Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
sparse_containers.py
Go to the documentation of this file.
1# Copyright 2010-2024 Google LLC
2# Licensed under the Apache License, Version 2.0 (the "License");
3# you may not use this file except in compliance with the License.
4# You may obtain a copy of the License at
5#
6# http://www.apache.org/licenses/LICENSE-2.0
7#
8# Unless required by applicable law or agreed to in writing, software
9# distributed under the License is distributed on an "AS IS" BASIS,
10# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11# See the License for the specific language governing permissions and
12# limitations under the License.
13
14"""Sparse vectors and matrices using variables and constraints from Model.
15
16Analogous to sparse_containers.proto, with bidirectional conversion.
17"""
18from typing import Dict, FrozenSet, Generic, Iterable, Mapping, Optional, Set, TypeVar
19
20from ortools.math_opt import sparse_containers_pb2
21from ortools.math_opt.python import model
22
23
24VarOrConstraintType = TypeVar(
25 "VarOrConstraintType", model.Variable, model.LinearConstraint
26)
27
28
30 terms: Mapping[VarOrConstraintType, float]
31) -> sparse_containers_pb2.SparseDoubleVectorProto:
32 """Converts a sparse vector from proto to dict representation."""
33 result = sparse_containers_pb2.SparseDoubleVectorProto()
34 if terms:
35 id_and_values = [(key.id, value) for (key, value) in terms.items()]
36 id_and_values.sort()
37 ids, values = zip(*id_and_values)
38 result.ids[:] = ids
39 result.values[:] = values
40 return result
41
42
44 terms: Mapping[VarOrConstraintType, int]
45) -> sparse_containers_pb2.SparseInt32VectorProto:
46 """Converts a sparse vector from proto to dict representation."""
47 result = sparse_containers_pb2.SparseInt32VectorProto()
48 if terms:
49 id_and_values = [(key.id, value) for (key, value) in terms.items()]
50 id_and_values.sort()
51 ids, values = zip(*id_and_values)
52 result.ids[:] = ids
53 result.values[:] = values
54 return result
55
56
58 proto: sparse_containers_pb2.SparseDoubleVectorProto, mod: model.Model
59) -> Dict[model.Variable, float]:
60 """Converts a sparse vector of variables from proto to dict representation."""
61 result = {}
62 for index, var_id in enumerate(proto.ids):
63 result[mod.get_variable(var_id)] = proto.values[index]
64 return result
65
66
68 proto: sparse_containers_pb2.SparseDoubleVectorProto, mod: model.Model
69) -> Dict[model.LinearConstraint, float]:
70 """Converts a sparse vector of linear constraints from proto to dict representation."""
71 result = {}
72 for index, lin_con_id in enumerate(proto.ids):
73 result[mod.get_linear_constraint(lin_con_id)] = proto.values[index]
74 return result
75
76
77class SparseVectorFilter(Generic[VarOrConstraintType]):
78 """Restricts the variables or constraints returned in a sparse vector.
79
80 The default behavior is to return entries for all variables/constraints.
81
82 E.g. when requesting the solution to an optimization problem, use this class
83 to restrict the variables that values are returned for.
84
85 Attributes:
86 skip_zero_values: Do not include key value pairs with value zero.
87 filtered_items: If not None, include only key value pairs these keys. Note
88 that the empty set is different (don't return any keys) from None (return
89 all keys).
90 """
91
93 self,
94 *,
95 skip_zero_values: bool = False,
96 filtered_items: Optional[Iterable[VarOrConstraintType]] = None,
97 ):
98 self._skip_zero_values: bool = skip_zero_values
99 self._filtered_items: Optional[Set[VarOrConstraintType]] = (
100 None if filtered_items is None else frozenset(filtered_items)
101 ) # pytype: disable=annotation-type-mismatch # attribute-variable-annotations
102
103 @property
104 def skip_zero_values(self) -> bool:
105 return self._skip_zero_values
106
107 @property
108 def filtered_items(self) -> Optional[FrozenSet[VarOrConstraintType]]:
109 return (
110 self._filtered_items
111 ) # pytype: disable=bad-return-type # attribute-variable-annotations
112
113 def to_proto(self):
114 """Returns an equivalent proto representation."""
115 result = sparse_containers_pb2.SparseVectorFilterProto()
116 result.skip_zero_values = self._skip_zero_values
117 if self._filtered_items is not None:
118 result.filter_by_ids = True
119 result.filtered_ids[:] = sorted(t.id for t in self._filtered_items)
120 return result
121
122
123VariableFilter = SparseVectorFilter[model.Variable]
124LinearConstraintFilter = SparseVectorFilter[model.LinearConstraint]
Optional[FrozenSet[VarOrConstraintType]] filtered_items(self)
__init__(self, *, bool skip_zero_values=False, Optional[Iterable[VarOrConstraintType]] filtered_items=None)
Dict[model.Variable, float] parse_variable_map(sparse_containers_pb2.SparseDoubleVectorProto proto, model.Model mod)
sparse_containers_pb2.SparseDoubleVectorProto to_sparse_double_vector_proto(Mapping[VarOrConstraintType, float] terms)
Dict[model.LinearConstraint, float] parse_linear_constraint_map(sparse_containers_pb2.SparseDoubleVectorProto proto, model.Model mod)
sparse_containers_pb2.SparseInt32VectorProto to_sparse_int32_vector_proto(Mapping[VarOrConstraintType, int] terms)