativeConstraintIsFeasible(model, ct);
1824 case ConstraintProto::ConstraintCase::kElement:
1825 return ElementConstraintIsFeasible(ct);
1826 case ConstraintProto::ConstraintCase::kTable:
1827 return TableConstraintIsFeasible(ct);
1828 case ConstraintProto::ConstraintCase::kAutomaton:
1829 return AutomatonConstraintIsFeasible(ct);
1830 case ConstraintProto::ConstraintCase::kCircuit:
1831 return CircuitConstraintIsFeasible(ct);
1832 case ConstraintProto::ConstraintCase::kRoutes:
1833 return RoutesConstraintIsFeasible(ct);
1834 case ConstraintProto::ConstraintCase::kInverse:
1835 return InverseConstraintIsFeasible(ct);
1836 case ConstraintProto::ConstraintCase::kReservoir:
1837 return ReservoirConstraintIsFeasible(ct);
1838 case ConstraintProto::ConstraintCase::CONSTRAINT_NOT_SET:
1848 const std::vector<int64_t> variable_values_;
1854 const ConstraintProto& constraint,
1855 absl::Span<const int64_t> variable_values) {
1856 ConstraintChecker checker(variable_values);
1857 return checker.ConstraintIsFeasible(model, constraint);
1861 absl::Span<const int64_t> variable_values,
1862 const CpModelProto* mapping_proto,
1863 const std::vector<int>* postsolve_mapping) {
1864 if (variable_values.size() != model.variables_size()) {
1865 VLOG(1) <<
"Wrong number of variables (" << variable_values.size()
1866 <<
") in the solution vector. It should be "
1867 << model.variables_size() <<
".";
1872 for (
int i = 0;
i < model.variables_size(); ++
i) {
1874 VLOG(1) <<
"Variable #" <<
i <<
" has value " << variable_values[
i]
1875 <<
" which do not fall in its domain: "
1881 CHECK_EQ(variable_values.size(), model.variables_size());
1882 ConstraintChecker checker(variable_values);
1884 for (
int c = 0;
c < model.constraints_size(); ++
c) {
1885 const ConstraintProto& ct = model.constraints(c);
1886 if (checker.ConstraintIsFeasible(model, ct))
continue;
1889 VLOG(1) <<
"Failing constraint #" <<
c <<
" : "
1891 if (mapping_proto !=
nullptr && postsolve_mapping !=
nullptr) {
1892 std::vector<int> reverse_map(mapping_proto->variables().size(), -1);
1893 for (
int var = 0; var < postsolve_mapping->size(); ++var) {
1894 reverse_map[(*postsolve_mapping)[var]] = var;
1897 VLOG(1) <<
"var: " << var <<
" mapped_to: " << reverse_map[var]
1898 <<
" value: " << variable_values[var] <<
" initial_domain: "
1900 <<
" postsolved_domain: "
1905 VLOG(1) <<
"var: " << var <<
" value: " << variable_values[var];
1916 if (model.has_objective()) {
1917 int64_t inner_objective = 0;
1918 const int num_variables = model.objective().coeffs_size();
1919 for (
int i = 0;
i < num_variables; ++
i) {
1920 inner_objective += checker.Value(model.objective().vars(
i)) *
1921 model.objective().coeffs(
i);
1923 if (!model.objective().domain().empty()) {
1925 VLOG(1) <<
"Objective value " << inner_objective <<
" not in domain! "
1930 double factor = model.objective().scaling_factor();
1931 if (factor == 0.0) factor = 1.0;
1932 const double scaled_objective =
1934 (
static_cast<double>(inner_objective) + model.objective().offset());
1935 VLOG(2) <<
"Checker inner objective = " << inner_objective;
1936 VLOG(2) <<
"Checker scaled objective = " << scaled_objective;
#define RETURN_IF_NOT_EMPTY(statement)
If the string returned by "statement" is not empty, returns it.
absl::Status ValidateLinearExpression(const LinearExpressionProto &expression, const IdNameBiMap &variable_universe)
std::string ValidateInputCpModel(const SatParameters ¶ms, const CpModelProto &model)
bool RefIsPositive(int ref)
std::string ValidateCpModel(const CpModelProto &model, bool after_presolve)
bool SolutionIsFeasible(const CpModelProto &model, absl::Span< const int64_t > variable_values, const CpModelProto *mapping_proto, const std::vector< int > *postsolve_mapping)
bool ConstraintIsFeasible(const CpModelProto &model, const ConstraintProto &constraint, absl::Span< const int64_t > variable_values)
bool DomainInProtoContains(const ProtoWithDomain &proto, int64_t value)
std::optional< std::pair< int, int > > FindOneIntersectionIfPresent(absl::Span< const Rectangle > rectangles)
std::vector< int > UsedVariables(const ConstraintProto &ct)
std::vector< int > UsedIntervals(const ConstraintProto &ct)
Returns the sorted list of interval used by a constraint.
bool PossibleIntegerOverflow(const CpModelProto &model, absl::Span< const int > vars, absl::Span< const int64_t > coeffs, int64_t offset)
std::function< int64_t(const Model &)> Value(IntegerVariable v)
This checks that the variable is fixed.
Domain ReadDomainFromProto(const ProtoWithDomain &proto)
Reads a Domain from the domain field of a proto.
absl::string_view ConstraintCaseName(ConstraintProto::ConstraintCase constraint_case)
std::optional< std::pair< int, int > > FindOneIntersectionIfPresentWithZeroArea(absl::Span< const Rectangle > rectangles)
IndexReferences GetReferencesUsedByConstraint(const ConstraintProto &ct)
In SWIG mode, we don't want anything besides these top-level includes.
bool AtMinOrMaxInt64(int64_t x)
Checks if x is equal to the min or the max value of an int64_t.
int64_t CapAdd(int64_t x, int64_t y)
Select next search node to expand Select next item_i to add this new search node to the search Generate a new search node where item_i is not in the knapsack Check validity of this new partial solution(using propagators) - If valid
std::string ProtobufShortDebugString(const P &message)
int64_t CapProd(int64_t x, int64_t y)
int64_t CapAbs(int64_t v)
bool IntervalsAreSortedAndNonAdjacent(absl::Span< const ClosedInterval > intervals)
std::string ProtobufDebugString(const P &message)
static int input(yyscan_t yyscanner)