14"""The solution to an optimization problem defined by Model in model.py."""
17from typing
import Dict, Optional, TypeVar
30 """Status of a variable/constraint in a LP basis.
33 FREE: The variable/constraint is free (it has no finite bounds).
34 AT_LOWER_BOUND: The variable/constraint is at its lower bound (which must be
36 AT_UPPER_BOUND: The variable/constraint is at its upper bound (which must be
38 FIXED_VALUE: The variable/constraint has identical finite lower and upper
40 BASIC: The variable/constraint is basic.
43 FREE = solution_pb2.BASIS_STATUS_FREE
44 AT_LOWER_BOUND = solution_pb2.BASIS_STATUS_AT_LOWER_BOUND
45 AT_UPPER_BOUND = solution_pb2.BASIS_STATUS_AT_UPPER_BOUND
46 FIXED_VALUE = solution_pb2.BASIS_STATUS_FIXED_VALUE
47 BASIC = solution_pb2.BASIS_STATUS_BASIC
52 """Feasibility of a primal or dual solution as claimed by the solver.
55 UNDETERMINED: Solver does not claim a feasibility status.
56 FEASIBLE: Solver claims the solution is feasible.
57 INFEASIBLE: Solver claims the solution is infeasible.
60 UNDETERMINED = solution_pb2.SOLUTION_STATUS_UNDETERMINED
61 FEASIBLE = solution_pb2.SOLUTION_STATUS_FEASIBLE
62 INFEASIBLE = solution_pb2.SOLUTION_STATUS_INFEASIBLE
66 proto: solution_pb2.SolutionStatusProto,
67) -> Optional[SolutionStatus]:
68 """Converts a proto SolutionStatus to an optional Python SolutionStatus."""
71 if proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED
77 status: Optional[SolutionStatus],
78) -> solution_pb2.SolutionStatusProto:
79 """Converts an optional Python SolutionStatus to a proto SolutionStatus."""
80 return solution_pb2.SOLUTION_STATUS_UNSPECIFIED
if status
is None else status.value
85 """A solution to the optimization problem in a Model.
87 E.g. consider a simple linear program:
91 A primal solution is assignment values to x. It is feasible if it satisfies
92 A * x >= b and x >= 0 from above. In the class PrimalSolution variable_values
93 is x and objective_value is c * x.
95 For the general case of a MathOpt optimization model, see go/mathopt-solutions
99 variable_values: The value assigned for each Variable in the model.
100 objective_value: The value of the objective value at this solution. This
101 value may not be always populated.
102 auxiliary_objective_values: Set only for multi objective problems, the
103 objective value for each auxiliary objective, as computed by the solver.
104 This value will not always be populated.
105 feasibility_status: The feasibility of the solution as claimed by the
112 objective_value: float = 0.0
114 dataclasses.field(default_factory=dict)
116 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED
118 def to_proto(self) -> solution_pb2.PrimalSolutionProto:
119 """Returns an equivalent proto for a primal solution."""
120 return solution_pb2.PrimalSolutionProto(
121 variable_values=sparse_containers.to_sparse_double_vector_proto(
125 auxiliary_objective_values={
134 proto: solution_pb2.PrimalSolutionProto,
137 validate: bool =
True,
139 """Returns an equivalent PrimalSolution from the input proto."""
141 result.objective_value = proto.objective_value
142 for aux_id, obj_value
in proto.auxiliary_objective_values.items():
143 result.auxiliary_objective_values[
144 mod.get_auxiliary_objective(aux_id, validate=validate)
146 result.variable_values = sparse_containers.parse_variable_map(
147 proto.variable_values, mod, validate=validate
149 status_proto = proto.feasibility_status
150 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED:
151 raise ValueError(
"Primal solution feasibility status should not be UNSPECIFIED")
156@dataclasses.dataclass
158 """A direction of unbounded objective improvement in an optimization Model.
160 Equivalently, a certificate of infeasibility for the dual of the optimization
163 E.g. consider a simple linear program:
167 A primal ray is an x that satisfies:
171 Observe that given a feasible solution, any positive multiple of the primal
172 ray plus that solution is still feasible, and gives a better objective
173 value. A primal ray also proves the dual optimization problem infeasible.
175 In the class PrimalRay, variable_values is this x.
177 For the general case of a MathOpt optimization model, see
178 go/mathopt-solutions for details.
181 variable_values: The value assigned for each Variable in the model.
189 """Returns an equivalent proto to this PrimalRay."""
190 return solution_pb2.PrimalRayProto(
191 variable_values=sparse_containers.to_sparse_double_vector_proto(
198 proto: solution_pb2.PrimalRayProto,
201 validate: bool =
True,
203 """Returns an equivalent PrimalRay from the input proto."""
205 result.variable_values = sparse_containers.parse_variable_map(
206 proto.variable_values, mod, validate=validate
211@dataclasses.dataclass
213 """A solution to the dual of the optimization problem given by a Model.
215 E.g. consider the primal dual pair linear program pair:
218 s.t. A * x >= b s.t. y * A + r = c
220 The dual solution is the pair (y, r). It is feasible if it satisfies the
221 constraints from (Dual) above.
223 Below, y is dual_values, r is reduced_costs, and b * y is objective_value.
225 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note
226 that the dual objective depends on r in the general case).
229 dual_values: The value assigned for each LinearConstraint in the model.
230 quadratic_dual_values: The value assigned for each QuadraticConstraint in
232 reduced_costs: The value assigned for each Variable in the model.
233 objective_value: The value of the dual objective value at this solution.
234 This value may not be always populated.
235 feasibility_status: The feasibility of the solution as claimed by the
243 dataclasses.field(default_factory=dict)
248 objective_value: Optional[float] =
None
249 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED
251 def to_proto(self) -> solution_pb2.DualSolutionProto:
252 """Returns an equivalent proto for a dual solution."""
253 return solution_pb2.DualSolutionProto(
254 dual_values=sparse_containers.to_sparse_double_vector_proto(
257 reduced_costs=sparse_containers.to_sparse_double_vector_proto(
260 quadratic_dual_values=sparse_containers.to_sparse_double_vector_proto(
269 proto: solution_pb2.DualSolutionProto,
272 validate: bool =
True,
274 """Returns an equivalent DualSolution from the input proto."""
276 result.objective_value = (
277 proto.objective_value
if proto.HasField(
"objective_value")
else None
279 result.dual_values = sparse_containers.parse_linear_constraint_map(
280 proto.dual_values, mod, validate=validate
282 result.quadratic_dual_values = sparse_containers.parse_quadratic_constraint_map(
283 proto.quadratic_dual_values, mod, validate=validate
285 result.reduced_costs = sparse_containers.parse_variable_map(
286 proto.reduced_costs, mod, validate=validate
288 status_proto = proto.feasibility_status
289 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED:
290 raise ValueError(
"Dual solution feasibility status should not be UNSPECIFIED")
295@dataclasses.dataclass
297 """A direction of unbounded objective improvement in an optimization Model.
299 A direction of unbounded improvement to the dual of an optimization,
300 problem; equivalently, a certificate of primal infeasibility.
302 E.g. consider the primal dual pair linear program pair:
305 s.t. A * x >= b s.t. y * A + r = c
308 The dual ray is the pair (y, r) satisfying:
312 Observe that adding a positive multiple of (y, r) to dual feasible solution
313 maintains dual feasibility and improves the objective (proving the dual is
314 unbounded). The dual ray also proves the primal problem is infeasible.
316 In the class DualRay below, y is dual_values and r is reduced_costs.
318 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note
319 that the dual objective depends on r in the general case).
322 dual_values: The value assigned for each LinearConstraint in the model.
323 reduced_costs: The value assigned for each Variable in the model.
334 """Returns an equivalent proto to this PrimalRay."""
335 return solution_pb2.DualRayProto(
336 dual_values=sparse_containers.to_sparse_double_vector_proto(
339 reduced_costs=sparse_containers.to_sparse_double_vector_proto(
346 proto: solution_pb2.DualRayProto, mod:
model.Model, *, validate: bool =
True
348 """Returns an equivalent DualRay from the input proto."""
350 result.dual_values = sparse_containers.parse_linear_constraint_map(
351 proto.dual_values, mod, validate=validate
353 result.reduced_costs = sparse_containers.parse_variable_map(
354 proto.reduced_costs, mod, validate=validate
359@dataclasses.dataclass
361 """A combinatorial characterization for a solution to a linear program.
363 The simplex method for solving linear programs always returns a "basic
364 feasible solution" which can be described combinatorially as a Basis. A basis
365 assigns a BasisStatus for every variable and linear constraint.
367 E.g. consider a standard form LP:
371 that has more variables than constraints and with full row rank A.
373 Let n be the number of variables and m the number of linear constraints. A
374 valid basis for this problem can be constructed as follows:
375 * All constraints will have basis status FIXED.
376 * Pick m variables such that the columns of A are linearly independent and
377 assign the status BASIC.
378 * Assign the status AT_LOWER for the remaining n - m variables.
380 The basic solution for this basis is the unique solution of A * x = b that has
381 all variables with status AT_LOWER fixed to their lower bounds (all zero). The
382 resulting solution is called a basic feasible solution if it also satisfies
385 See go/mathopt-basis for treatment of the general case and an explanation of
386 how a dual solution is determined for a basis.
389 variable_status: The basis status for each variable in the model.
390 constraint_status: The basis status for each linear constraint in the model.
391 basic_dual_feasibility: This is an advanced feature used by MathOpt to
392 characterize feasibility of suboptimal LP solutions (optimal solutions
393 will always have status SolutionStatus.FEASIBLE). For single-sided LPs it
394 should be equal to the feasibility status of the associated dual solution.
395 For two-sided LPs it may be different in some edge cases (e.g. incomplete
396 solves with primal simplex). For more details see
397 go/mathopt-basis-advanced#dualfeasibility. If you are providing a starting
398 basis via ModelSolveParameters.initial_basis, this value is ignored and
399 can be None. It is only relevant for the basis returned by Solution.basis,
400 and it is never None when returned from solve(). This is an advanced
401 status. For single-sided LPs it should be equal to the feasibility status
402 of the associated dual solution. For two-sided LPs it may be different in
403 some edge cases (e.g. incomplete solves with primal simplex). For more
404 details see go/mathopt-basis-advanced#dualfeasibility.
411 dataclasses.field(default_factory=dict)
413 basic_dual_feasibility: Optional[SolutionStatus] =
None
416 """Returns an equivalent proto for the basis."""
417 return solution_pb2.BasisProto(
429 proto: solution_pb2.BasisProto, mod:
model.Model, *, validate: bool =
True
431 """Returns an equivalent Basis to the input proto."""
433 for index, vid
in enumerate(proto.variable_status.ids):
434 status_proto = proto.variable_status.values[index]
435 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED:
436 raise ValueError(
"Variable basis status should not be UNSPECIFIED")
437 result.variable_status[mod.get_variable(vid, validate=validate)] =
BasisStatus(
440 for index, cid
in enumerate(proto.constraint_status.ids):
441 status_proto = proto.constraint_status.values[index]
442 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED:
443 raise ValueError(
"Constraint basis status should not be UNSPECIFIED")
444 result.constraint_status[mod.get_linear_constraint(cid, validate=validate)] = (
448 proto.basic_dual_feasibility
457 terms: Dict[T, BasisStatus],
458) -> solution_pb2.SparseBasisStatusVector:
459 """Converts a basis vector from a python Dict to a protocol buffer."""
460 result = solution_pb2.SparseBasisStatusVector()
462 id_and_status = sorted(
463 (key.id, status.value)
for (key, status)
in terms.items()
465 ids, values = zip(*id_and_status)
467 result.values[:] = values
471@dataclasses.dataclass
473 """A solution to the optimization problem in a Model."""
475 primal_solution: Optional[PrimalSolution] =
None
476 dual_solution: Optional[DualSolution] =
None
477 basis: Optional[Basis] =
None
480 """Returns an equivalent proto for a solution."""
481 return solution_pb2.SolutionProto(
497 proto: solution_pb2.SolutionProto,
500 validate: bool =
True,
502 """Returns a Solution equivalent to the input proto."""
504 if proto.HasField(
"primal_solution"):
506 proto.primal_solution, mod, validate=validate
508 if proto.HasField(
"dual_solution"):
510 proto.dual_solution, mod, validate=validate
514 if proto.HasField(
"basis")