Google OR-Tools v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
solution.py
Go to the documentation of this file.
1# Copyright 2010-2024 Google LLC
2# Licensed under the Apache License, Version 2.0 (the "License");
3# you may not use this file except in compliance with the License.
4# You may obtain a copy of the License at
5#
6# http://www.apache.org/licenses/LICENSE-2.0
7#
8# Unless required by applicable law or agreed to in writing, software
9# distributed under the License is distributed on an "AS IS" BASIS,
10# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11# See the License for the specific language governing permissions and
12# limitations under the License.
13
14"""The solution to an optimization problem defined by Model in model.py."""
15import dataclasses
16import enum
17from typing import Dict, Optional, TypeVar
18
19from ortools.math_opt import solution_pb2
20from ortools.math_opt.python import model
21from ortools.math_opt.python import sparse_containers
22
23
24@enum.unique
25class BasisStatus(enum.Enum):
26 """Status of a variable/constraint in a LP basis.
27
28 Attributes:
29 FREE: The variable/constraint is free (it has no finite bounds).
30 AT_LOWER_BOUND: The variable/constraint is at its lower bound (which must be
31 finite).
32 AT_UPPER_BOUND: The variable/constraint is at its upper bound (which must be
33 finite).
34 FIXED_VALUE: The variable/constraint has identical finite lower and upper
35 bounds.
36 BASIC: The variable/constraint is basic.
37 """
38
39 FREE = solution_pb2.BASIS_STATUS_FREE
40 AT_LOWER_BOUND = solution_pb2.BASIS_STATUS_AT_LOWER_BOUND
41 AT_UPPER_BOUND = solution_pb2.BASIS_STATUS_AT_UPPER_BOUND
42 FIXED_VALUE = solution_pb2.BASIS_STATUS_FIXED_VALUE
43 BASIC = solution_pb2.BASIS_STATUS_BASIC
44
45
46@enum.unique
47class SolutionStatus(enum.Enum):
48 """Feasibility of a primal or dual solution as claimed by the solver.
49
50 Attributes:
51 UNDETERMINED: Solver does not claim a feasibility status.
52 FEASIBLE: Solver claims the solution is feasible.
53 INFEASIBLE: Solver claims the solution is infeasible.
54 """
55
56 UNDETERMINED = solution_pb2.SOLUTION_STATUS_UNDETERMINED
57 FEASIBLE = solution_pb2.SOLUTION_STATUS_FEASIBLE
58 INFEASIBLE = solution_pb2.SOLUTION_STATUS_INFEASIBLE
59
60
62 proto: solution_pb2.SolutionStatusProto,
63) -> Optional[SolutionStatus]:
64 """Converts a proto SolutionStatus to an optional Python SolutionStatus."""
65 return (
66 None
67 if proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED
68 else SolutionStatus(proto)
69 )
70
71
73 status: Optional[SolutionStatus],
74) -> solution_pb2.SolutionStatusProto:
75 """Converts an optional Python SolutionStatus to a proto SolutionStatus."""
76 return solution_pb2.SOLUTION_STATUS_UNSPECIFIED if status is None else status.value
77
78
79@dataclasses.dataclass
81 """A solution to the optimization problem in a Model.
82
83 E.g. consider a simple linear program:
84 min c * x
85 s.t. A * x >= b
86 x >= 0.
87 A primal solution is assignment values to x. It is feasible if it satisfies
88 A * x >= b and x >= 0 from above. In the class PrimalSolution variable_values
89 is x and objective_value is c * x.
90
91 For the general case of a MathOpt optimization model, see go/mathopt-solutions
92 for details.
93
94 Attributes:
95 variable_values: The value assigned for each Variable in the model.
96 objective_value: The value of the objective value at this solution. This
97 value may not be always populated.
98 feasibility_status: The feasibility of the solution as claimed by the
99 solver.
100 """
101
102 variable_values: Dict[model.Variable, float] = dataclasses.field(
103 default_factory=dict
104 )
105 objective_value: float = 0.0
106 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED
107
108 def to_proto(self) -> solution_pb2.PrimalSolutionProto:
109 """Returns an equivalent proto for a primal solution."""
110 return solution_pb2.PrimalSolutionProto(
111 variable_values=sparse_containers.to_sparse_double_vector_proto(
112 self.variable_values
113 ),
114 objective_value=self.objective_value,
115 feasibility_status=self.feasibility_status.value,
116 )
117
118
120 proto: solution_pb2.PrimalSolutionProto, mod: model.Model
121) -> PrimalSolution:
122 """Returns an equivalent PrimalSolution from the input proto."""
123 result = PrimalSolution()
124 result.objective_value = proto.objective_value
125 result.variable_values = sparse_containers.parse_variable_map(
126 proto.variable_values, mod
127 )
128 status_proto = proto.feasibility_status
129 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED:
130 raise ValueError("Primal solution feasibility status should not be UNSPECIFIED")
131 result.feasibility_status = SolutionStatus(status_proto)
132 return result
133
134
135@dataclasses.dataclass
137 """A direction of unbounded objective improvement in an optimization Model.
138
139 Equivalently, a certificate of infeasibility for the dual of the optimization
140 problem.
141
142 E.g. consider a simple linear program:
143 min c * x
144 s.t. A * x >= b
145 x >= 0.
146 A primal ray is an x that satisfies:
147 c * x < 0
148 A * x >= 0
149 x >= 0.
150 Observe that given a feasible solution, any positive multiple of the primal
151 ray plus that solution is still feasible, and gives a better objective
152 value. A primal ray also proves the dual optimization problem infeasible.
153
154 In the class PrimalRay, variable_values is this x.
155
156 For the general case of a MathOpt optimization model, see
157 go/mathopt-solutions for details.
158
159 Attributes:
160 variable_values: The value assigned for each Variable in the model.
161 """
162
163 variable_values: Dict[model.Variable, float] = dataclasses.field(
164 default_factory=dict
165 )
166
167
168def parse_primal_ray(proto: solution_pb2.PrimalRayProto, mod: model.Model) -> PrimalRay:
169 """Returns an equivalent PrimalRay from the input proto."""
170 result = PrimalRay()
171 result.variable_values = sparse_containers.parse_variable_map(
172 proto.variable_values, mod
173 )
174 return result
175
176
177@dataclasses.dataclass
179 """A solution to the dual of the optimization problem given by a Model.
180
181 E.g. consider the primal dual pair linear program pair:
182 (Primal)            (Dual)
183 min c * x             max b * y
184 s.t. A * x >= b       s.t. y * A + r = c
185 x >= 0              y, r >= 0.
186 The dual solution is the pair (y, r). It is feasible if it satisfies the
187 constraints from (Dual) above.
188
189 Below, y is dual_values, r is reduced_costs, and b * y is objective_value.
190
191 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note
192 that the dual objective depends on r in the general case).
193
194 Attributes:
195 dual_values: The value assigned for each LinearConstraint in the model.
196 reduced_costs: The value assigned for each Variable in the model.
197 objective_value: The value of the dual objective value at this solution.
198 This value may not be always populated.
199 feasibility_status: The feasibility of the solution as claimed by the
200 solver.
201 """
202
203 dual_values: Dict[model.LinearConstraint, float] = dataclasses.field(
204 default_factory=dict
205 )
206 reduced_costs: Dict[model.Variable, float] = dataclasses.field(default_factory=dict)
207 objective_value: Optional[float] = None
208 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED
209
210 def to_proto(self) -> solution_pb2.DualSolutionProto:
211 """Returns an equivalent proto for a dual solution."""
212 return solution_pb2.DualSolutionProto(
213 dual_values=sparse_containers.to_sparse_double_vector_proto(
214 self.dual_values
215 ),
216 reduced_costs=sparse_containers.to_sparse_double_vector_proto(
217 self.reduced_costs
218 ),
219 objective_value=self.objective_value,
220 feasibility_status=self.feasibility_status.value,
221 )
222
223
225 proto: solution_pb2.DualSolutionProto, mod: model.Model
226) -> DualSolution:
227 """Returns an equivalent DualSolution from the input proto."""
228 result = DualSolution()
229 result.objective_value = (
230 proto.objective_value if proto.HasField("objective_value") else None
231 )
232 result.dual_values = sparse_containers.parse_linear_constraint_map(
233 proto.dual_values, mod
234 )
235 result.reduced_costs = sparse_containers.parse_variable_map(
236 proto.reduced_costs, mod
237 )
238 status_proto = proto.feasibility_status
239 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED:
240 raise ValueError("Dual solution feasibility status should not be UNSPECIFIED")
241 result.feasibility_status = SolutionStatus(status_proto)
242 return result
243
244
245@dataclasses.dataclass
247 """A direction of unbounded objective improvement in an optimization Model.
248
249 A direction of unbounded improvement to the dual of an optimization,
250 problem; equivalently, a certificate of primal infeasibility.
251
252 E.g. consider the primal dual pair linear program pair:
253 (Primal)            (Dual)
254 min c * x             max b * y
255 s.t. A * x >= b       s.t. y * A + r = c
256 x >= 0              y, r >= 0.
257
258 The dual ray is the pair (y, r) satisfying:
259 b * y > 0
260 y * A + r = 0
261 y, r >= 0.
262 Observe that adding a positive multiple of (y, r) to dual feasible solution
263 maintains dual feasibility and improves the objective (proving the dual is
264 unbounded). The dual ray also proves the primal problem is infeasible.
265
266 In the class DualRay below, y is dual_values and r is reduced_costs.
267
268 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note
269 that the dual objective depends on r in the general case).
270
271 Attributes:
272 dual_values: The value assigned for each LinearConstraint in the model.
273 reduced_costs: The value assigned for each Variable in the model.
274 """
275
276 dual_values: Dict[model.LinearConstraint, float] = dataclasses.field(
277 default_factory=dict
278 )
279 reduced_costs: Dict[model.Variable, float] = dataclasses.field(default_factory=dict)
280
281
282def parse_dual_ray(proto: solution_pb2.DualRayProto, mod: model.Model) -> DualRay:
283 """Returns an equivalent DualRay from the input proto."""
284 result = DualRay()
285 result.dual_values = sparse_containers.parse_linear_constraint_map(
286 proto.dual_values, mod
287 )
288 result.reduced_costs = sparse_containers.parse_variable_map(
289 proto.reduced_costs, mod
290 )
291 return result
292
293
294@dataclasses.dataclass
295class Basis:
296 """A combinatorial characterization for a solution to a linear program.
297
298 The simplex method for solving linear programs always returns a "basic
299 feasible solution" which can be described combinatorially as a Basis. A basis
300 assigns a BasisStatus for every variable and linear constraint.
301
302 E.g. consider a standard form LP:
303 min c * x
304 s.t. A * x = b
305 x >= 0
306 that has more variables than constraints and with full row rank A.
307
308 Let n be the number of variables and m the number of linear constraints. A
309 valid basis for this problem can be constructed as follows:
310 * All constraints will have basis status FIXED.
311 * Pick m variables such that the columns of A are linearly independent and
312 assign the status BASIC.
313 * Assign the status AT_LOWER for the remaining n - m variables.
314
315 The basic solution for this basis is the unique solution of A * x = b that has
316 all variables with status AT_LOWER fixed to their lower bounds (all zero). The
317 resulting solution is called a basic feasible solution if it also satisfies
318 x >= 0.
319
320 See go/mathopt-basis for treatment of the general case and an explanation of
321 how a dual solution is determined for a basis.
322
323 Attributes:
324 variable_status: The basis status for each variable in the model.
325 constraint_status: The basis status for each linear constraint in the model.
326 basic_dual_feasibility: This is an advanced feature used by MathOpt to
327 characterize feasibility of suboptimal LP solutions (optimal solutions
328 will always have status SolutionStatus.FEASIBLE). For single-sided LPs it
329 should be equal to the feasibility status of the associated dual solution.
330 For two-sided LPs it may be different in some edge cases (e.g. incomplete
331 solves with primal simplex). For more details see
332 go/mathopt-basis-advanced#dualfeasibility. If you are providing a starting
333 basis via ModelSolveParameters.initial_basis, this value is ignored and
334 can be None. It is only relevant for the basis returned by Solution.basis,
335 and it is never None when returned from solve(). This is an advanced
336 status. For single-sided LPs it should be equal to the feasibility status
337 of the associated dual solution. For two-sided LPs it may be different in
338 some edge cases (e.g. incomplete solves with primal simplex). For more
339 details see go/mathopt-basis-advanced#dualfeasibility.
340 """
341
342 variable_status: Dict[model.Variable, BasisStatus] = dataclasses.field(
343 default_factory=dict
344 )
345 constraint_status: Dict[model.LinearConstraint, BasisStatus] = dataclasses.field(
346 default_factory=dict
347 )
348 basic_dual_feasibility: Optional[SolutionStatus] = None
349
350 def to_proto(self) -> solution_pb2.BasisProto:
351 """Returns an equivalent proto for the basis."""
352 return solution_pb2.BasisProto(
354 constraint_status=_to_sparse_basis_status_vector_proto(
356 ),
357 basic_dual_feasibility=optional_solution_status_to_proto(
359 ),
360 )
361
362
363def parse_basis(proto: solution_pb2.BasisProto, mod: model.Model) -> Basis:
364 """Returns an equivalent Basis to the input proto."""
365 result = Basis()
366 for index, vid in enumerate(proto.variable_status.ids):
367 status_proto = proto.variable_status.values[index]
368 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED:
369 raise ValueError("Variable basis status should not be UNSPECIFIED")
370 result.variable_status[mod.get_variable(vid)] = BasisStatus(status_proto)
371 for index, cid in enumerate(proto.constraint_status.ids):
372 status_proto = proto.constraint_status.values[index]
373 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED:
374 raise ValueError("Constraint basis status should not be UNSPECIFIED")
375 result.constraint_status[mod.get_linear_constraint(cid)] = BasisStatus(
376 status_proto
377 )
378 result.basic_dual_feasibility = parse_optional_solution_status(
379 proto.basic_dual_feasibility
380 )
381 return result
382
383
385
386
388 terms: Dict[T, BasisStatus]
389) -> solution_pb2.SparseBasisStatusVector:
390 """Converts a basis vector from a python Dict to a protocol buffer."""
391 result = solution_pb2.SparseBasisStatusVector()
392 if terms:
393 id_and_status = sorted(
394 (key.id, status.value) for (key, status) in terms.items()
395 )
396 ids, values = zip(*id_and_status)
397 result.ids[:] = ids
398 result.values[:] = values
399 return result
400
401
402@dataclasses.dataclass
404 """A solution to the optimization problem in a Model."""
405
406 primal_solution: Optional[PrimalSolution] = None
407 dual_solution: Optional[DualSolution] = None
408 basis: Optional[Basis] = None
409
410 def to_proto(self) -> solution_pb2.SolutionProto:
411 """Returns an equivalent proto for a solution."""
412 return solution_pb2.SolutionProto(
413 primal_solution=(
415 if self.primal_solution is not None
416 else None
417 ),
418 dual_solution=(
420 if self.dual_solution is not None
421 else None
422 ),
423 basis=self.basis.to_proto() if self.basis is not None else None,
424 )
425
426
427def parse_solution(proto: solution_pb2.SolutionProto, mod: model.Model) -> Solution:
428 """Returns a Solution equivalent to the input proto."""
429 result = Solution()
430 if proto.HasField("primal_solution"):
431 result.primal_solution = parse_primal_solution(proto.primal_solution, mod)
432 if proto.HasField("dual_solution"):
433 result.dual_solution = parse_dual_solution(proto.dual_solution, mod)
434 result.basis = parse_basis(proto.basis, mod) if proto.HasField("basis") else None
435 return result
solution_pb2.BasisProto to_proto(self)
Definition solution.py:350
solution_pb2.DualSolutionProto to_proto(self)
Definition solution.py:210
solution_pb2.PrimalSolutionProto to_proto(self)
Definition solution.py:108
solution_pb2.SolutionProto to_proto(self)
Definition solution.py:410
Optional[SolutionStatus] parse_optional_solution_status(solution_pb2.SolutionStatusProto proto)
Definition solution.py:63
DualSolution parse_dual_solution(solution_pb2.DualSolutionProto proto, model.Model mod)
Definition solution.py:226
PrimalSolution parse_primal_solution(solution_pb2.PrimalSolutionProto proto, model.Model mod)
Definition solution.py:121
DualRay parse_dual_ray(solution_pb2.DualRayProto proto, model.Model mod)
Definition solution.py:282
Basis parse_basis(solution_pb2.BasisProto proto, model.Model mod)
Definition solution.py:363
PrimalRay parse_primal_ray(solution_pb2.PrimalRayProto proto, model.Model mod)
Definition solution.py:168
solution_pb2.SolutionStatusProto optional_solution_status_to_proto(Optional[SolutionStatus] status)
Definition solution.py:74
solution_pb2.SparseBasisStatusVector _to_sparse_basis_status_vector_proto(Dict[T, BasisStatus] terms)
Definition solution.py:389
Solution parse_solution(solution_pb2.SolutionProto proto, model.Model mod)
Definition solution.py:427