ortools.linear_solver.python.model_builder_helper
Holds an linear expression.
A linear expression is built from constants and variables.
For example, x + 2.0 * (y - z + 1.0).
Linear expressions are used in Model models in constraints and in the objective:
- You can define linear constraints as in:
model.add(x + 2 * y <= 5.0)
model.add(sum(array_of_vars) == 5.0)
- In Model, the objective is a linear expression:
model.minimize(x + 2.0 * y + z)
- For large arrays, using the LinearExpr class is faster that using the python
sum()function. You can create constraints and the objective from lists of linear expressions or coefficients as follows:
model.minimize(model_builder.LinearExpr.sum(expressions))
model.add(model_builder.LinearExpr.weighted_sum(expressions, coeffs) >= 0)
sum(args, *kwargs) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Creates sum(expressions) [+ constant].
weighted_sum(expressions: Sequence, coefficients: list[float], *, constant: float = 0.0) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Creates sum(expressions[i] * coefficients[i]) [+ constant].
term(args, *kwargs) Overloaded function.
- term(expr: ortools.linear_solver.python.model_builder_helper.LinearExpr, coeff: float) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Returns expr * coeff.
- term(expr: ortools.linear_solver.python.model_builder_helper.LinearExpr, coeff: float, *, constant: float) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Returns expr * coeff [+ constant].
- term(value: float, coeff: float, *, constant: float) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Returns value * coeff [+ constant].
affine(args, *kwargs) Overloaded function.
- affine(expr: ortools.linear_solver.python.model_builder_helper.LinearExpr, coeff: float, constant: float = 0.0) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Returns expr * coeff + constant.
- affine(value: float, coeff: float, constant: float = 0.0) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Returns value * coeff + constant.
constant(value: float) -> ortools.linear_solver.python.model_builder_helper.LinearExpr
Returns a constant linear expression.
Holds an linear expression.
A linear expression is built from constants and variables.
For example, x + 2.0 * (y - z + 1.0).
Linear expressions are used in Model models in constraints and in the objective:
- You can define linear constraints as in:
model.add(x + 2 * y <= 5.0)
model.add(sum(array_of_vars) == 5.0)
- In Model, the objective is a linear expression:
model.minimize(x + 2.0 * y + z)
- For large arrays, using the LinearExpr class is faster that using the python
sum()function. You can create constraints and the objective from lists of linear expressions or coefficients as follows:
model.minimize(model_builder.LinearExpr.sum(expressions))
model.add(model_builder.LinearExpr.weighted_sum(expressions, coeffs) >= 0)
__init__(args, *kwargs) Overloaded function.
__init__(self: ortools.linear_solver.python.model_builder_helper.FlatExpr, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.FlatExpr, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg1: ortools.linear_solver.python.model_builder_helper.LinearExpr) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.FlatExpr, arg0: list[operations_research::mb::Variable], arg1: list[float], arg2: float) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.FlatExpr, arg0: float) -> None
(arg0: ortools.linear_solver.python.model_builder_helper.FlatExpr) -> list[operations_research::mb::Variable]
variable_indices(self: ortools.linear_solver.python.model_builder_helper.FlatExpr) -> list[int]
Inherited Members
Holds a sum of linear expressions, and constants.
__init__(self: ortools.linear_solver.python.model_builder_helper.SumArray, arg0: list[ortools.linear_solver.python.model_builder_helper.LinearExpr], arg1: float) -> None
Inherited Members
Holds an linear expression.
A linear expression is built from constants and variables.
For example, x + 2.0 * (y - z + 1.0).
Linear expressions are used in Model models in constraints and in the objective:
- You can define linear constraints as in:
model.add(x + 2 * y <= 5.0)
model.add(sum(array_of_vars) == 5.0)
- In Model, the objective is a linear expression:
model.minimize(x + 2.0 * y + z)
- For large arrays, using the LinearExpr class is faster that using the python
sum()function. You can create constraints and the objective from lists of linear expressions or coefficients as follows:
model.minimize(model_builder.LinearExpr.sum(expressions))
model.add(model_builder.LinearExpr.weighted_sum(expressions, coeffs) >= 0)
__init__(self: ortools.linear_solver.python.model_builder_helper.AffineExpr, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg1: float, arg2: float) -> None
Inherited Members
A variable (continuous or integral).
A Variable is an object that can take on any integer value within defined ranges. Variables appear in constraint like:
x + y >= 5
Solving a model is equivalent to finding, for each variable, a single value from the set of initial values (called the initial domain), such that the model is feasible, or optimal if you provided an objective function.
__init__(args, *kwargs) Overloaded function.
__init__(self: ortools.linear_solver.python.model_builder_helper.Variable, arg0: operations_research::mb::ModelBuilderHelper, arg1: int) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.Variable, arg0: operations_research::mb::ModelBuilderHelper, arg1: float, arg2: float, arg3: bool) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.Variable, arg0: operations_research::mb::ModelBuilderHelper, arg1: float, arg2: float, arg3: bool, arg4: str) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.Variable, arg0: operations_research::mb::ModelBuilderHelper, arg1: int, arg2: int, arg3: bool) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.Variable, arg0: operations_research::mb::ModelBuilderHelper, arg1: int, arg2: int, arg3: bool, arg4: str) -> None
(arg0: ortools.linear_solver.python.model_builder_helper.Variable) -> operations_research::mb::ModelBuilderHelper
Inherited Members
__init__(args, *kwargs) Overloaded function.
__init__(self: ortools.linear_solver.python.model_builder_helper.BoundedLinearExpression, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg1: float, arg2: float) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.BoundedLinearExpression, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg1: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg2: float, arg3: float) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.BoundedLinearExpression, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg1: int, arg2: int) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.BoundedLinearExpression, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg1: ortools.linear_solver.python.model_builder_helper.LinearExpr, arg2: int, arg3: int) -> None
(arg0: ortools.linear_solver.python.model_builder_helper.BoundedLinearExpression) -> list[float]
to_mpmodel_proto(helper: operations_research::mb::ModelBuilderHelper) -> operations_research::MPModelProto
__init__(self: ortools.linear_solver.python.model_builder_helper.MPModelExportOptions) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> None
overwrite_model(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, other_helper: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> None
export_to_mps_string(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, options: ortools.linear_solver.python.model_builder_helper.MPModelExportOptions = <ortools.linear_solver.python.model_builder_helper.MPModelExportOptions object at 0x7f8c8f2d7470>) -> str
export_to_lp_string(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, options: ortools.linear_solver.python.model_builder_helper.MPModelExportOptions = <ortools.linear_solver.python.model_builder_helper.MPModelExportOptions object at 0x7f8c977875f0>) -> str
write_to_mps_file(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, filename: str, options: ortools.linear_solver.python.model_builder_helper.MPModelExportOptions = <ortools.linear_solver.python.model_builder_helper.MPModelExportOptions object at 0x7f8c8f2d7830>) -> bool
read_model_from_proto_file(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, filename: str) -> bool
write_model_to_proto_file(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, filename: str) -> bool
import_from_mps_string(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, mps_string: str) -> bool
import_from_mps_file(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, mps_file: str) -> bool
import_from_lp_string(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, lp_string: str) -> bool
import_from_lp_file(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, lp_file: str) -> bool
fill_model_from_sparse_data(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, variable_lower_bound: numpy.ndarray[numpy.float64[m, 1]], variable_upper_bound: numpy.ndarray[numpy.float64[m, 1]], objective_coefficients: numpy.ndarray[numpy.float64[m, 1]], constraint_lower_bounds: numpy.ndarray[numpy.float64[m, 1]], constraint_upper_bounds: numpy.ndarray[numpy.float64[m, 1]], constraint_matrix: scipy.sparse.csr_matrix[numpy.float64]) -> None
add_var(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> int
add_var_array(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, arg0: list[int], arg1: float, arg2: float, arg3: bool, arg4: str) -> numpy.ndarray[numpy.int32]
add_var_array_with_bounds(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, arg0: numpy.ndarray[numpy.float64], arg1: numpy.ndarray[numpy.float64], arg2: numpy.ndarray[bool], arg3: str) -> numpy.ndarray[numpy.int32]
set_var_lower_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int, lb: float) -> None
set_var_upper_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int, ub: float) -> None
set_var_integrality(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int, is_integer: bool) -> None
set_var_objective_coefficient(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int, coeff: float) -> None
set_objective_coefficients(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, arg0: list[int], arg1: list[float]) -> None
set_var_name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int, name: str) -> None
var_lower_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int) -> float
var_upper_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int) -> float
var_is_integral(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int) -> bool
var_objective_coefficient(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int) -> float
var_name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int) -> str
add_linear_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> int
set_constraint_lower_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, lb: float) -> None
set_constraint_upper_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, ub: float) -> None
add_term_to_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, var_index: int, coeff: float) -> None
add_terms_to_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, arg0: int, arg1: list[ortools.linear_solver.python.model_builder_helper.Variable], arg2: list[float]) -> None
safe_add_term_to_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, var_index: int, coeff: float) -> None
set_constraint_name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, name: str) -> None
set_constraint_coefficient(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, var_index: int, coeff: float) -> None
constraint_lower_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> float
constraint_upper_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> float
constraint_name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> str
constraint_var_indices(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> list[int]
constraint_coefficients(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> list[float]
add_enforced_linear_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> int
is_enforced_linear_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, arg0: int) -> bool
set_enforced_constraint_lower_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, lb: float) -> None
set_enforced_constraint_upper_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, ub: float) -> None
add_term_to_enforced_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, var_index: int, coeff: float) -> None
add_terms_to_enforced_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, arg0: int, arg1: list[ortools.linear_solver.python.model_builder_helper.Variable], arg2: list[float]) -> None
safe_add_term_to_enforced_constraint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, var_index: int, coeff: float) -> None
set_enforced_constraint_name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, name: str) -> None
set_enforced_constraint_coefficient(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, var_index: int, coeff: float) -> None
enforced_constraint_lower_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> float
enforced_constraint_upper_bound(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> float
enforced_constraint_name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> str
enforced_constraint_var_indices(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> list[int]
enforced_constraint_coefficients(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> list[float]
set_enforced_constraint_indicator_variable_index(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, var_index: int) -> None
set_enforced_constraint_indicator_value(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int, positive: bool) -> None
enforced_constraint_indicator_variable_index(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> int
enforced_constraint_indicator_value(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, ct_index: int) -> bool
num_variables(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> int
num_constraints(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> int
name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> str
set_name(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, name: str) -> None
clear_objective(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> None
maximize(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> bool
set_maximize(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, maximize: bool) -> None
set_objective_offset(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, offset: float) -> None
objective_offset(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> float
clear_hints(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper) -> None
add_hint(self: ortools.linear_solver.python.model_builder_helper.ModelBuilderHelper, var_index: int, var_value: float) -> None
Members:
OPTIMAL
FEASIBLE
INFEASIBLE
UNBOUNDED
ABNORMAL
NOT_SOLVED
MODEL_IS_VALID
CANCELLED_BY_USER
UNKNOWN_STATUS
MODEL_INVALID
INVALID_SOLVER_PARAMETERS
SOLVER_TYPE_UNAVAILABLE
INCOMPATIBLE_OPTIONS
__init__(self: ortools.linear_solver.python.model_builder_helper.SolveStatus, value: int) -> None
__init__(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, arg0: str) -> None
solver_is_supported(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> bool
solve_serialized_request(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, arg0: str) -> bytes
interrupt_solve(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> bool
Returns true if the interrupt signal was correctly sent, that is, if the underlying solver supports it.
set_log_callback(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, arg0: std::function
clear_log_callback(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> None
set_time_limit_in_seconds(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, limit: float) -> None
set_solver_specific_parameters(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, solver_specific_parameters: str) -> None
enable_output(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, output: bool) -> None
has_solution(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> bool
has_response(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> bool
response(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> operations_research::MPSolutionResponse
status_string(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> str
wall_time(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> float
user_time(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> float
objective_value(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> float
best_objective_bound(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> float
variable_value(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, var_index: int) -> float
expression_value(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, arg0: ortools.linear_solver.python.model_builder_helper.LinearExpr) -> float
reduced_cost(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, var_index: int) -> float
dual_value(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, ct_index: int) -> float
activity(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper, ct_index: int) -> float
variable_values(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> numpy.ndarray[numpy.float64[m, 1]]
reduced_costs(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> numpy.ndarray[numpy.float64[m, 1]]
dual_values(self: ortools.linear_solver.python.model_builder_helper.ModelSolverHelper) -> numpy.ndarray[numpy.float64[m, 1]]