ortools.math_opt.python.solution
The solution to an optimization problem defined by Model in model.py.
1# Copyright 2010-2025 Google LLC 2# Licensed under the Apache License, Version 2.0 (the "License"); 3# you may not use this file except in compliance with the License. 4# You may obtain a copy of the License at 5# 6# http://www.apache.org/licenses/LICENSE-2.0 7# 8# Unless required by applicable law or agreed to in writing, software 9# distributed under the License is distributed on an "AS IS" BASIS, 10# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 11# See the License for the specific language governing permissions and 12# limitations under the License. 13 14"""The solution to an optimization problem defined by Model in model.py.""" 15import dataclasses 16import enum 17from typing import Dict, Optional, TypeVar 18 19from ortools.math_opt import solution_pb2 20from ortools.math_opt.python import linear_constraints 21from ortools.math_opt.python import model 22from ortools.math_opt.python import objectives 23from ortools.math_opt.python import quadratic_constraints 24from ortools.math_opt.python import sparse_containers 25from ortools.math_opt.python import variables 26 27 28@enum.unique 29class BasisStatus(enum.Enum): 30 """Status of a variable/constraint in a LP basis. 31 32 Attributes: 33 FREE: The variable/constraint is free (it has no finite bounds). 34 AT_LOWER_BOUND: The variable/constraint is at its lower bound (which must be 35 finite). 36 AT_UPPER_BOUND: The variable/constraint is at its upper bound (which must be 37 finite). 38 FIXED_VALUE: The variable/constraint has identical finite lower and upper 39 bounds. 40 BASIC: The variable/constraint is basic. 41 """ 42 43 FREE = solution_pb2.BASIS_STATUS_FREE 44 AT_LOWER_BOUND = solution_pb2.BASIS_STATUS_AT_LOWER_BOUND 45 AT_UPPER_BOUND = solution_pb2.BASIS_STATUS_AT_UPPER_BOUND 46 FIXED_VALUE = solution_pb2.BASIS_STATUS_FIXED_VALUE 47 BASIC = solution_pb2.BASIS_STATUS_BASIC 48 49 50@enum.unique 51class SolutionStatus(enum.Enum): 52 """Feasibility of a primal or dual solution as claimed by the solver. 53 54 Attributes: 55 UNDETERMINED: Solver does not claim a feasibility status. 56 FEASIBLE: Solver claims the solution is feasible. 57 INFEASIBLE: Solver claims the solution is infeasible. 58 """ 59 60 UNDETERMINED = solution_pb2.SOLUTION_STATUS_UNDETERMINED 61 FEASIBLE = solution_pb2.SOLUTION_STATUS_FEASIBLE 62 INFEASIBLE = solution_pb2.SOLUTION_STATUS_INFEASIBLE 63 64 65def parse_optional_solution_status( 66 proto: solution_pb2.SolutionStatusProto, 67) -> Optional[SolutionStatus]: 68 """Converts a proto SolutionStatus to an optional Python SolutionStatus.""" 69 return ( 70 None 71 if proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED 72 else SolutionStatus(proto) 73 ) 74 75 76def optional_solution_status_to_proto( 77 status: Optional[SolutionStatus], 78) -> solution_pb2.SolutionStatusProto: 79 """Converts an optional Python SolutionStatus to a proto SolutionStatus.""" 80 return solution_pb2.SOLUTION_STATUS_UNSPECIFIED if status is None else status.value 81 82 83@dataclasses.dataclass 84class PrimalSolution: 85 """A solution to the optimization problem in a Model. 86 87 E.g. consider a simple linear program: 88 min c * x 89 s.t. A * x >= b 90 x >= 0. 91 A primal solution is assignment values to x. It is feasible if it satisfies 92 A * x >= b and x >= 0 from above. In the class PrimalSolution variable_values 93 is x and objective_value is c * x. 94 95 For the general case of a MathOpt optimization model, see go/mathopt-solutions 96 for details. 97 98 Attributes: 99 variable_values: The value assigned for each Variable in the model. 100 objective_value: The value of the objective value at this solution. This 101 value may not be always populated. 102 auxiliary_objective_values: Set only for multi objective problems, the 103 objective value for each auxiliary objective, as computed by the solver. 104 This value will not always be populated. 105 feasibility_status: The feasibility of the solution as claimed by the 106 solver. 107 """ 108 109 variable_values: Dict[variables.Variable, float] = dataclasses.field( 110 default_factory=dict 111 ) 112 objective_value: float = 0.0 113 auxiliary_objective_values: Dict[objectives.AuxiliaryObjective, float] = ( 114 dataclasses.field(default_factory=dict) 115 ) 116 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED 117 118 def to_proto(self) -> solution_pb2.PrimalSolutionProto: 119 """Returns an equivalent proto for a primal solution.""" 120 return solution_pb2.PrimalSolutionProto( 121 variable_values=sparse_containers.to_sparse_double_vector_proto( 122 self.variable_values 123 ), 124 objective_value=self.objective_value, 125 auxiliary_objective_values={ 126 obj.id: obj_value 127 for obj, obj_value in self.auxiliary_objective_values.items() 128 }, 129 feasibility_status=self.feasibility_status.value, 130 ) 131 132 133def parse_primal_solution( 134 proto: solution_pb2.PrimalSolutionProto, 135 mod: model.Model, 136 *, 137 validate: bool = True, 138) -> PrimalSolution: 139 """Returns an equivalent PrimalSolution from the input proto.""" 140 result = PrimalSolution() 141 result.objective_value = proto.objective_value 142 for aux_id, obj_value in proto.auxiliary_objective_values.items(): 143 result.auxiliary_objective_values[ 144 mod.get_auxiliary_objective(aux_id, validate=validate) 145 ] = obj_value 146 result.variable_values = sparse_containers.parse_variable_map( 147 proto.variable_values, mod, validate=validate 148 ) 149 status_proto = proto.feasibility_status 150 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED: 151 raise ValueError("Primal solution feasibility status should not be UNSPECIFIED") 152 result.feasibility_status = SolutionStatus(status_proto) 153 return result 154 155 156@dataclasses.dataclass 157class PrimalRay: 158 """A direction of unbounded objective improvement in an optimization Model. 159 160 Equivalently, a certificate of infeasibility for the dual of the optimization 161 problem. 162 163 E.g. consider a simple linear program: 164 min c * x 165 s.t. A * x >= b 166 x >= 0. 167 A primal ray is an x that satisfies: 168 c * x < 0 169 A * x >= 0 170 x >= 0. 171 Observe that given a feasible solution, any positive multiple of the primal 172 ray plus that solution is still feasible, and gives a better objective 173 value. A primal ray also proves the dual optimization problem infeasible. 174 175 In the class PrimalRay, variable_values is this x. 176 177 For the general case of a MathOpt optimization model, see 178 go/mathopt-solutions for details. 179 180 Attributes: 181 variable_values: The value assigned for each Variable in the model. 182 """ 183 184 variable_values: Dict[variables.Variable, float] = dataclasses.field( 185 default_factory=dict 186 ) 187 188 def to_proto(self) -> solution_pb2.PrimalRayProto: 189 """Returns an equivalent proto to this PrimalRay.""" 190 return solution_pb2.PrimalRayProto( 191 variable_values=sparse_containers.to_sparse_double_vector_proto( 192 self.variable_values 193 ) 194 ) 195 196 197def parse_primal_ray( 198 proto: solution_pb2.PrimalRayProto, 199 mod: model.Model, 200 *, 201 validate: bool = True, 202) -> PrimalRay: 203 """Returns an equivalent PrimalRay from the input proto.""" 204 result = PrimalRay() 205 result.variable_values = sparse_containers.parse_variable_map( 206 proto.variable_values, mod, validate=validate 207 ) 208 return result 209 210 211@dataclasses.dataclass 212class DualSolution: 213 """A solution to the dual of the optimization problem given by a Model. 214 215 E.g. consider the primal dual pair linear program pair: 216 (Primal) (Dual) 217 min c * x max b * y 218 s.t. A * x >= b s.t. y * A + r = c 219 x >= 0 y, r >= 0. 220 The dual solution is the pair (y, r). It is feasible if it satisfies the 221 constraints from (Dual) above. 222 223 Below, y is dual_values, r is reduced_costs, and b * y is objective_value. 224 225 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note 226 that the dual objective depends on r in the general case). 227 228 Attributes: 229 dual_values: The value assigned for each LinearConstraint in the model. 230 quadratic_dual_values: The value assigned for each QuadraticConstraint in 231 the model. 232 reduced_costs: The value assigned for each Variable in the model. 233 objective_value: The value of the dual objective value at this solution. 234 This value may not be always populated. 235 feasibility_status: The feasibility of the solution as claimed by the 236 solver. 237 """ 238 239 dual_values: Dict[linear_constraints.LinearConstraint, float] = dataclasses.field( 240 default_factory=dict 241 ) 242 quadratic_dual_values: Dict[quadratic_constraints.QuadraticConstraint, float] = ( 243 dataclasses.field(default_factory=dict) 244 ) 245 reduced_costs: Dict[variables.Variable, float] = dataclasses.field( 246 default_factory=dict 247 ) 248 objective_value: Optional[float] = None 249 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED 250 251 def to_proto(self) -> solution_pb2.DualSolutionProto: 252 """Returns an equivalent proto for a dual solution.""" 253 return solution_pb2.DualSolutionProto( 254 dual_values=sparse_containers.to_sparse_double_vector_proto( 255 self.dual_values 256 ), 257 reduced_costs=sparse_containers.to_sparse_double_vector_proto( 258 self.reduced_costs 259 ), 260 quadratic_dual_values=sparse_containers.to_sparse_double_vector_proto( 261 self.quadratic_dual_values 262 ), 263 objective_value=self.objective_value, 264 feasibility_status=self.feasibility_status.value, 265 ) 266 267 268def parse_dual_solution( 269 proto: solution_pb2.DualSolutionProto, 270 mod: model.Model, 271 *, 272 validate: bool = True, 273) -> DualSolution: 274 """Returns an equivalent DualSolution from the input proto.""" 275 result = DualSolution() 276 result.objective_value = ( 277 proto.objective_value if proto.HasField("objective_value") else None 278 ) 279 result.dual_values = sparse_containers.parse_linear_constraint_map( 280 proto.dual_values, mod, validate=validate 281 ) 282 result.quadratic_dual_values = sparse_containers.parse_quadratic_constraint_map( 283 proto.quadratic_dual_values, mod, validate=validate 284 ) 285 result.reduced_costs = sparse_containers.parse_variable_map( 286 proto.reduced_costs, mod, validate=validate 287 ) 288 status_proto = proto.feasibility_status 289 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED: 290 raise ValueError("Dual solution feasibility status should not be UNSPECIFIED") 291 result.feasibility_status = SolutionStatus(status_proto) 292 return result 293 294 295@dataclasses.dataclass 296class DualRay: 297 """A direction of unbounded objective improvement in an optimization Model. 298 299 A direction of unbounded improvement to the dual of an optimization, 300 problem; equivalently, a certificate of primal infeasibility. 301 302 E.g. consider the primal dual pair linear program pair: 303 (Primal) (Dual) 304 min c * x max b * y 305 s.t. A * x >= b s.t. y * A + r = c 306 x >= 0 y, r >= 0. 307 308 The dual ray is the pair (y, r) satisfying: 309 b * y > 0 310 y * A + r = 0 311 y, r >= 0. 312 Observe that adding a positive multiple of (y, r) to dual feasible solution 313 maintains dual feasibility and improves the objective (proving the dual is 314 unbounded). The dual ray also proves the primal problem is infeasible. 315 316 In the class DualRay below, y is dual_values and r is reduced_costs. 317 318 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note 319 that the dual objective depends on r in the general case). 320 321 Attributes: 322 dual_values: The value assigned for each LinearConstraint in the model. 323 reduced_costs: The value assigned for each Variable in the model. 324 """ 325 326 dual_values: Dict[linear_constraints.LinearConstraint, float] = dataclasses.field( 327 default_factory=dict 328 ) 329 reduced_costs: Dict[variables.Variable, float] = dataclasses.field( 330 default_factory=dict 331 ) 332 333 def to_proto(self) -> solution_pb2.DualRayProto: 334 """Returns an equivalent proto to this PrimalRay.""" 335 return solution_pb2.DualRayProto( 336 dual_values=sparse_containers.to_sparse_double_vector_proto( 337 self.dual_values 338 ), 339 reduced_costs=sparse_containers.to_sparse_double_vector_proto( 340 self.reduced_costs 341 ), 342 ) 343 344 345def parse_dual_ray( 346 proto: solution_pb2.DualRayProto, mod: model.Model, *, validate: bool = True 347) -> DualRay: 348 """Returns an equivalent DualRay from the input proto.""" 349 result = DualRay() 350 result.dual_values = sparse_containers.parse_linear_constraint_map( 351 proto.dual_values, mod, validate=validate 352 ) 353 result.reduced_costs = sparse_containers.parse_variable_map( 354 proto.reduced_costs, mod, validate=validate 355 ) 356 return result 357 358 359@dataclasses.dataclass 360class Basis: 361 """A combinatorial characterization for a solution to a linear program. 362 363 The simplex method for solving linear programs always returns a "basic 364 feasible solution" which can be described combinatorially as a Basis. A basis 365 assigns a BasisStatus for every variable and linear constraint. 366 367 E.g. consider a standard form LP: 368 min c * x 369 s.t. A * x = b 370 x >= 0 371 that has more variables than constraints and with full row rank A. 372 373 Let n be the number of variables and m the number of linear constraints. A 374 valid basis for this problem can be constructed as follows: 375 * All constraints will have basis status FIXED. 376 * Pick m variables such that the columns of A are linearly independent and 377 assign the status BASIC. 378 * Assign the status AT_LOWER for the remaining n - m variables. 379 380 The basic solution for this basis is the unique solution of A * x = b that has 381 all variables with status AT_LOWER fixed to their lower bounds (all zero). The 382 resulting solution is called a basic feasible solution if it also satisfies 383 x >= 0. 384 385 See go/mathopt-basis for treatment of the general case and an explanation of 386 how a dual solution is determined for a basis. 387 388 Attributes: 389 variable_status: The basis status for each variable in the model. 390 constraint_status: The basis status for each linear constraint in the model. 391 basic_dual_feasibility: This is an advanced feature used by MathOpt to 392 characterize feasibility of suboptimal LP solutions (optimal solutions 393 will always have status SolutionStatus.FEASIBLE). For single-sided LPs it 394 should be equal to the feasibility status of the associated dual solution. 395 For two-sided LPs it may be different in some edge cases (e.g. incomplete 396 solves with primal simplex). For more details see 397 go/mathopt-basis-advanced#dualfeasibility. If you are providing a starting 398 basis via ModelSolveParameters.initial_basis, this value is ignored and 399 can be None. It is only relevant for the basis returned by Solution.basis, 400 and it is never None when returned from solve(). This is an advanced 401 status. For single-sided LPs it should be equal to the feasibility status 402 of the associated dual solution. For two-sided LPs it may be different in 403 some edge cases (e.g. incomplete solves with primal simplex). For more 404 details see go/mathopt-basis-advanced#dualfeasibility. 405 """ 406 407 variable_status: Dict[variables.Variable, BasisStatus] = dataclasses.field( 408 default_factory=dict 409 ) 410 constraint_status: Dict[linear_constraints.LinearConstraint, BasisStatus] = ( 411 dataclasses.field(default_factory=dict) 412 ) 413 basic_dual_feasibility: Optional[SolutionStatus] = None 414 415 def to_proto(self) -> solution_pb2.BasisProto: 416 """Returns an equivalent proto for the basis.""" 417 return solution_pb2.BasisProto( 418 variable_status=_to_sparse_basis_status_vector_proto(self.variable_status), 419 constraint_status=_to_sparse_basis_status_vector_proto( 420 self.constraint_status 421 ), 422 basic_dual_feasibility=optional_solution_status_to_proto( 423 self.basic_dual_feasibility 424 ), 425 ) 426 427 428def parse_basis( 429 proto: solution_pb2.BasisProto, mod: model.Model, *, validate: bool = True 430) -> Basis: 431 """Returns an equivalent Basis to the input proto.""" 432 result = Basis() 433 for index, vid in enumerate(proto.variable_status.ids): 434 status_proto = proto.variable_status.values[index] 435 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED: 436 raise ValueError("Variable basis status should not be UNSPECIFIED") 437 result.variable_status[mod.get_variable(vid, validate=validate)] = BasisStatus( 438 status_proto 439 ) 440 for index, cid in enumerate(proto.constraint_status.ids): 441 status_proto = proto.constraint_status.values[index] 442 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED: 443 raise ValueError("Constraint basis status should not be UNSPECIFIED") 444 result.constraint_status[mod.get_linear_constraint(cid, validate=validate)] = ( 445 BasisStatus(status_proto) 446 ) 447 result.basic_dual_feasibility = parse_optional_solution_status( 448 proto.basic_dual_feasibility 449 ) 450 return result 451 452 453T = TypeVar("T", variables.Variable, linear_constraints.LinearConstraint) 454 455 456def _to_sparse_basis_status_vector_proto( 457 terms: Dict[T, BasisStatus], 458) -> solution_pb2.SparseBasisStatusVector: 459 """Converts a basis vector from a python Dict to a protocol buffer.""" 460 result = solution_pb2.SparseBasisStatusVector() 461 if terms: 462 id_and_status = sorted( 463 (key.id, status.value) for (key, status) in terms.items() 464 ) 465 ids, values = zip(*id_and_status) 466 result.ids[:] = ids 467 result.values[:] = values 468 return result 469 470 471@dataclasses.dataclass 472class Solution: 473 """A solution to the optimization problem in a Model.""" 474 475 primal_solution: Optional[PrimalSolution] = None 476 dual_solution: Optional[DualSolution] = None 477 basis: Optional[Basis] = None 478 479 def to_proto(self) -> solution_pb2.SolutionProto: 480 """Returns an equivalent proto for a solution.""" 481 return solution_pb2.SolutionProto( 482 primal_solution=( 483 self.primal_solution.to_proto() 484 if self.primal_solution is not None 485 else None 486 ), 487 dual_solution=( 488 self.dual_solution.to_proto() 489 if self.dual_solution is not None 490 else None 491 ), 492 basis=self.basis.to_proto() if self.basis is not None else None, 493 ) 494 495 496def parse_solution( 497 proto: solution_pb2.SolutionProto, 498 mod: model.Model, 499 *, 500 validate: bool = True, 501) -> Solution: 502 """Returns a Solution equivalent to the input proto.""" 503 result = Solution() 504 if proto.HasField("primal_solution"): 505 result.primal_solution = parse_primal_solution( 506 proto.primal_solution, mod, validate=validate 507 ) 508 if proto.HasField("dual_solution"): 509 result.dual_solution = parse_dual_solution( 510 proto.dual_solution, mod, validate=validate 511 ) 512 result.basis = ( 513 parse_basis(proto.basis, mod, validate=validate) 514 if proto.HasField("basis") 515 else None 516 ) 517 return result
29@enum.unique 30class BasisStatus(enum.Enum): 31 """Status of a variable/constraint in a LP basis. 32 33 Attributes: 34 FREE: The variable/constraint is free (it has no finite bounds). 35 AT_LOWER_BOUND: The variable/constraint is at its lower bound (which must be 36 finite). 37 AT_UPPER_BOUND: The variable/constraint is at its upper bound (which must be 38 finite). 39 FIXED_VALUE: The variable/constraint has identical finite lower and upper 40 bounds. 41 BASIC: The variable/constraint is basic. 42 """ 43 44 FREE = solution_pb2.BASIS_STATUS_FREE 45 AT_LOWER_BOUND = solution_pb2.BASIS_STATUS_AT_LOWER_BOUND 46 AT_UPPER_BOUND = solution_pb2.BASIS_STATUS_AT_UPPER_BOUND 47 FIXED_VALUE = solution_pb2.BASIS_STATUS_FIXED_VALUE 48 BASIC = solution_pb2.BASIS_STATUS_BASIC
Status of a variable/constraint in a LP basis.
Attributes:
- FREE: The variable/constraint is free (it has no finite bounds).
- AT_LOWER_BOUND: The variable/constraint is at its lower bound (which must be finite).
- AT_UPPER_BOUND: The variable/constraint is at its upper bound (which must be finite).
- FIXED_VALUE: The variable/constraint has identical finite lower and upper bounds.
- BASIC: The variable/constraint is basic.
51@enum.unique 52class SolutionStatus(enum.Enum): 53 """Feasibility of a primal or dual solution as claimed by the solver. 54 55 Attributes: 56 UNDETERMINED: Solver does not claim a feasibility status. 57 FEASIBLE: Solver claims the solution is feasible. 58 INFEASIBLE: Solver claims the solution is infeasible. 59 """ 60 61 UNDETERMINED = solution_pb2.SOLUTION_STATUS_UNDETERMINED 62 FEASIBLE = solution_pb2.SOLUTION_STATUS_FEASIBLE 63 INFEASIBLE = solution_pb2.SOLUTION_STATUS_INFEASIBLE
Feasibility of a primal or dual solution as claimed by the solver.
Attributes:
- UNDETERMINED: Solver does not claim a feasibility status.
- FEASIBLE: Solver claims the solution is feasible.
- INFEASIBLE: Solver claims the solution is infeasible.
66def parse_optional_solution_status( 67 proto: solution_pb2.SolutionStatusProto, 68) -> Optional[SolutionStatus]: 69 """Converts a proto SolutionStatus to an optional Python SolutionStatus.""" 70 return ( 71 None 72 if proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED 73 else SolutionStatus(proto) 74 )
Converts a proto SolutionStatus to an optional Python SolutionStatus.
77def optional_solution_status_to_proto( 78 status: Optional[SolutionStatus], 79) -> solution_pb2.SolutionStatusProto: 80 """Converts an optional Python SolutionStatus to a proto SolutionStatus.""" 81 return solution_pb2.SOLUTION_STATUS_UNSPECIFIED if status is None else status.value
Converts an optional Python SolutionStatus to a proto SolutionStatus.
84@dataclasses.dataclass 85class PrimalSolution: 86 """A solution to the optimization problem in a Model. 87 88 E.g. consider a simple linear program: 89 min c * x 90 s.t. A * x >= b 91 x >= 0. 92 A primal solution is assignment values to x. It is feasible if it satisfies 93 A * x >= b and x >= 0 from above. In the class PrimalSolution variable_values 94 is x and objective_value is c * x. 95 96 For the general case of a MathOpt optimization model, see go/mathopt-solutions 97 for details. 98 99 Attributes: 100 variable_values: The value assigned for each Variable in the model. 101 objective_value: The value of the objective value at this solution. This 102 value may not be always populated. 103 auxiliary_objective_values: Set only for multi objective problems, the 104 objective value for each auxiliary objective, as computed by the solver. 105 This value will not always be populated. 106 feasibility_status: The feasibility of the solution as claimed by the 107 solver. 108 """ 109 110 variable_values: Dict[variables.Variable, float] = dataclasses.field( 111 default_factory=dict 112 ) 113 objective_value: float = 0.0 114 auxiliary_objective_values: Dict[objectives.AuxiliaryObjective, float] = ( 115 dataclasses.field(default_factory=dict) 116 ) 117 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED 118 119 def to_proto(self) -> solution_pb2.PrimalSolutionProto: 120 """Returns an equivalent proto for a primal solution.""" 121 return solution_pb2.PrimalSolutionProto( 122 variable_values=sparse_containers.to_sparse_double_vector_proto( 123 self.variable_values 124 ), 125 objective_value=self.objective_value, 126 auxiliary_objective_values={ 127 obj.id: obj_value 128 for obj, obj_value in self.auxiliary_objective_values.items() 129 }, 130 feasibility_status=self.feasibility_status.value, 131 )
A solution to the optimization problem in a Model.
E.g. consider a simple linear program: min c * x s.t. A * x >= b x >= 0. A primal solution is assignment values to x. It is feasible if it satisfies A * x >= b and x >= 0 from above. In the class PrimalSolution variable_values is x and objective_value is c * x.
For the general case of a MathOpt optimization model, see go/mathopt-solutions for details.
Attributes:
- variable_values: The value assigned for each Variable in the model.
- objective_value: The value of the objective value at this solution. This value may not be always populated.
- auxiliary_objective_values: Set only for multi objective problems, the objective value for each auxiliary objective, as computed by the solver. This value will not always be populated.
- feasibility_status: The feasibility of the solution as claimed by the solver.
119 def to_proto(self) -> solution_pb2.PrimalSolutionProto: 120 """Returns an equivalent proto for a primal solution.""" 121 return solution_pb2.PrimalSolutionProto( 122 variable_values=sparse_containers.to_sparse_double_vector_proto( 123 self.variable_values 124 ), 125 objective_value=self.objective_value, 126 auxiliary_objective_values={ 127 obj.id: obj_value 128 for obj, obj_value in self.auxiliary_objective_values.items() 129 }, 130 feasibility_status=self.feasibility_status.value, 131 )
Returns an equivalent proto for a primal solution.
134def parse_primal_solution( 135 proto: solution_pb2.PrimalSolutionProto, 136 mod: model.Model, 137 *, 138 validate: bool = True, 139) -> PrimalSolution: 140 """Returns an equivalent PrimalSolution from the input proto.""" 141 result = PrimalSolution() 142 result.objective_value = proto.objective_value 143 for aux_id, obj_value in proto.auxiliary_objective_values.items(): 144 result.auxiliary_objective_values[ 145 mod.get_auxiliary_objective(aux_id, validate=validate) 146 ] = obj_value 147 result.variable_values = sparse_containers.parse_variable_map( 148 proto.variable_values, mod, validate=validate 149 ) 150 status_proto = proto.feasibility_status 151 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED: 152 raise ValueError("Primal solution feasibility status should not be UNSPECIFIED") 153 result.feasibility_status = SolutionStatus(status_proto) 154 return result
Returns an equivalent PrimalSolution from the input proto.
157@dataclasses.dataclass 158class PrimalRay: 159 """A direction of unbounded objective improvement in an optimization Model. 160 161 Equivalently, a certificate of infeasibility for the dual of the optimization 162 problem. 163 164 E.g. consider a simple linear program: 165 min c * x 166 s.t. A * x >= b 167 x >= 0. 168 A primal ray is an x that satisfies: 169 c * x < 0 170 A * x >= 0 171 x >= 0. 172 Observe that given a feasible solution, any positive multiple of the primal 173 ray plus that solution is still feasible, and gives a better objective 174 value. A primal ray also proves the dual optimization problem infeasible. 175 176 In the class PrimalRay, variable_values is this x. 177 178 For the general case of a MathOpt optimization model, see 179 go/mathopt-solutions for details. 180 181 Attributes: 182 variable_values: The value assigned for each Variable in the model. 183 """ 184 185 variable_values: Dict[variables.Variable, float] = dataclasses.field( 186 default_factory=dict 187 ) 188 189 def to_proto(self) -> solution_pb2.PrimalRayProto: 190 """Returns an equivalent proto to this PrimalRay.""" 191 return solution_pb2.PrimalRayProto( 192 variable_values=sparse_containers.to_sparse_double_vector_proto( 193 self.variable_values 194 ) 195 )
A direction of unbounded objective improvement in an optimization Model.
Equivalently, a certificate of infeasibility for the dual of the optimization problem.
E.g. consider a simple linear program: min c * x s.t. A * x >= b x >= 0.
A primal ray is an x that satisfies:
c * x < 0 A * x >= 0 x >= 0.
Observe that given a feasible solution, any positive multiple of the primal ray plus that solution is still feasible, and gives a better objective value. A primal ray also proves the dual optimization problem infeasible.
In the class PrimalRay, variable_values is this x.
For the general case of a MathOpt optimization model, see go/mathopt-solutions for details.
Attributes:
- variable_values: The value assigned for each Variable in the model.
189 def to_proto(self) -> solution_pb2.PrimalRayProto: 190 """Returns an equivalent proto to this PrimalRay.""" 191 return solution_pb2.PrimalRayProto( 192 variable_values=sparse_containers.to_sparse_double_vector_proto( 193 self.variable_values 194 ) 195 )
Returns an equivalent proto to this PrimalRay.
198def parse_primal_ray( 199 proto: solution_pb2.PrimalRayProto, 200 mod: model.Model, 201 *, 202 validate: bool = True, 203) -> PrimalRay: 204 """Returns an equivalent PrimalRay from the input proto.""" 205 result = PrimalRay() 206 result.variable_values = sparse_containers.parse_variable_map( 207 proto.variable_values, mod, validate=validate 208 ) 209 return result
Returns an equivalent PrimalRay from the input proto.
212@dataclasses.dataclass 213class DualSolution: 214 """A solution to the dual of the optimization problem given by a Model. 215 216 E.g. consider the primal dual pair linear program pair: 217 (Primal) (Dual) 218 min c * x max b * y 219 s.t. A * x >= b s.t. y * A + r = c 220 x >= 0 y, r >= 0. 221 The dual solution is the pair (y, r). It is feasible if it satisfies the 222 constraints from (Dual) above. 223 224 Below, y is dual_values, r is reduced_costs, and b * y is objective_value. 225 226 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note 227 that the dual objective depends on r in the general case). 228 229 Attributes: 230 dual_values: The value assigned for each LinearConstraint in the model. 231 quadratic_dual_values: The value assigned for each QuadraticConstraint in 232 the model. 233 reduced_costs: The value assigned for each Variable in the model. 234 objective_value: The value of the dual objective value at this solution. 235 This value may not be always populated. 236 feasibility_status: The feasibility of the solution as claimed by the 237 solver. 238 """ 239 240 dual_values: Dict[linear_constraints.LinearConstraint, float] = dataclasses.field( 241 default_factory=dict 242 ) 243 quadratic_dual_values: Dict[quadratic_constraints.QuadraticConstraint, float] = ( 244 dataclasses.field(default_factory=dict) 245 ) 246 reduced_costs: Dict[variables.Variable, float] = dataclasses.field( 247 default_factory=dict 248 ) 249 objective_value: Optional[float] = None 250 feasibility_status: SolutionStatus = SolutionStatus.UNDETERMINED 251 252 def to_proto(self) -> solution_pb2.DualSolutionProto: 253 """Returns an equivalent proto for a dual solution.""" 254 return solution_pb2.DualSolutionProto( 255 dual_values=sparse_containers.to_sparse_double_vector_proto( 256 self.dual_values 257 ), 258 reduced_costs=sparse_containers.to_sparse_double_vector_proto( 259 self.reduced_costs 260 ), 261 quadratic_dual_values=sparse_containers.to_sparse_double_vector_proto( 262 self.quadratic_dual_values 263 ), 264 objective_value=self.objective_value, 265 feasibility_status=self.feasibility_status.value, 266 )
A solution to the dual of the optimization problem given by a Model.
E.g. consider the primal dual pair linear program pair: (Primal) (Dual) min c * x max b * y s.t. A * x >= b s.t. y * A + r = c x >= 0 y, r >= 0. The dual solution is the pair (y, r). It is feasible if it satisfies the constraints from (Dual) above.
Below, y is dual_values, r is reduced_costs, and b * y is objective_value.
For the general case, see go/mathopt-solutions and go/mathopt-dual (and note that the dual objective depends on r in the general case).
Attributes:
- dual_values: The value assigned for each LinearConstraint in the model.
- quadratic_dual_values: The value assigned for each QuadraticConstraint in the model.
- reduced_costs: The value assigned for each Variable in the model.
- objective_value: The value of the dual objective value at this solution. This value may not be always populated.
- feasibility_status: The feasibility of the solution as claimed by the solver.
252 def to_proto(self) -> solution_pb2.DualSolutionProto: 253 """Returns an equivalent proto for a dual solution.""" 254 return solution_pb2.DualSolutionProto( 255 dual_values=sparse_containers.to_sparse_double_vector_proto( 256 self.dual_values 257 ), 258 reduced_costs=sparse_containers.to_sparse_double_vector_proto( 259 self.reduced_costs 260 ), 261 quadratic_dual_values=sparse_containers.to_sparse_double_vector_proto( 262 self.quadratic_dual_values 263 ), 264 objective_value=self.objective_value, 265 feasibility_status=self.feasibility_status.value, 266 )
Returns an equivalent proto for a dual solution.
269def parse_dual_solution( 270 proto: solution_pb2.DualSolutionProto, 271 mod: model.Model, 272 *, 273 validate: bool = True, 274) -> DualSolution: 275 """Returns an equivalent DualSolution from the input proto.""" 276 result = DualSolution() 277 result.objective_value = ( 278 proto.objective_value if proto.HasField("objective_value") else None 279 ) 280 result.dual_values = sparse_containers.parse_linear_constraint_map( 281 proto.dual_values, mod, validate=validate 282 ) 283 result.quadratic_dual_values = sparse_containers.parse_quadratic_constraint_map( 284 proto.quadratic_dual_values, mod, validate=validate 285 ) 286 result.reduced_costs = sparse_containers.parse_variable_map( 287 proto.reduced_costs, mod, validate=validate 288 ) 289 status_proto = proto.feasibility_status 290 if status_proto == solution_pb2.SOLUTION_STATUS_UNSPECIFIED: 291 raise ValueError("Dual solution feasibility status should not be UNSPECIFIED") 292 result.feasibility_status = SolutionStatus(status_proto) 293 return result
Returns an equivalent DualSolution from the input proto.
296@dataclasses.dataclass 297class DualRay: 298 """A direction of unbounded objective improvement in an optimization Model. 299 300 A direction of unbounded improvement to the dual of an optimization, 301 problem; equivalently, a certificate of primal infeasibility. 302 303 E.g. consider the primal dual pair linear program pair: 304 (Primal) (Dual) 305 min c * x max b * y 306 s.t. A * x >= b s.t. y * A + r = c 307 x >= 0 y, r >= 0. 308 309 The dual ray is the pair (y, r) satisfying: 310 b * y > 0 311 y * A + r = 0 312 y, r >= 0. 313 Observe that adding a positive multiple of (y, r) to dual feasible solution 314 maintains dual feasibility and improves the objective (proving the dual is 315 unbounded). The dual ray also proves the primal problem is infeasible. 316 317 In the class DualRay below, y is dual_values and r is reduced_costs. 318 319 For the general case, see go/mathopt-solutions and go/mathopt-dual (and note 320 that the dual objective depends on r in the general case). 321 322 Attributes: 323 dual_values: The value assigned for each LinearConstraint in the model. 324 reduced_costs: The value assigned for each Variable in the model. 325 """ 326 327 dual_values: Dict[linear_constraints.LinearConstraint, float] = dataclasses.field( 328 default_factory=dict 329 ) 330 reduced_costs: Dict[variables.Variable, float] = dataclasses.field( 331 default_factory=dict 332 ) 333 334 def to_proto(self) -> solution_pb2.DualRayProto: 335 """Returns an equivalent proto to this PrimalRay.""" 336 return solution_pb2.DualRayProto( 337 dual_values=sparse_containers.to_sparse_double_vector_proto( 338 self.dual_values 339 ), 340 reduced_costs=sparse_containers.to_sparse_double_vector_proto( 341 self.reduced_costs 342 ), 343 )
A direction of unbounded objective improvement in an optimization Model.
A direction of unbounded improvement to the dual of an optimization, problem; equivalently, a certificate of primal infeasibility.
E.g. consider the primal dual pair linear program pair: (Primal) (Dual) min c * x max b * y s.t. A * x >= b s.t. y * A + r = c x >= 0 y, r >= 0.
The dual ray is the pair (y, r) satisfying: b * y > 0 y * A + r = 0 y, r >= 0. Observe that adding a positive multiple of (y, r) to dual feasible solution maintains dual feasibility and improves the objective (proving the dual is unbounded). The dual ray also proves the primal problem is infeasible.
In the class DualRay below, y is dual_values and r is reduced_costs.
For the general case, see go/mathopt-solutions and go/mathopt-dual (and note that the dual objective depends on r in the general case).
Attributes:
- dual_values: The value assigned for each LinearConstraint in the model.
- reduced_costs: The value assigned for each Variable in the model.
334 def to_proto(self) -> solution_pb2.DualRayProto: 335 """Returns an equivalent proto to this PrimalRay.""" 336 return solution_pb2.DualRayProto( 337 dual_values=sparse_containers.to_sparse_double_vector_proto( 338 self.dual_values 339 ), 340 reduced_costs=sparse_containers.to_sparse_double_vector_proto( 341 self.reduced_costs 342 ), 343 )
Returns an equivalent proto to this PrimalRay.
346def parse_dual_ray( 347 proto: solution_pb2.DualRayProto, mod: model.Model, *, validate: bool = True 348) -> DualRay: 349 """Returns an equivalent DualRay from the input proto.""" 350 result = DualRay() 351 result.dual_values = sparse_containers.parse_linear_constraint_map( 352 proto.dual_values, mod, validate=validate 353 ) 354 result.reduced_costs = sparse_containers.parse_variable_map( 355 proto.reduced_costs, mod, validate=validate 356 ) 357 return result
Returns an equivalent DualRay from the input proto.
360@dataclasses.dataclass 361class Basis: 362 """A combinatorial characterization for a solution to a linear program. 363 364 The simplex method for solving linear programs always returns a "basic 365 feasible solution" which can be described combinatorially as a Basis. A basis 366 assigns a BasisStatus for every variable and linear constraint. 367 368 E.g. consider a standard form LP: 369 min c * x 370 s.t. A * x = b 371 x >= 0 372 that has more variables than constraints and with full row rank A. 373 374 Let n be the number of variables and m the number of linear constraints. A 375 valid basis for this problem can be constructed as follows: 376 * All constraints will have basis status FIXED. 377 * Pick m variables such that the columns of A are linearly independent and 378 assign the status BASIC. 379 * Assign the status AT_LOWER for the remaining n - m variables. 380 381 The basic solution for this basis is the unique solution of A * x = b that has 382 all variables with status AT_LOWER fixed to their lower bounds (all zero). The 383 resulting solution is called a basic feasible solution if it also satisfies 384 x >= 0. 385 386 See go/mathopt-basis for treatment of the general case and an explanation of 387 how a dual solution is determined for a basis. 388 389 Attributes: 390 variable_status: The basis status for each variable in the model. 391 constraint_status: The basis status for each linear constraint in the model. 392 basic_dual_feasibility: This is an advanced feature used by MathOpt to 393 characterize feasibility of suboptimal LP solutions (optimal solutions 394 will always have status SolutionStatus.FEASIBLE). For single-sided LPs it 395 should be equal to the feasibility status of the associated dual solution. 396 For two-sided LPs it may be different in some edge cases (e.g. incomplete 397 solves with primal simplex). For more details see 398 go/mathopt-basis-advanced#dualfeasibility. If you are providing a starting 399 basis via ModelSolveParameters.initial_basis, this value is ignored and 400 can be None. It is only relevant for the basis returned by Solution.basis, 401 and it is never None when returned from solve(). This is an advanced 402 status. For single-sided LPs it should be equal to the feasibility status 403 of the associated dual solution. For two-sided LPs it may be different in 404 some edge cases (e.g. incomplete solves with primal simplex). For more 405 details see go/mathopt-basis-advanced#dualfeasibility. 406 """ 407 408 variable_status: Dict[variables.Variable, BasisStatus] = dataclasses.field( 409 default_factory=dict 410 ) 411 constraint_status: Dict[linear_constraints.LinearConstraint, BasisStatus] = ( 412 dataclasses.field(default_factory=dict) 413 ) 414 basic_dual_feasibility: Optional[SolutionStatus] = None 415 416 def to_proto(self) -> solution_pb2.BasisProto: 417 """Returns an equivalent proto for the basis.""" 418 return solution_pb2.BasisProto( 419 variable_status=_to_sparse_basis_status_vector_proto(self.variable_status), 420 constraint_status=_to_sparse_basis_status_vector_proto( 421 self.constraint_status 422 ), 423 basic_dual_feasibility=optional_solution_status_to_proto( 424 self.basic_dual_feasibility 425 ), 426 )
A combinatorial characterization for a solution to a linear program.
The simplex method for solving linear programs always returns a "basic feasible solution" which can be described combinatorially as a Basis. A basis assigns a BasisStatus for every variable and linear constraint.
E.g. consider a standard form LP: min c * x s.t. A * x = b x >= 0 that has more variables than constraints and with full row rank A.
Let n be the number of variables and m the number of linear constraints. A valid basis for this problem can be constructed as follows:
- All constraints will have basis status FIXED.
- Pick m variables such that the columns of A are linearly independent and assign the status BASIC.
- Assign the status AT_LOWER for the remaining n - m variables.
The basic solution for this basis is the unique solution of A * x = b that has all variables with status AT_LOWER fixed to their lower bounds (all zero). The resulting solution is called a basic feasible solution if it also satisfies x >= 0.
See go/mathopt-basis for treatment of the general case and an explanation of how a dual solution is determined for a basis.
Attributes:
- variable_status: The basis status for each variable in the model.
- constraint_status: The basis status for each linear constraint in the model.
- basic_dual_feasibility: This is an advanced feature used by MathOpt to characterize feasibility of suboptimal LP solutions (optimal solutions will always have status SolutionStatus.FEASIBLE). For single-sided LPs it should be equal to the feasibility status of the associated dual solution. For two-sided LPs it may be different in some edge cases (e.g. incomplete solves with primal simplex). For more details see go/mathopt-basis-advanced#dualfeasibility. If you are providing a starting basis via ModelSolveParameters.initial_basis, this value is ignored and can be None. It is only relevant for the basis returned by Solution.basis, and it is never None when returned from solve(). This is an advanced status. For single-sided LPs it should be equal to the feasibility status of the associated dual solution. For two-sided LPs it may be different in some edge cases (e.g. incomplete solves with primal simplex). For more details see go/mathopt-basis-advanced#dualfeasibility.
416 def to_proto(self) -> solution_pb2.BasisProto: 417 """Returns an equivalent proto for the basis.""" 418 return solution_pb2.BasisProto( 419 variable_status=_to_sparse_basis_status_vector_proto(self.variable_status), 420 constraint_status=_to_sparse_basis_status_vector_proto( 421 self.constraint_status 422 ), 423 basic_dual_feasibility=optional_solution_status_to_proto( 424 self.basic_dual_feasibility 425 ), 426 )
Returns an equivalent proto for the basis.
429def parse_basis( 430 proto: solution_pb2.BasisProto, mod: model.Model, *, validate: bool = True 431) -> Basis: 432 """Returns an equivalent Basis to the input proto.""" 433 result = Basis() 434 for index, vid in enumerate(proto.variable_status.ids): 435 status_proto = proto.variable_status.values[index] 436 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED: 437 raise ValueError("Variable basis status should not be UNSPECIFIED") 438 result.variable_status[mod.get_variable(vid, validate=validate)] = BasisStatus( 439 status_proto 440 ) 441 for index, cid in enumerate(proto.constraint_status.ids): 442 status_proto = proto.constraint_status.values[index] 443 if status_proto == solution_pb2.BASIS_STATUS_UNSPECIFIED: 444 raise ValueError("Constraint basis status should not be UNSPECIFIED") 445 result.constraint_status[mod.get_linear_constraint(cid, validate=validate)] = ( 446 BasisStatus(status_proto) 447 ) 448 result.basic_dual_feasibility = parse_optional_solution_status( 449 proto.basic_dual_feasibility 450 ) 451 return result
Returns an equivalent Basis to the input proto.
472@dataclasses.dataclass 473class Solution: 474 """A solution to the optimization problem in a Model.""" 475 476 primal_solution: Optional[PrimalSolution] = None 477 dual_solution: Optional[DualSolution] = None 478 basis: Optional[Basis] = None 479 480 def to_proto(self) -> solution_pb2.SolutionProto: 481 """Returns an equivalent proto for a solution.""" 482 return solution_pb2.SolutionProto( 483 primal_solution=( 484 self.primal_solution.to_proto() 485 if self.primal_solution is not None 486 else None 487 ), 488 dual_solution=( 489 self.dual_solution.to_proto() 490 if self.dual_solution is not None 491 else None 492 ), 493 basis=self.basis.to_proto() if self.basis is not None else None, 494 )
A solution to the optimization problem in a Model.
480 def to_proto(self) -> solution_pb2.SolutionProto: 481 """Returns an equivalent proto for a solution.""" 482 return solution_pb2.SolutionProto( 483 primal_solution=( 484 self.primal_solution.to_proto() 485 if self.primal_solution is not None 486 else None 487 ), 488 dual_solution=( 489 self.dual_solution.to_proto() 490 if self.dual_solution is not None 491 else None 492 ), 493 basis=self.basis.to_proto() if self.basis is not None else None, 494 )
Returns an equivalent proto for a solution.
497def parse_solution( 498 proto: solution_pb2.SolutionProto, 499 mod: model.Model, 500 *, 501 validate: bool = True, 502) -> Solution: 503 """Returns a Solution equivalent to the input proto.""" 504 result = Solution() 505 if proto.HasField("primal_solution"): 506 result.primal_solution = parse_primal_solution( 507 proto.primal_solution, mod, validate=validate 508 ) 509 if proto.HasField("dual_solution"): 510 result.dual_solution = parse_dual_solution( 511 proto.dual_solution, mod, validate=validate 512 ) 513 result.basis = ( 514 parse_basis(proto.basis, mod, validate=validate) 515 if proto.HasField("basis") 516 else None 517 ) 518 return result
Returns a Solution equivalent to the input proto.