ortools.math_opt.python.ipc.remote_http_solve

Solve MathOpt models via HTTP request to the OR API.

  1# Copyright 2010-2024 Google LLC
  2# Licensed under the Apache License, Version 2.0 (the "License");
  3# you may not use this file except in compliance with the License.
  4# You may obtain a copy of the License at
  5#
  6#     http://www.apache.org/licenses/LICENSE-2.0
  7#
  8# Unless required by applicable law or agreed to in writing, software
  9# distributed under the License is distributed on an "AS IS" BASIS,
 10# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 11# See the License for the specific language governing permissions and
 12# limitations under the License.
 13
 14"""Solve MathOpt models via HTTP request to the OR API."""
 15
 16import json
 17from typing import List, Optional, Tuple
 18from google.protobuf import json_format
 19import requests
 20from ortools.service.v1 import optimization_pb2
 21from ortools.math_opt import rpc_pb2
 22from ortools.math_opt.python import mathopt
 23from ortools.math_opt.python.ipc import proto_converter
 24
 25_DEFAULT_DEADLINE_SEC = 10
 26_DEFAULT_ENDPOINT = "https://optimization.googleapis.com/v1/mathopt:solveMathOptModel"
 27_RELATIVE_TIME_BUFFER = 0.05
 28
 29
 30class OptimizationServiceError(Exception):
 31    """Error produced when solving a MathOpt model via HTTP request."""
 32
 33
 34def remote_http_solve(
 35    model: mathopt.Model,
 36    solver_type: mathopt.SolverType,
 37    params: Optional[mathopt.SolveParameters] = None,
 38    model_params: Optional[mathopt.ModelSolveParameters] = None,
 39    endpoint: Optional[str] = _DEFAULT_ENDPOINT,
 40    api_key: Optional[str] = None,
 41    deadline_sec: Optional[float] = _DEFAULT_DEADLINE_SEC,
 42) -> Tuple[mathopt.SolveResult, List[str]]:
 43    """Solves a MathOpt model via HTTP request to the OR API.
 44
 45    Args:
 46      model: The optimization model.
 47      solver_type: The underlying solver to use.
 48      params: Optional configuration of the underlying solver.
 49      model_params: Optional configuration of the solver that is model specific.
 50      endpoint: An URI identifying the service for remote solves.
 51      api_key: Key to the OR API.
 52      deadline_sec: The number of seconds before the request times out.
 53
 54    Returns:
 55      A SolveResult containing the termination reason, solution(s) and stats.
 56      A list of messages with the logs (if specified in the `params`).
 57
 58    Raises:
 59      OptimizationServiceError: if an HTTP error is returned while solving a
 60        model.
 61    """
 62    if api_key is None:
 63        # TODO(b/306709279): Relax this when unauthenticated solves are allowed.
 64        raise ValueError("api_key can't be None when solving remotely")
 65
 66    payload = _build_json_payload(model, solver_type, params, model_params)
 67
 68    session = create_optimization_service_session(api_key, deadline_sec)
 69    response = session.post(
 70        url=endpoint,
 71        json=payload,
 72        timeout=deadline_sec,
 73    )
 74
 75    if not response.ok:
 76        http_error = json.loads(response.content)["error"]
 77        raise OptimizationServiceError(
 78            f'status code {http_error["code"]}: {http_error["message"]}'
 79        ) from None
 80
 81    return _build_solve_result(response.content, model)
 82
 83
 84def create_optimization_service_session(
 85    api_key: str,
 86    deadline_sec: float,
 87) -> requests.Session:
 88    """Creates a session with the appropriate headers.
 89
 90    This function sets headers for authentication via an API key, and it sets
 91    deadlines set for the server and the connection.
 92
 93    Args:
 94      api_key: Key to the OR API.
 95      deadline_sec: The number of seconds before the request times out.
 96
 97    Returns:
 98      requests.Session a session with the necessary headers to call the
 99      optimization service.
100    """
101    session = requests.Session()
102    server_timeout = deadline_sec * (1 - _RELATIVE_TIME_BUFFER)
103    session.headers = {
104        "Content-Type": "application/json",
105        "Connection": "keep-alive",
106        "Keep-Alive": f"timeout={deadline_sec}, max=1",
107        "X-Server-Timeout": f"{server_timeout}",
108        "X-Goog-Api-Key": api_key,
109    }
110    return session
111
112
113def _build_json_payload(
114    model: mathopt.Model,
115    solver_type: mathopt.SolverType,
116    params: Optional[mathopt.SolveParameters],
117    model_params: Optional[mathopt.ModelSolveParameters],
118):
119    """Builds a JSON payload.
120
121    Args:
122      model: The optimization model.
123      solver_type: The underlying solver to use.
124      params: Optional configuration of the underlying solver.
125      model_params: Optional configuration of the solver that is model specific.
126
127    Returns:
128      A JSON object with a MathOpt model and corresponding parameters.
129
130    Raises:
131      SerializationError: If building the OR API proto is not successful or
132        deserializing to JSON fails.
133    """
134    params = params or mathopt.SolveParameters()
135    model_params = model_params or mathopt.ModelSolveParameters()
136    try:
137        request = rpc_pb2.SolveRequest(
138            model=model.export_model(),
139            solver_type=solver_type.value,
140            parameters=params.to_proto(),
141            model_parameters=model_params.to_proto(),
142        )
143        api_request = proto_converter.convert_request(request)
144    except ValueError as err:
145        raise ValueError from err
146
147    return json.loads(json_format.MessageToJson(api_request))
148
149
150def _build_solve_result(
151    json_response: bytes, model: mathopt.Model
152) -> Tuple[mathopt.SolveResult, List[str]]:
153    """Parses a JSON representation of a response to a SolveResult object.
154
155    Args:
156      json_response: bytes representing the `SolveMathOptModelResponse` in JSON
157        format
158      model: The optimization model that was solved
159
160    Returns:
161      A SolveResult of the model.
162      A list of messages with the logs.
163
164    Raises:
165      SerializationError: If parsing the json response fails or if converting the
166        OR API response to the internal MathOpt response fails.
167    """
168    try:
169        api_response = json_format.Parse(
170            json_response, optimization_pb2.SolveMathOptModelResponse()
171        )
172    except json_format.ParseError as json_err:
173        raise ValueError(
174            "API response is not a valid SolveMathOptModelResponse JSON"
175        ) from json_err
176
177    response = proto_converter.convert_response(api_response)
178    return mathopt.parse_solve_result(response.result, model), list(response.messages)
class OptimizationServiceError(builtins.Exception):
31class OptimizationServiceError(Exception):
32    """Error produced when solving a MathOpt model via HTTP request."""

Error produced when solving a MathOpt model via HTTP request.

Inherited Members
builtins.Exception
Exception
builtins.BaseException
with_traceback
add_note
args
def remote_http_solve( model: ortools.math_opt.python.model.Model, solver_type: ortools.math_opt.python.parameters.SolverType, params: Optional[ortools.math_opt.python.parameters.SolveParameters] = None, model_params: Optional[ortools.math_opt.python.model_parameters.ModelSolveParameters] = None, endpoint: Optional[str] = 'https://optimization.googleapis.com/v1/mathopt:solveMathOptModel', api_key: Optional[str] = None, deadline_sec: Optional[float] = 10) -> Tuple[ortools.math_opt.python.result.SolveResult, List[str]]:
35def remote_http_solve(
36    model: mathopt.Model,
37    solver_type: mathopt.SolverType,
38    params: Optional[mathopt.SolveParameters] = None,
39    model_params: Optional[mathopt.ModelSolveParameters] = None,
40    endpoint: Optional[str] = _DEFAULT_ENDPOINT,
41    api_key: Optional[str] = None,
42    deadline_sec: Optional[float] = _DEFAULT_DEADLINE_SEC,
43) -> Tuple[mathopt.SolveResult, List[str]]:
44    """Solves a MathOpt model via HTTP request to the OR API.
45
46    Args:
47      model: The optimization model.
48      solver_type: The underlying solver to use.
49      params: Optional configuration of the underlying solver.
50      model_params: Optional configuration of the solver that is model specific.
51      endpoint: An URI identifying the service for remote solves.
52      api_key: Key to the OR API.
53      deadline_sec: The number of seconds before the request times out.
54
55    Returns:
56      A SolveResult containing the termination reason, solution(s) and stats.
57      A list of messages with the logs (if specified in the `params`).
58
59    Raises:
60      OptimizationServiceError: if an HTTP error is returned while solving a
61        model.
62    """
63    if api_key is None:
64        # TODO(b/306709279): Relax this when unauthenticated solves are allowed.
65        raise ValueError("api_key can't be None when solving remotely")
66
67    payload = _build_json_payload(model, solver_type, params, model_params)
68
69    session = create_optimization_service_session(api_key, deadline_sec)
70    response = session.post(
71        url=endpoint,
72        json=payload,
73        timeout=deadline_sec,
74    )
75
76    if not response.ok:
77        http_error = json.loads(response.content)["error"]
78        raise OptimizationServiceError(
79            f'status code {http_error["code"]}: {http_error["message"]}'
80        ) from None
81
82    return _build_solve_result(response.content, model)

Solves a MathOpt model via HTTP request to the OR API.

Arguments:
  • model: The optimization model.
  • solver_type: The underlying solver to use.
  • params: Optional configuration of the underlying solver.
  • model_params: Optional configuration of the solver that is model specific.
  • endpoint: An URI identifying the service for remote solves.
  • api_key: Key to the OR API.
  • deadline_sec: The number of seconds before the request times out.
Returns:

A SolveResult containing the termination reason, solution(s) and stats. A list of messages with the logs (if specified in the params).

Raises:
  • OptimizationServiceError: if an HTTP error is returned while solving a model.
def create_optimization_service_session(api_key: str, deadline_sec: float) -> requests.sessions.Session:
 85def create_optimization_service_session(
 86    api_key: str,
 87    deadline_sec: float,
 88) -> requests.Session:
 89    """Creates a session with the appropriate headers.
 90
 91    This function sets headers for authentication via an API key, and it sets
 92    deadlines set for the server and the connection.
 93
 94    Args:
 95      api_key: Key to the OR API.
 96      deadline_sec: The number of seconds before the request times out.
 97
 98    Returns:
 99      requests.Session a session with the necessary headers to call the
100      optimization service.
101    """
102    session = requests.Session()
103    server_timeout = deadline_sec * (1 - _RELATIVE_TIME_BUFFER)
104    session.headers = {
105        "Content-Type": "application/json",
106        "Connection": "keep-alive",
107        "Keep-Alive": f"timeout={deadline_sec}, max=1",
108        "X-Server-Timeout": f"{server_timeout}",
109        "X-Goog-Api-Key": api_key,
110    }
111    return session

Creates a session with the appropriate headers.

This function sets headers for authentication via an API key, and it sets deadlines set for the server and the connection.

Arguments:
  • api_key: Key to the OR API.
  • deadline_sec: The number of seconds before the request times out.
Returns:

requests.Session a session with the necessary headers to call the optimization service.