26#include "absl/log/check.h"
27#include "absl/log/log.h"
28#include "absl/log/vlog_is_on.h"
29#include "absl/strings/str_format.h"
30#include "absl/strings/string_view.h"
38#include "ortools/bop/bop_parameters.pb.h"
45#include "ortools/sat/boolean_problem.pb.h"
55using ::operations_research::sat::LinearBooleanProblem;
56using ::operations_research::sat::LinearObjective;
59void BuildObjectiveTerms(
const LinearBooleanProblem& problem,
61 CHECK(objective_terms !=
nullptr);
63 if (!objective_terms->empty())
return;
65 const LinearObjective& objective = problem.objective();
66 const size_t num_objective_terms = objective.literals_size();
67 CHECK_EQ(num_objective_terms, objective.coefficients_size());
68 for (
int i = 0;
i < num_objective_terms; ++
i) {
69 CHECK_GT(objective.literals(i), 0);
70 CHECK_NE(objective.coefficients(i), 0);
72 const VariableIndex var_id(objective.literals(i) - 1);
73 const int64_t weight = objective.coefficients(i);
83 const ProblemState& problem_state,
const BopParameters& parameters,
84 const BopSolverOptimizerSet& optimizer_set, absl::string_view
name)
86 random_(parameters.random_seed()),
92 parameters_(parameters),
95 number_of_consecutive_failing_optimizers_(0) {
96 CreateOptimizers(problem_state.original_problem(), parameters, optimizer_set);
100 if (parameters_.log_search_progress() || VLOG_IS_ON(1)) {
101 std::string stats_string;
102 for (OptimizerIndex i(0); i < optimizers_.size(); ++i) {
103 if (selector_->NumCallsForOptimizer(i) > 0) {
104 stats_string += selector_->PrintStats(i);
107 if (!stats_string.empty()) {
108 LOG(INFO) <<
"Stats. #new_solutions/#calls by optimizer:\n" +
120 if (state_update_stamp_ == problem_state.update_stamp()) {
123 state_update_stamp_ = problem_state.update_stamp();
126 const bool first_time = (sat_propagator_.NumVariables() == 0);
137 lower_bound_ = problem_state.GetScaledLowerBound();
138 upper_bound_ = problem_state.solution().IsFeasible()
139 ? problem_state.solution().GetScaledCost()
145 const BopParameters& parameters,
const ProblemState& problem_state,
147 CHECK(learned_info !=
nullptr);
149 learned_info->
Clear();
152 SynchronizeIfNeeded(problem_state);
157 for (OptimizerIndex i(0); i < optimizers_.size(); ++i) {
158 selector_->SetOptimizerRunnability(
162 const int64_t init_cost = problem_state.solution().IsFeasible()
163 ? problem_state.solution().GetCost()
164 : std::numeric_limits<int64_t>::max();
165 const double init_deterministic_time =
168 const OptimizerIndex selected_optimizer_id = selector_->SelectOptimizer();
170 LOG(INFO) <<
"All the optimizers are done.";
174 optimizers_[selected_optimizer_id];
175 if (parameters.log_search_progress() || VLOG_IS_ON(1)) {
176 LOG(INFO) <<
" " << lower_bound_ <<
" .. " << upper_bound_ <<
" "
177 <<
name() <<
" - " << selected_optimizer->
name()
178 <<
". Time limit: " <<
time_limit->GetTimeLeft() <<
" -- "
182 selected_optimizer->
Optimize(parameters, problem_state, learned_info,
187 selector_->TemporarilyMarkOptimizerAsUnselectable(selected_optimizer_id);
195 ? (init_cost == std::numeric_limits<int64_t>::max()
199 const double spent_deterministic_time =
200 time_limit->GetElapsedDeterministicTime() - init_deterministic_time;
201 selector_->UpdateScore(gain, spent_deterministic_time);
205 return optimization_status;
209 if (parameters.has_max_number_of_consecutive_failing_optimizer_calls() &&
210 problem_state.solution().IsFeasible()) {
211 number_of_consecutive_failing_optimizers_ =
214 : number_of_consecutive_failing_optimizers_ + 1;
215 if (number_of_consecutive_failing_optimizers_ >
216 parameters.max_number_of_consecutive_failing_optimizer_calls()) {
228void PortfolioOptimizer::AddOptimizer(
229 const LinearBooleanProblem& problem,
const BopParameters& parameters,
230 const BopOptimizerMethod& optimizer_method) {
231 switch (optimizer_method.type()) {
232 case BopOptimizerMethod::SAT_CORE_BASED:
235 case BopOptimizerMethod::SAT_LINEAR_SEARCH:
239 case BopOptimizerMethod::LINEAR_RELAXATION:
240 optimizers_.push_back(
243 case BopOptimizerMethod::LOCAL_SEARCH: {
244 for (
int i = 1; i <= parameters.max_num_decisions_in_ls(); ++i) {
246 absl::StrFormat(
"LS_%d", i), i, random_, &sat_propagator_));
249 case BopOptimizerMethod::RANDOM_FIRST_SOLUTION:
250 optimizers_.push_back(
new BopRandomFirstSolutionGenerator(
251 "SATRandomFirstSolution", parameters, &sat_propagator_, random_));
253 case BopOptimizerMethod::RANDOM_VARIABLE_LNS:
254 BuildObjectiveTerms(problem, &objective_terms_);
255 optimizers_.push_back(
new BopAdaptiveLNSOptimizer(
258 new ObjectiveBasedNeighborhood(&objective_terms_, random_),
261 case BopOptimizerMethod::RANDOM_VARIABLE_LNS_GUIDED_BY_LP:
262 BuildObjectiveTerms(problem, &objective_terms_);
263 optimizers_.push_back(
new BopAdaptiveLNSOptimizer(
264 "RandomVariableLnsWithLp",
266 new ObjectiveBasedNeighborhood(&objective_terms_, random_),
269 case BopOptimizerMethod::RANDOM_CONSTRAINT_LNS:
270 BuildObjectiveTerms(problem, &objective_terms_);
271 optimizers_.push_back(
new BopAdaptiveLNSOptimizer(
272 "RandomConstraintLns",
274 new ConstraintBasedNeighborhood(&objective_terms_, random_),
277 case BopOptimizerMethod::RANDOM_CONSTRAINT_LNS_GUIDED_BY_LP:
278 BuildObjectiveTerms(problem, &objective_terms_);
279 optimizers_.push_back(
new BopAdaptiveLNSOptimizer(
280 "RandomConstraintLnsWithLp",
282 new ConstraintBasedNeighborhood(&objective_terms_, random_),
285 case BopOptimizerMethod::RELATION_GRAPH_LNS:
286 BuildObjectiveTerms(problem, &objective_terms_);
287 optimizers_.push_back(
new BopAdaptiveLNSOptimizer(
290 new RelationGraphBasedNeighborhood(problem, random_),
293 case BopOptimizerMethod::RELATION_GRAPH_LNS_GUIDED_BY_LP:
294 BuildObjectiveTerms(problem, &objective_terms_);
295 optimizers_.push_back(
new BopAdaptiveLNSOptimizer(
296 "RelationGraphLnsWithLp",
298 new RelationGraphBasedNeighborhood(problem, random_),
301 case BopOptimizerMethod::COMPLETE_LNS:
302 BuildObjectiveTerms(problem, &objective_terms_);
303 optimizers_.push_back(
304 new BopCompleteLNSOptimizer(
"LNS", objective_terms_));
306 case BopOptimizerMethod::USER_GUIDED_FIRST_SOLUTION:
307 optimizers_.push_back(
new GuidedSatFirstSolutionGenerator(
308 "SATUserGuidedFirstSolution",
311 case BopOptimizerMethod::LP_FIRST_SOLUTION:
312 optimizers_.push_back(
new GuidedSatFirstSolutionGenerator(
313 "SATLPFirstSolution",
316 case BopOptimizerMethod::OBJECTIVE_FIRST_SOLUTION:
317 optimizers_.push_back(
new GuidedSatFirstSolutionGenerator(
318 "SATObjectiveFirstSolution",
322 LOG(FATAL) <<
"Unknown optimizer type.";
326void PortfolioOptimizer::CreateOptimizers(
327 const LinearBooleanProblem& problem,
const BopParameters& parameters,
328 const BopSolverOptimizerSet& optimizer_set) {
329 if (parameters.use_symmetry()) {
330 VLOG(1) <<
"Finding symmetries of the problem.";
331 std::vector<std::unique_ptr<SparsePermutation>> generators;
333 std::unique_ptr<sat::SymmetryPropagator> propagator(
334 new sat::SymmetryPropagator);
335 for (
int i = 0;
i < generators.size(); ++
i) {
336 propagator->AddSymmetry(std::move(generators[i]));
338 sat_propagator_.AddPropagator(propagator.get());
339 sat_propagator_.TakePropagatorOwnership(std::move(propagator));
342 const int max_num_optimizers =
343 optimizer_set.methods_size() + parameters.max_num_decisions_in_ls() - 1;
344 optimizers_.reserve(max_num_optimizers);
345 for (
const BopOptimizerMethod& optimizer_method : optimizer_set.methods()) {
346 const OptimizerIndex old_size(optimizers_.size());
347 AddOptimizer(problem, parameters, optimizer_method);
350 selector_ = std::make_unique<OptimizerSelector>(optimizers_);
357 const util_intops::StrongVector<OptimizerIndex, BopOptimizerBase*>&
359 : run_infos_(), selected_index_(optimizers.size()) {
360 for (OptimizerIndex i(0); i < optimizers.size(); ++i) {
361 info_positions_.push_back(run_infos_.size());
362 run_infos_.push_back(RunInfo(i, optimizers[i]->
name()));
367 CHECK_GE(selected_index_, 0);
371 }
while (selected_index_ < run_infos_.size() &&
372 !run_infos_[selected_index_].RunnableAndSelectable());
374 if (selected_index_ >= run_infos_.size()) {
376 selected_index_ = -1;
377 for (
int i = 0; i < run_infos_.size(); ++i) {
378 if (run_infos_[i].RunnableAndSelectable()) {
388 bool too_much_time_spent =
false;
389 const double time_spent =
390 run_infos_[selected_index_].time_spent_since_last_solution;
391 for (
int i = 0; i < selected_index_; ++i) {
392 const RunInfo& info = run_infos_[i];
393 if (info.RunnableAndSelectable() &&
394 info.time_spent_since_last_solution < time_spent) {
395 too_much_time_spent =
true;
399 if (too_much_time_spent) {
407 ++run_infos_[selected_index_].num_calls;
408 return run_infos_[selected_index_].optimizer_index;
412 const bool new_solution_found = gain != 0;
413 if (new_solution_found) NewSolutionFound(gain);
414 UpdateDeterministicTime(time_spent);
416 const double new_score = time_spent == 0.0 ? 0.0 : gain / time_spent;
417 const double kErosion = 0.2;
418 const double kMinScore = 1E-6;
420 RunInfo& info = run_infos_[selected_index_];
421 const double old_score = info.score;
423 std::max(kMinScore, old_score * (1 - kErosion) + kErosion * new_score);
425 if (new_solution_found) {
427 selected_index_ = run_infos_.size();
432 OptimizerIndex optimizer_index) {
433 run_infos_[info_positions_[optimizer_index]].selectable =
false;
438 run_infos_[info_positions_[optimizer_index]].runnable = runnable;
442 OptimizerIndex optimizer_index)
const {
443 const RunInfo& info = run_infos_[info_positions_[optimizer_index]];
444 return absl::StrFormat(
445 " %40s : %3d/%-3d (%6.2f%%) Total gain: %6d Total Dtime: %0.3f "
447 info.name, info.num_successes, info.num_calls,
448 100.0 * info.num_successes / info.num_calls, info.total_gain,
449 info.time_spent, info.score);
453 OptimizerIndex optimizer_index)
const {
454 const RunInfo& info = run_infos_[info_positions_[optimizer_index]];
455 return info.num_calls;
460 for (
int i = 0; i < run_infos_.size(); ++i) {
461 const RunInfo& info = run_infos_[i];
462 LOG(INFO) <<
" " << info.name <<
" " << info.total_gain
463 <<
" / " << info.time_spent <<
" = " << info.score <<
" "
464 << info.selectable <<
" " << info.time_spent_since_last_solution;
468void OptimizerSelector::NewSolutionFound(int64_t gain) {
469 run_infos_[selected_index_].num_successes++;
470 run_infos_[selected_index_].total_gain += gain;
472 for (
int i = 0; i < run_infos_.size(); ++i) {
473 run_infos_[i].time_spent_since_last_solution = 0;
474 run_infos_[i].selectable =
true;
478void OptimizerSelector::UpdateDeterministicTime(
double time_spent) {
479 run_infos_[selected_index_].time_spent += time_spent;
480 run_infos_[selected_index_].time_spent_since_last_solution += time_spent;
483void OptimizerSelector::UpdateOrder() {
485 std::stable_sort(run_infos_.begin(), run_infos_.end(),
486 [](
const RunInfo& a,
const RunInfo& b) ->
bool {
487 if (a.total_gain == 0 && b.total_gain == 0)
488 return a.time_spent < b.time_spent;
489 return a.score > b.score;
493 for (
int i = 0;
i < run_infos_.size(); ++
i) {
494 info_positions_[run_infos_[
i].optimizer_index] =
i;
BopOptimizerBase(absl::string_view name)
virtual Status Optimize(const BopParameters ¶meters, const ProblemState &problem_state, LearnedInfo *learned_info, TimeLimit *time_limit)=0
@ ABORT
There is no need to call this optimizer again on the same problem state.
const std::string & name() const
Returns the name given at construction.
OptimizerIndex SelectOptimizer()
std::string PrintStats(OptimizerIndex optimizer_index) const
Returns statistics about the given optimizer.
void TemporarilyMarkOptimizerAsUnselectable(OptimizerIndex optimizer_index)
void SetOptimizerRunnability(OptimizerIndex optimizer_index, bool runnable)
void UpdateScore(int64_t gain, double time_spent)
int NumCallsForOptimizer(OptimizerIndex optimizer_index) const
void DebugPrint() const
Prints some debug information. Should not be used in production.
OptimizerSelector(const util_intops::StrongVector< OptimizerIndex, BopOptimizerBase * > &optimizers)
bool ShouldBeRun(const ProblemState &problem_state) const override
Status Optimize(const BopParameters ¶meters, const ProblemState &problem_state, LearnedInfo *learned_info, TimeLimit *time_limit) override
~PortfolioOptimizer() override
PortfolioOptimizer(const ProblemState &problem_state, const BopParameters ¶meters, const BopSolverOptimizerSet &optimizer_set, absl::string_view name)
void STLDeleteElements(T *container)
BopOptimizerBase::Status LoadStateProblemToSatSolver(const ProblemState &problem_state, sat::SatSolver *sat_solver)
util_intops::StrongVector< SparseIndex, BopConstraintTerm > BopConstraintTerms
const OptimizerIndex kInvalidOptimizerIndex(-1)
constexpr Fractional kInfinity
Infinity for type Fractional.
constexpr Fractional kInfinity
Infinity for type Fractional.
void FindLinearBooleanProblemSymmetries(const LinearBooleanProblem &problem, std::vector< std::unique_ptr< SparsePermutation > > *generators)
void UseObjectiveForSatAssignmentPreference(const LinearBooleanProblem &problem, SatSolver *solver)
In SWIG mode, we don't want anything besides these top-level includes.
BopSolution solution
New solution. Note that the solution might be infeasible.