ortools.constraint_solver.pywrapcp

   1# This file was automatically generated by SWIG (https://www.swig.org).
   2# Version 4.2.1
   3#
   4# Do not make changes to this file unless you know what you are doing - modify
   5# the SWIG interface file instead.
   6
   7from sys import version_info as _swig_python_version_info
   8# Import the low-level C/C++ module
   9if __package__ or "." in __name__:
  10    from . import _pywrapcp
  11else:
  12    import _pywrapcp
  13
  14try:
  15    import builtins as __builtin__
  16except ImportError:
  17    import __builtin__
  18
  19def _swig_repr(self):
  20    try:
  21        strthis = "proxy of " + self.this.__repr__()
  22    except __builtin__.Exception:
  23        strthis = ""
  24    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
  25
  26
  27def _swig_setattr_nondynamic_instance_variable(set):
  28    def set_instance_attr(self, name, value):
  29        if name == "this":
  30            set(self, name, value)
  31        elif name == "thisown":
  32            self.this.own(value)
  33        elif hasattr(self, name) and isinstance(getattr(type(self), name), property):
  34            set(self, name, value)
  35        else:
  36            raise AttributeError("You cannot add instance attributes to %s" % self)
  37    return set_instance_attr
  38
  39
  40def _swig_setattr_nondynamic_class_variable(set):
  41    def set_class_attr(cls, name, value):
  42        if hasattr(cls, name) and not isinstance(getattr(cls, name), property):
  43            set(cls, name, value)
  44        else:
  45            raise AttributeError("You cannot add class attributes to %s" % cls)
  46    return set_class_attr
  47
  48
  49def _swig_add_metaclass(metaclass):
  50    """Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
  51    def wrapper(cls):
  52        return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
  53    return wrapper
  54
  55
  56class _SwigNonDynamicMeta(type):
  57    """Meta class to enforce nondynamic attributes (no new attributes) for a class"""
  58    __setattr__ = _swig_setattr_nondynamic_class_variable(type.__setattr__)
  59
  60
  61import weakref
  62
  63class DefaultPhaseParameters(object):
  64    r"""
  65    This struct holds all parameters for the default search.
  66    DefaultPhaseParameters is only used by Solver::MakeDefaultPhase methods.
  67    Note this is for advanced users only.
  68    """
  69
  70    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
  71    __repr__ = _swig_repr
  72    CHOOSE_MAX_SUM_IMPACT = _pywrapcp.DefaultPhaseParameters_CHOOSE_MAX_SUM_IMPACT
  73    CHOOSE_MAX_AVERAGE_IMPACT = _pywrapcp.DefaultPhaseParameters_CHOOSE_MAX_AVERAGE_IMPACT
  74    CHOOSE_MAX_VALUE_IMPACT = _pywrapcp.DefaultPhaseParameters_CHOOSE_MAX_VALUE_IMPACT
  75    SELECT_MIN_IMPACT = _pywrapcp.DefaultPhaseParameters_SELECT_MIN_IMPACT
  76    SELECT_MAX_IMPACT = _pywrapcp.DefaultPhaseParameters_SELECT_MAX_IMPACT
  77    NONE = _pywrapcp.DefaultPhaseParameters_NONE
  78    NORMAL = _pywrapcp.DefaultPhaseParameters_NORMAL
  79    VERBOSE = _pywrapcp.DefaultPhaseParameters_VERBOSE
  80    var_selection_schema = property(_pywrapcp.DefaultPhaseParameters_var_selection_schema_get, _pywrapcp.DefaultPhaseParameters_var_selection_schema_set, doc=r"""
  81    This parameter describes how the next variable to instantiate
  82    will be chosen.
  83    """)
  84    value_selection_schema = property(_pywrapcp.DefaultPhaseParameters_value_selection_schema_get, _pywrapcp.DefaultPhaseParameters_value_selection_schema_set, doc=r""" This parameter describes which value to select for a given var.""")
  85    initialization_splits = property(_pywrapcp.DefaultPhaseParameters_initialization_splits_get, _pywrapcp.DefaultPhaseParameters_initialization_splits_set, doc=r"""
  86    Maximum number of intervals that the initialization of impacts will scan
  87    per variable.
  88    """)
  89    run_all_heuristics = property(_pywrapcp.DefaultPhaseParameters_run_all_heuristics_get, _pywrapcp.DefaultPhaseParameters_run_all_heuristics_set, doc=r"""
  90    The default phase will run heuristics periodically. This parameter
  91    indicates if we should run all heuristics, or a randomly selected
  92    one.
  93    """)
  94    heuristic_period = property(_pywrapcp.DefaultPhaseParameters_heuristic_period_get, _pywrapcp.DefaultPhaseParameters_heuristic_period_set, doc=r"""
  95    The distance in nodes between each run of the heuristics. A
  96    negative or null value will mean that we will not run heuristics
  97    at all.
  98    """)
  99    heuristic_num_failures_limit = property(_pywrapcp.DefaultPhaseParameters_heuristic_num_failures_limit_get, _pywrapcp.DefaultPhaseParameters_heuristic_num_failures_limit_set, doc=r""" The failure limit for each heuristic that we run.""")
 100    persistent_impact = property(_pywrapcp.DefaultPhaseParameters_persistent_impact_get, _pywrapcp.DefaultPhaseParameters_persistent_impact_set, doc=r"""
 101    Whether to keep the impact from the first search for other searches,
 102    or to recompute the impact for each new search.
 103    """)
 104    random_seed = property(_pywrapcp.DefaultPhaseParameters_random_seed_get, _pywrapcp.DefaultPhaseParameters_random_seed_set, doc=r""" Seed used to initialize the random part in some heuristics.""")
 105    display_level = property(_pywrapcp.DefaultPhaseParameters_display_level_get, _pywrapcp.DefaultPhaseParameters_display_level_set, doc=r"""
 106    This represents the amount of information displayed by the default search.
 107    NONE means no display, VERBOSE means extra information.
 108    """)
 109    decision_builder = property(_pywrapcp.DefaultPhaseParameters_decision_builder_get, _pywrapcp.DefaultPhaseParameters_decision_builder_set, doc=r""" When defined, this overrides the default impact based decision builder.""")
 110
 111    def __init__(self):
 112        _pywrapcp.DefaultPhaseParameters_swiginit(self, _pywrapcp.new_DefaultPhaseParameters())
 113    __swig_destroy__ = _pywrapcp.delete_DefaultPhaseParameters
 114
 115# Register DefaultPhaseParameters in _pywrapcp:
 116_pywrapcp.DefaultPhaseParameters_swigregister(DefaultPhaseParameters)
 117class Solver(object):
 118    r"""
 119    Solver Class
 120
 121    A solver represents the main computation engine. It implements the entire
 122    range of Constraint Programming protocols:
 123      - Reversibility
 124      - Propagation
 125      - Search
 126
 127    Usually, Constraint Programming code consists of
 128      - the creation of the Solver,
 129      - the creation of the decision variables of the model,
 130      - the creation of the constraints of the model and their addition to the
 131        solver() through the AddConstraint() method,
 132      - the creation of the main DecisionBuilder class,
 133      - the launch of the solve() method with the decision builder.
 134
 135    For the time being, Solver is neither MT_SAFE nor MT_HOT.
 136    """
 137
 138    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 139    __repr__ = _swig_repr
 140    INT_VAR_DEFAULT = _pywrapcp.Solver_INT_VAR_DEFAULT
 141    r""" The default behavior is CHOOSE_FIRST_UNBOUND."""
 142    INT_VAR_SIMPLE = _pywrapcp.Solver_INT_VAR_SIMPLE
 143    r""" The simple selection is CHOOSE_FIRST_UNBOUND."""
 144    CHOOSE_FIRST_UNBOUND = _pywrapcp.Solver_CHOOSE_FIRST_UNBOUND
 145    r"""
 146    Select the first unbound variable.
 147    Variables are considered in the order of the vector of IntVars used
 148    to create the selector.
 149    """
 150    CHOOSE_RANDOM = _pywrapcp.Solver_CHOOSE_RANDOM
 151    r""" Randomly select one of the remaining unbound variables."""
 152    CHOOSE_MIN_SIZE_LOWEST_MIN = _pywrapcp.Solver_CHOOSE_MIN_SIZE_LOWEST_MIN
 153    r"""
 154    Among unbound variables, select the variable with the smallest size,
 155    i.e., the smallest number of possible values.
 156    In case of a tie, the selected variables is the one with the lowest min
 157    value.
 158    In case of a tie, the first one is selected, first being defined by the
 159    order in the vector of IntVars used to create the selector.
 160    """
 161    CHOOSE_MIN_SIZE_HIGHEST_MIN = _pywrapcp.Solver_CHOOSE_MIN_SIZE_HIGHEST_MIN
 162    r"""
 163    Among unbound variables, select the variable with the smallest size,
 164    i.e., the smallest number of possible values.
 165    In case of a tie, the selected variable is the one with the highest min
 166    value.
 167    In case of a tie, the first one is selected, first being defined by the
 168    order in the vector of IntVars used to create the selector.
 169    """
 170    CHOOSE_MIN_SIZE_LOWEST_MAX = _pywrapcp.Solver_CHOOSE_MIN_SIZE_LOWEST_MAX
 171    r"""
 172    Among unbound variables, select the variable with the smallest size,
 173    i.e., the smallest number of possible values.
 174    In case of a tie, the selected variables is the one with the lowest max
 175    value.
 176    In case of a tie, the first one is selected, first being defined by the
 177    order in the vector of IntVars used to create the selector.
 178    """
 179    CHOOSE_MIN_SIZE_HIGHEST_MAX = _pywrapcp.Solver_CHOOSE_MIN_SIZE_HIGHEST_MAX
 180    r"""
 181    Among unbound variables, select the variable with the smallest size,
 182    i.e., the smallest number of possible values.
 183    In case of a tie, the selected variable is the one with the highest max
 184    value.
 185    In case of a tie, the first one is selected, first being defined by the
 186    order in the vector of IntVars used to create the selector.
 187    """
 188    CHOOSE_LOWEST_MIN = _pywrapcp.Solver_CHOOSE_LOWEST_MIN
 189    r"""
 190    Among unbound variables, select the variable with the smallest minimal
 191    value.
 192    In case of a tie, the first one is selected, "first" defined by the
 193    order in the vector of IntVars used to create the selector.
 194    """
 195    CHOOSE_HIGHEST_MAX = _pywrapcp.Solver_CHOOSE_HIGHEST_MAX
 196    r"""
 197    Among unbound variables, select the variable with the highest maximal
 198    value.
 199    In case of a tie, the first one is selected, first being defined by the
 200    order in the vector of IntVars used to create the selector.
 201    """
 202    CHOOSE_MIN_SIZE = _pywrapcp.Solver_CHOOSE_MIN_SIZE
 203    r"""
 204    Among unbound variables, select the variable with the smallest size.
 205    In case of a tie, the first one is selected, first being defined by the
 206    order in the vector of IntVars used to create the selector.
 207    """
 208    CHOOSE_MAX_SIZE = _pywrapcp.Solver_CHOOSE_MAX_SIZE
 209    r"""
 210    Among unbound variables, select the variable with the highest size.
 211    In case of a tie, the first one is selected, first being defined by the
 212    order in the vector of IntVars used to create the selector.
 213    """
 214    CHOOSE_MAX_REGRET_ON_MIN = _pywrapcp.Solver_CHOOSE_MAX_REGRET_ON_MIN
 215    r"""
 216    Among unbound variables, select the variable with the largest
 217    gap between the first and the second values of the domain.
 218    """
 219    CHOOSE_PATH = _pywrapcp.Solver_CHOOSE_PATH
 220    r"""
 221    Selects the next unbound variable on a path, the path being defined by
 222    the variables: var[i] corresponds to the index of the next of i.
 223    """
 224    INT_VALUE_DEFAULT = _pywrapcp.Solver_INT_VALUE_DEFAULT
 225    r""" The default behavior is ASSIGN_MIN_VALUE."""
 226    INT_VALUE_SIMPLE = _pywrapcp.Solver_INT_VALUE_SIMPLE
 227    r""" The simple selection is ASSIGN_MIN_VALUE."""
 228    ASSIGN_MIN_VALUE = _pywrapcp.Solver_ASSIGN_MIN_VALUE
 229    r""" Selects the min value of the selected variable."""
 230    ASSIGN_MAX_VALUE = _pywrapcp.Solver_ASSIGN_MAX_VALUE
 231    r""" Selects the max value of the selected variable."""
 232    ASSIGN_RANDOM_VALUE = _pywrapcp.Solver_ASSIGN_RANDOM_VALUE
 233    r""" Selects randomly one of the possible values of the selected variable."""
 234    ASSIGN_CENTER_VALUE = _pywrapcp.Solver_ASSIGN_CENTER_VALUE
 235    r"""
 236    Selects the first possible value which is the closest to the center
 237    of the domain of the selected variable.
 238    The center is defined as (min + max) / 2.
 239    """
 240    SPLIT_LOWER_HALF = _pywrapcp.Solver_SPLIT_LOWER_HALF
 241    r"""
 242    Split the domain in two around the center, and choose the lower
 243    part first.
 244    """
 245    SPLIT_UPPER_HALF = _pywrapcp.Solver_SPLIT_UPPER_HALF
 246    r"""
 247    Split the domain in two around the center, and choose the lower
 248    part first.
 249    """
 250    SEQUENCE_DEFAULT = _pywrapcp.Solver_SEQUENCE_DEFAULT
 251    SEQUENCE_SIMPLE = _pywrapcp.Solver_SEQUENCE_SIMPLE
 252    CHOOSE_MIN_SLACK_RANK_FORWARD = _pywrapcp.Solver_CHOOSE_MIN_SLACK_RANK_FORWARD
 253    CHOOSE_RANDOM_RANK_FORWARD = _pywrapcp.Solver_CHOOSE_RANDOM_RANK_FORWARD
 254    INTERVAL_DEFAULT = _pywrapcp.Solver_INTERVAL_DEFAULT
 255    r""" The default is INTERVAL_SET_TIMES_FORWARD."""
 256    INTERVAL_SIMPLE = _pywrapcp.Solver_INTERVAL_SIMPLE
 257    r""" The simple is INTERVAL_SET_TIMES_FORWARD."""
 258    INTERVAL_SET_TIMES_FORWARD = _pywrapcp.Solver_INTERVAL_SET_TIMES_FORWARD
 259    r"""
 260    Selects the variable with the lowest starting time of all variables,
 261    and fixes its starting time to this lowest value.
 262    """
 263    INTERVAL_SET_TIMES_BACKWARD = _pywrapcp.Solver_INTERVAL_SET_TIMES_BACKWARD
 264    r"""
 265    Selects the variable with the highest ending time of all variables,
 266    and fixes the ending time to this highest values.
 267    """
 268    TWOOPT = _pywrapcp.Solver_TWOOPT
 269    r"""
 270    Operator which reverses a sub-chain of a path. It is called TwoOpt
 271    because it breaks two arcs on the path; resulting paths are called
 272    two-optimal.
 273    Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5
 274    (where (1, 5) are first and last nodes of the path and can therefore not
 275    be moved):
 276      1 -> [3 -> 2] -> 4  -> 5
 277      1 -> [4 -> 3  -> 2] -> 5
 278      1 ->  2 -> [4 -> 3] -> 5
 279    """
 280    OROPT = _pywrapcp.Solver_OROPT
 281    r"""
 282    Relocate: OROPT and RELOCATE.
 283    Operator which moves a sub-chain of a path to another position; the
 284    specified chain length is the fixed length of the chains being moved.
 285    When this length is 1, the operator simply moves a node to another
 286    position.
 287    Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5, for a chain
 288    length of 2 (where (1, 5) are first and last nodes of the path and can
 289    therefore not be moved):
 290      1 ->  4 -> [2 -> 3] -> 5
 291      1 -> [3 -> 4] -> 2  -> 5
 292
 293    Using Relocate with chain lengths of 1, 2 and 3 together is equivalent
 294    to the OrOpt operator on a path. The OrOpt operator is a limited
 295     version of 3Opt (breaks 3 arcs on a path).
 296    """
 297    RELOCATE = _pywrapcp.Solver_RELOCATE
 298    r""" Relocate neighborhood with length of 1 (see OROPT comment)."""
 299    EXCHANGE = _pywrapcp.Solver_EXCHANGE
 300    r"""
 301    Operator which exchanges the positions of two nodes.
 302    Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5
 303    (where (1, 5) are first and last nodes of the path and can therefore not
 304    be moved):
 305      1 -> [3] -> [2] ->  4  -> 5
 306      1 -> [4] ->  3  -> [2] -> 5
 307      1 ->  2  -> [4] -> [3] -> 5
 308    """
 309    CROSS = _pywrapcp.Solver_CROSS
 310    r"""
 311    Operator which cross exchanges the starting chains of 2 paths, including
 312    exchanging the whole paths.
 313    First and last nodes are not moved.
 314    Possible neighbors for the paths 1 -> 2 -> 3 -> 4 -> 5 and 6 -> 7 -> 8
 315    (where (1, 5) and (6, 8) are first and last nodes of the paths and can
 316    therefore not be moved):
 317      1 -> [7] -> 3 -> 4 -> 5  6 -> [2] -> 8
 318      1 -> [7] -> 4 -> 5       6 -> [2 -> 3] -> 8
 319      1 -> [7] -> 5            6 -> [2 -> 3 -> 4] -> 8
 320    """
 321    MAKEACTIVE = _pywrapcp.Solver_MAKEACTIVE
 322    r"""
 323    Operator which inserts an inactive node into a path.
 324    Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive
 325    (where 1 and 4 are first and last nodes of the path) are:
 326      1 -> [5] ->  2  ->  3  -> 4
 327      1 ->  2  -> [5] ->  3  -> 4
 328      1 ->  2  ->  3  -> [5] -> 4
 329    """
 330    MAKEINACTIVE = _pywrapcp.Solver_MAKEINACTIVE
 331    r"""
 332    Operator which makes path nodes inactive.
 333    Possible neighbors for the path 1 -> 2 -> 3 -> 4 (where 1 and 4 are
 334    first and last nodes of the path) are:
 335      1 -> 3 -> 4 with 2 inactive
 336      1 -> 2 -> 4 with 3 inactive
 337    """
 338    MAKECHAININACTIVE = _pywrapcp.Solver_MAKECHAININACTIVE
 339    r"""
 340    Operator which makes a "chain" of path nodes inactive.
 341    Possible neighbors for the path 1 -> 2 -> 3 -> 4 (where 1 and 4 are
 342    first and last nodes of the path) are:
 343      1 -> 3 -> 4 with 2 inactive
 344      1 -> 2 -> 4 with 3 inactive
 345      1 -> 4 with 2 and 3 inactive
 346    """
 347    SWAPACTIVE = _pywrapcp.Solver_SWAPACTIVE
 348    r"""
 349    Operator which replaces an active node by an inactive one.
 350    Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive
 351    (where 1 and 4 are first and last nodes of the path) are:
 352      1 -> [5] ->  3  -> 4 with 2 inactive
 353      1 ->  2  -> [5] -> 4 with 3 inactive
 354    """
 355    EXTENDEDSWAPACTIVE = _pywrapcp.Solver_EXTENDEDSWAPACTIVE
 356    r"""
 357    Operator which makes an inactive node active and an active one inactive.
 358    It is similar to SwapActiveOperator except that it tries to insert the
 359    inactive node in all possible positions instead of just the position of
 360    the node made inactive.
 361    Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive
 362    (where 1 and 4 are first and last nodes of the path) are:
 363      1 -> [5] ->  3  -> 4 with 2 inactive
 364      1 ->  3  -> [5] -> 4 with 2 inactive
 365      1 -> [5] ->  2  -> 4 with 3 inactive
 366      1 ->  2  -> [5] -> 4 with 3 inactive
 367    """
 368    PATHLNS = _pywrapcp.Solver_PATHLNS
 369    r"""
 370    Operator which relaxes two sub-chains of three consecutive arcs each.
 371    Each sub-chain is defined by a start node and the next three arcs. Those
 372    six arcs are relaxed to build a new neighbor.
 373    PATHLNS explores all possible pairs of starting nodes and so defines
 374    n^2 neighbors, n being the number of nodes.
 375    Note that the two sub-chains can be part of the same path; they even may
 376    overlap.
 377    """
 378    FULLPATHLNS = _pywrapcp.Solver_FULLPATHLNS
 379    r"""
 380    Operator which relaxes one entire path and all inactive nodes, thus
 381    defining num_paths neighbors.
 382    """
 383    UNACTIVELNS = _pywrapcp.Solver_UNACTIVELNS
 384    r"""
 385    Operator which relaxes all inactive nodes and one sub-chain of six
 386    consecutive arcs. That way the path can be improved by inserting
 387    inactive nodes or swapping arcs.
 388    """
 389    INCREMENT = _pywrapcp.Solver_INCREMENT
 390    r"""
 391    Operator which defines one neighbor per variable. Each neighbor tries to
 392    increment by one the value of the corresponding variable. When a new
 393    solution is found the neighborhood is rebuilt from scratch, i.e., tries
 394    to increment values in the variable order.
 395    Consider for instance variables x and y. x is incremented one by one to
 396    its max, and when it is not possible to increment x anymore, y is
 397    incremented once. If this is a solution, then next neighbor tries to
 398    increment x.
 399    """
 400    DECREMENT = _pywrapcp.Solver_DECREMENT
 401    r"""
 402    Operator which defines a neighborhood to decrement values.
 403    The behavior is the same as INCREMENT, except values are decremented
 404    instead of incremented.
 405    """
 406    SIMPLELNS = _pywrapcp.Solver_SIMPLELNS
 407    r"""
 408    Operator which defines one neighbor per variable. Each neighbor relaxes
 409    one variable.
 410    When a new solution is found the neighborhood is rebuilt from scratch.
 411    Consider for instance variables x and y. First x is relaxed and the
 412    solver is looking for the best possible solution (with only x relaxed).
 413    Then y is relaxed, and the solver is looking for a new solution.
 414    If a new solution is found, then the next variable to be relaxed is x.
 415    """
 416    GE = _pywrapcp.Solver_GE
 417    r""" Move is accepted when the current objective value >= objective.Min."""
 418    LE = _pywrapcp.Solver_LE
 419    r""" Move is accepted when the current objective value <= objective.Max."""
 420    EQ = _pywrapcp.Solver_EQ
 421    r"""
 422    Move is accepted when the current objective value is in the interval
 423    objective.Min .. objective.Max.
 424    """
 425    DELAYED_PRIORITY = _pywrapcp.Solver_DELAYED_PRIORITY
 426    r"""
 427    DELAYED_PRIORITY is the lowest priority: Demons will be processed after
 428    VAR_PRIORITY and NORMAL_PRIORITY demons.
 429    """
 430    VAR_PRIORITY = _pywrapcp.Solver_VAR_PRIORITY
 431    r""" VAR_PRIORITY is between DELAYED_PRIORITY and NORMAL_PRIORITY."""
 432    NORMAL_PRIORITY = _pywrapcp.Solver_NORMAL_PRIORITY
 433    r""" NORMAL_PRIORITY is the highest priority: Demons will be processed first."""
 434
 435    def __init__(self, *args):
 436        _pywrapcp.Solver_swiginit(self, _pywrapcp.new_Solver(*args))
 437
 438        self.__python_constraints = []
 439
 440
 441
 442    __swig_destroy__ = _pywrapcp.delete_Solver
 443
 444    def Parameters(self):
 445        r""" Stored Parameters."""
 446        return _pywrapcp.Solver_Parameters(self)
 447
 448    @staticmethod
 449    def DefaultSolverParameters():
 450        r""" Create a ConstraintSolverParameters proto with all the default values."""
 451        return _pywrapcp.Solver_DefaultSolverParameters()
 452
 453    def AddConstraint(self, c):
 454        r"""
 455        Adds the constraint 'c' to the model.
 456
 457        After calling this method, and until there is a backtrack that undoes the
 458        addition, any assignment of variables to values must satisfy the given
 459        constraint in order to be considered feasible. There are two fairly
 460        different use cases:
 461
 462        - the most common use case is modeling: the given constraint is really
 463        part of the problem that the user is trying to solve. In this use case,
 464        AddConstraint is called outside of search (i.e., with state() ==
 465        OUTSIDE_SEARCH). Most users should only use AddConstraint in this
 466        way. In this case, the constraint will belong to the model forever: it
 467        cannot be removed by backtracking.
 468
 469        - a rarer use case is that 'c' is not a real constraint of the model. It
 470        may be a constraint generated by a branching decision (a constraint whose
 471        goal is to restrict the search space), a symmetry breaking constraint (a
 472        constraint that does restrict the search space, but in a way that cannot
 473        have an impact on the quality of the solutions in the subtree), or an
 474        inferred constraint that, while having no semantic value to the model (it
 475        does not restrict the set of solutions), is worth having because we
 476        believe it may strengthen the propagation. In these cases, it happens
 477        that the constraint is added during the search (i.e., with state() ==
 478        IN_SEARCH or state() == IN_ROOT_NODE). When a constraint is
 479        added during a search, it applies only to the subtree of the search tree
 480        rooted at the current node, and will be automatically removed by
 481        backtracking.
 482
 483        This method does not take ownership of the constraint. If the constraint
 484        has been created by any factory method (Solver::MakeXXX), it will
 485        automatically be deleted. However, power users who implement their own
 486        constraints should do: solver.AddConstraint(solver.RevAlloc(new
 487        MyConstraint(...));
 488        """
 489        return _pywrapcp.Solver_AddConstraint(self, c)
 490
 491    def Solve(self, *args):
 492        return _pywrapcp.Solver_Solve(self, *args)
 493
 494    def NewSearch(self, *args):
 495        return _pywrapcp.Solver_NewSearch(self, *args)
 496
 497    def NextSolution(self):
 498        return _pywrapcp.Solver_NextSolution(self)
 499
 500    def RestartSearch(self):
 501        return _pywrapcp.Solver_RestartSearch(self)
 502
 503    def EndSearch(self):
 504        return _pywrapcp.Solver_EndSearch(self)
 505
 506    def SolveAndCommit(self, *args):
 507        return _pywrapcp.Solver_SolveAndCommit(self, *args)
 508
 509    def CheckAssignment(self, solution):
 510        r""" Checks whether the given assignment satisfies all relevant constraints."""
 511        return _pywrapcp.Solver_CheckAssignment(self, solution)
 512
 513    def CheckConstraint(self, ct):
 514        r"""
 515        Checks whether adding this constraint will lead to an immediate
 516        failure. It will return false if the model is already inconsistent, or if
 517        adding the constraint makes it inconsistent.
 518        """
 519        return _pywrapcp.Solver_CheckConstraint(self, ct)
 520
 521    def Fail(self):
 522        r""" Abandon the current branch in the search tree. A backtrack will follow."""
 523        return _pywrapcp.Solver_Fail(self)
 524
 525    @staticmethod
 526    def MemoryUsage():
 527        r""" Current memory usage in bytes"""
 528        return _pywrapcp.Solver_MemoryUsage()
 529
 530    def WallTime(self):
 531        r"""
 532        DEPRECATED: Use Now() instead.
 533        Time elapsed, in ms since the creation of the solver.
 534        """
 535        return _pywrapcp.Solver_WallTime(self)
 536
 537    def Branches(self):
 538        r""" The number of branches explored since the creation of the solver."""
 539        return _pywrapcp.Solver_Branches(self)
 540
 541    def Solutions(self):
 542        r""" The number of solutions found since the start of the search."""
 543        return _pywrapcp.Solver_Solutions(self)
 544
 545    def Failures(self):
 546        r""" The number of failures encountered since the creation of the solver."""
 547        return _pywrapcp.Solver_Failures(self)
 548
 549    def AcceptedNeighbors(self):
 550        r""" The number of accepted neighbors."""
 551        return _pywrapcp.Solver_AcceptedNeighbors(self)
 552
 553    def Stamp(self):
 554        r"""
 555        The stamp indicates how many moves in the search tree we have performed.
 556        It is useful to detect if we need to update same lazy structures.
 557        """
 558        return _pywrapcp.Solver_Stamp(self)
 559
 560    def FailStamp(self):
 561        r""" The fail_stamp() is incremented after each backtrack."""
 562        return _pywrapcp.Solver_FailStamp(self)
 563
 564    def IntVar(self, *args):
 565        r"""
 566        *Overload 1:*
 567        MakeIntVar will create the best range based int var for the bounds given.
 568
 569        |
 570
 571        *Overload 2:*
 572        MakeIntVar will create a variable with the given sparse domain.
 573
 574        |
 575
 576        *Overload 3:*
 577        MakeIntVar will create a variable with the given sparse domain.
 578
 579        |
 580
 581        *Overload 4:*
 582        MakeIntVar will create the best range based int var for the bounds given.
 583
 584        |
 585
 586        *Overload 5:*
 587        MakeIntVar will create a variable with the given sparse domain.
 588
 589        |
 590
 591        *Overload 6:*
 592        MakeIntVar will create a variable with the given sparse domain.
 593        """
 594        return _pywrapcp.Solver_IntVar(self, *args)
 595
 596    def BoolVar(self, *args):
 597        r"""
 598        *Overload 1:*
 599        MakeBoolVar will create a variable with a {0, 1} domain.
 600
 601        |
 602
 603        *Overload 2:*
 604        MakeBoolVar will create a variable with a {0, 1} domain.
 605        """
 606        return _pywrapcp.Solver_BoolVar(self, *args)
 607
 608    def IntConst(self, *args):
 609        r"""
 610        *Overload 1:*
 611        IntConst will create a constant expression.
 612
 613        |
 614
 615        *Overload 2:*
 616        IntConst will create a constant expression.
 617        """
 618        return _pywrapcp.Solver_IntConst(self, *args)
 619
 620    def Sum(self, vars):
 621        r""" sum of all vars."""
 622        return _pywrapcp.Solver_Sum(self, vars)
 623
 624    def ScalProd(self, *args):
 625        r"""
 626        *Overload 1:*
 627        scalar product
 628
 629        |
 630
 631        *Overload 2:*
 632        scalar product
 633        """
 634        return _pywrapcp.Solver_ScalProd(self, *args)
 635
 636    def MonotonicElement(self, values, increasing, index):
 637        r"""
 638        Function based element. The constraint takes ownership of the
 639        callback.  The callback must be monotonic. It must be able to
 640        cope with any possible value in the domain of 'index'
 641        (potentially negative ones too). Furtermore, monotonicity is not
 642        checked. Thus giving a non-monotonic function, or specifying an
 643        incorrect increasing parameter will result in undefined behavior.
 644        """
 645        return _pywrapcp.Solver_MonotonicElement(self, values, increasing, index)
 646
 647    def Element(self, *args):
 648        r"""
 649        *Overload 1:*
 650        values[index]
 651
 652        |
 653
 654        *Overload 2:*
 655        values[index]
 656
 657        |
 658
 659        *Overload 3:*
 660        Function-based element. The constraint takes ownership of the
 661        callback. The callback must be able to cope with any possible
 662        value in the domain of 'index' (potentially negative ones too).
 663
 664        |
 665
 666        *Overload 4:*
 667        2D version of function-based element expression, values(expr1, expr2).
 668
 669        |
 670
 671        *Overload 5:*
 672        vars[expr]
 673        """
 674        return _pywrapcp.Solver_Element(self, *args)
 675
 676    def IndexExpression(self, vars, value):
 677        r"""
 678        Returns the expression expr such that vars[expr] == value.
 679        It assumes that vars are all different.
 680        """
 681        return _pywrapcp.Solver_IndexExpression(self, vars, value)
 682
 683    def Min(self, *args):
 684        r"""
 685        *Overload 1:*
 686        std::min(vars)
 687
 688        |
 689
 690        *Overload 2:*
 691        std::min (left, right)
 692
 693        |
 694
 695        *Overload 3:*
 696        std::min(expr, value)
 697
 698        |
 699
 700        *Overload 4:*
 701        std::min(expr, value)
 702        """
 703        return _pywrapcp.Solver_Min(self, *args)
 704
 705    def Max(self, *args):
 706        r"""
 707        *Overload 1:*
 708        std::max(vars)
 709
 710        |
 711
 712        *Overload 2:*
 713        std::max(left, right)
 714
 715        |
 716
 717        *Overload 3:*
 718        std::max(expr, value)
 719
 720        |
 721
 722        *Overload 4:*
 723        std::max(expr, value)
 724        """
 725        return _pywrapcp.Solver_Max(self, *args)
 726
 727    def ConvexPiecewiseExpr(self, expr, early_cost, early_date, late_date, late_cost):
 728        r""" Convex piecewise function."""
 729        return _pywrapcp.Solver_ConvexPiecewiseExpr(self, expr, early_cost, early_date, late_date, late_cost)
 730
 731    def SemiContinuousExpr(self, expr, fixed_charge, step):
 732        r"""
 733        Semi continuous Expression (x <= 0 -> f(x) = 0; x > 0 -> f(x) = ax + b)
 734        a >= 0 and b >= 0
 735        """
 736        return _pywrapcp.Solver_SemiContinuousExpr(self, expr, fixed_charge, step)
 737
 738    def ConditionalExpression(self, condition, expr, unperformed_value):
 739        r""" Conditional Expr condition ? expr : unperformed_value"""
 740        return _pywrapcp.Solver_ConditionalExpression(self, condition, expr, unperformed_value)
 741
 742    def TrueConstraint(self):
 743        r""" This constraint always succeeds."""
 744        return _pywrapcp.Solver_TrueConstraint(self)
 745
 746    def FalseConstraint(self, *args):
 747        return _pywrapcp.Solver_FalseConstraint(self, *args)
 748
 749    def IsEqualCstCt(self, var, value, boolvar):
 750        r""" boolvar == (var == value)"""
 751        return _pywrapcp.Solver_IsEqualCstCt(self, var, value, boolvar)
 752
 753    def IsEqualCstVar(self, var, value):
 754        r""" status var of (var == value)"""
 755        return _pywrapcp.Solver_IsEqualCstVar(self, var, value)
 756
 757    def IsEqualCt(self, v1, v2, b):
 758        r""" b == (v1 == v2)"""
 759        return _pywrapcp.Solver_IsEqualCt(self, v1, v2, b)
 760
 761    def IsEqualVar(self, v1, v2):
 762        r""" status var of (v1 == v2)"""
 763        return _pywrapcp.Solver_IsEqualVar(self, v1, v2)
 764
 765    def IsDifferentCstCt(self, var, value, boolvar):
 766        r""" boolvar == (var != value)"""
 767        return _pywrapcp.Solver_IsDifferentCstCt(self, var, value, boolvar)
 768
 769    def IsDifferentCstVar(self, var, value):
 770        r""" status var of (var != value)"""
 771        return _pywrapcp.Solver_IsDifferentCstVar(self, var, value)
 772
 773    def IsDifferentVar(self, v1, v2):
 774        r""" status var of (v1 != v2)"""
 775        return _pywrapcp.Solver_IsDifferentVar(self, v1, v2)
 776
 777    def IsDifferentCt(self, v1, v2, b):
 778        r""" b == (v1 != v2)"""
 779        return _pywrapcp.Solver_IsDifferentCt(self, v1, v2, b)
 780
 781    def IsLessOrEqualCstCt(self, var, value, boolvar):
 782        r""" boolvar == (var <= value)"""
 783        return _pywrapcp.Solver_IsLessOrEqualCstCt(self, var, value, boolvar)
 784
 785    def IsLessOrEqualCstVar(self, var, value):
 786        r""" status var of (var <= value)"""
 787        return _pywrapcp.Solver_IsLessOrEqualCstVar(self, var, value)
 788
 789    def IsLessOrEqualVar(self, left, right):
 790        r""" status var of (left <= right)"""
 791        return _pywrapcp.Solver_IsLessOrEqualVar(self, left, right)
 792
 793    def IsLessOrEqualCt(self, left, right, b):
 794        r""" b == (left <= right)"""
 795        return _pywrapcp.Solver_IsLessOrEqualCt(self, left, right, b)
 796
 797    def IsGreaterOrEqualCstCt(self, var, value, boolvar):
 798        r""" boolvar == (var >= value)"""
 799        return _pywrapcp.Solver_IsGreaterOrEqualCstCt(self, var, value, boolvar)
 800
 801    def IsGreaterOrEqualCstVar(self, var, value):
 802        r""" status var of (var >= value)"""
 803        return _pywrapcp.Solver_IsGreaterOrEqualCstVar(self, var, value)
 804
 805    def IsGreaterOrEqualVar(self, left, right):
 806        r""" status var of (left >= right)"""
 807        return _pywrapcp.Solver_IsGreaterOrEqualVar(self, left, right)
 808
 809    def IsGreaterOrEqualCt(self, left, right, b):
 810        r""" b == (left >= right)"""
 811        return _pywrapcp.Solver_IsGreaterOrEqualCt(self, left, right, b)
 812
 813    def IsGreaterCstCt(self, v, c, b):
 814        r""" b == (v > c)"""
 815        return _pywrapcp.Solver_IsGreaterCstCt(self, v, c, b)
 816
 817    def IsGreaterCstVar(self, var, value):
 818        r""" status var of (var > value)"""
 819        return _pywrapcp.Solver_IsGreaterCstVar(self, var, value)
 820
 821    def IsGreaterVar(self, left, right):
 822        r""" status var of (left > right)"""
 823        return _pywrapcp.Solver_IsGreaterVar(self, left, right)
 824
 825    def IsGreaterCt(self, left, right, b):
 826        r""" b == (left > right)"""
 827        return _pywrapcp.Solver_IsGreaterCt(self, left, right, b)
 828
 829    def IsLessCstCt(self, v, c, b):
 830        r""" b == (v < c)"""
 831        return _pywrapcp.Solver_IsLessCstCt(self, v, c, b)
 832
 833    def IsLessCstVar(self, var, value):
 834        r""" status var of (var < value)"""
 835        return _pywrapcp.Solver_IsLessCstVar(self, var, value)
 836
 837    def IsLessVar(self, left, right):
 838        r""" status var of (left < right)"""
 839        return _pywrapcp.Solver_IsLessVar(self, left, right)
 840
 841    def IsLessCt(self, left, right, b):
 842        r""" b == (left < right)"""
 843        return _pywrapcp.Solver_IsLessCt(self, left, right, b)
 844
 845    def SumLessOrEqual(self, vars, cst):
 846        r""" Variation on arrays."""
 847        return _pywrapcp.Solver_SumLessOrEqual(self, vars, cst)
 848
 849    def SumGreaterOrEqual(self, vars, cst):
 850        return _pywrapcp.Solver_SumGreaterOrEqual(self, vars, cst)
 851
 852    def SumEquality(self, *args):
 853        return _pywrapcp.Solver_SumEquality(self, *args)
 854
 855    def ScalProdEquality(self, *args):
 856        return _pywrapcp.Solver_ScalProdEquality(self, *args)
 857
 858    def ScalProdGreaterOrEqual(self, *args):
 859        return _pywrapcp.Solver_ScalProdGreaterOrEqual(self, *args)
 860
 861    def ScalProdLessOrEqual(self, *args):
 862        return _pywrapcp.Solver_ScalProdLessOrEqual(self, *args)
 863
 864    def MinEquality(self, vars, min_var):
 865        return _pywrapcp.Solver_MinEquality(self, vars, min_var)
 866
 867    def MaxEquality(self, vars, max_var):
 868        return _pywrapcp.Solver_MaxEquality(self, vars, max_var)
 869
 870    def ElementEquality(self, *args):
 871        return _pywrapcp.Solver_ElementEquality(self, *args)
 872
 873    def AbsEquality(self, var, abs_var):
 874        r""" Creates the constraint abs(var) == abs_var."""
 875        return _pywrapcp.Solver_AbsEquality(self, var, abs_var)
 876
 877    def IndexOfConstraint(self, vars, index, target):
 878        r"""
 879        This constraint is a special case of the element constraint with
 880        an array of integer variables, where the variables are all
 881        different and the index variable is constrained such that
 882        vars[index] == target.
 883        """
 884        return _pywrapcp.Solver_IndexOfConstraint(self, vars, index, target)
 885
 886    def ConstraintInitialPropagateCallback(self, ct):
 887        r"""
 888        This method is a specialized case of the MakeConstraintDemon
 889        method to call the InitiatePropagate of the constraint 'ct'.
 890        """
 891        return _pywrapcp.Solver_ConstraintInitialPropagateCallback(self, ct)
 892
 893    def DelayedConstraintInitialPropagateCallback(self, ct):
 894        r"""
 895        This method is a specialized case of the MakeConstraintDemon
 896        method to call the InitiatePropagate of the constraint 'ct' with
 897        low priority.
 898        """
 899        return _pywrapcp.Solver_DelayedConstraintInitialPropagateCallback(self, ct)
 900
 901    def ClosureDemon(self, closure):
 902        r""" Creates a demon from a closure."""
 903        return _pywrapcp.Solver_ClosureDemon(self, closure)
 904
 905    def BetweenCt(self, expr, l, u):
 906        r""" (l <= expr <= u)"""
 907        return _pywrapcp.Solver_BetweenCt(self, expr, l, u)
 908
 909    def IsBetweenCt(self, expr, l, u, b):
 910        r""" b == (l <= expr <= u)"""
 911        return _pywrapcp.Solver_IsBetweenCt(self, expr, l, u, b)
 912
 913    def IsBetweenVar(self, v, l, u):
 914        return _pywrapcp.Solver_IsBetweenVar(self, v, l, u)
 915
 916    def MemberCt(self, *args):
 917        return _pywrapcp.Solver_MemberCt(self, *args)
 918
 919    def NotMemberCt(self, *args):
 920        r"""
 921        *Overload 1:*
 922        expr not in set.
 923
 924        |
 925
 926        *Overload 2:*
 927        expr should not be in the list of forbidden intervals [start[i]..end[i]].
 928
 929        |
 930
 931        *Overload 3:*
 932        expr should not be in the list of forbidden intervals [start[i]..end[i]].
 933        """
 934        return _pywrapcp.Solver_NotMemberCt(self, *args)
 935
 936    def IsMemberCt(self, *args):
 937        return _pywrapcp.Solver_IsMemberCt(self, *args)
 938
 939    def IsMemberVar(self, *args):
 940        return _pywrapcp.Solver_IsMemberVar(self, *args)
 941
 942    def Count(self, *args):
 943        r"""
 944        *Overload 1:*
 945        |{i | vars[i] == value}| == max_count
 946
 947        |
 948
 949        *Overload 2:*
 950        |{i | vars[i] == value}| == max_count
 951        """
 952        return _pywrapcp.Solver_Count(self, *args)
 953
 954    def Distribute(self, *args):
 955        r"""
 956        *Overload 1:*
 957        Aggregated version of count:  |{i | v[i] == values[j]}| == cards[j]
 958
 959        |
 960
 961        *Overload 2:*
 962        Aggregated version of count:  |{i | v[i] == values[j]}| == cards[j]
 963
 964        |
 965
 966        *Overload 3:*
 967        Aggregated version of count:  |{i | v[i] == j}| == cards[j]
 968
 969        |
 970
 971        *Overload 4:*
 972        Aggregated version of count with bounded cardinalities:
 973        forall j in 0 .. card_size - 1: card_min <= |{i | v[i] == j}| <= card_max
 974
 975        |
 976
 977        *Overload 5:*
 978        Aggregated version of count with bounded cardinalities:
 979        forall j in 0 .. card_size - 1:
 980           card_min[j] <= |{i | v[i] == j}| <= card_max[j]
 981
 982        |
 983
 984        *Overload 6:*
 985        Aggregated version of count with bounded cardinalities:
 986        forall j in 0 .. card_size - 1:
 987           card_min[j] <= |{i | v[i] == j}| <= card_max[j]
 988
 989        |
 990
 991        *Overload 7:*
 992        Aggregated version of count with bounded cardinalities:
 993        forall j in 0 .. card_size - 1:
 994           card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]
 995
 996        |
 997
 998        *Overload 8:*
 999        Aggregated version of count with bounded cardinalities:
1000        forall j in 0 .. card_size - 1:
1001           card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]
1002        """
1003        return _pywrapcp.Solver_Distribute(self, *args)
1004
1005    def Deviation(self, vars, deviation_var, total_sum):
1006        r"""
1007        Deviation constraint:
1008        sum_i |n * vars[i] - total_sum| <= deviation_var and
1009        sum_i vars[i] == total_sum
1010        n = #vars
1011        """
1012        return _pywrapcp.Solver_Deviation(self, vars, deviation_var, total_sum)
1013
1014    def AllDifferent(self, *args):
1015        r"""
1016        *Overload 1:*
1017        All variables are pairwise different. This corresponds to the
1018        stronger version of the propagation algorithm.
1019
1020        |
1021
1022        *Overload 2:*
1023        All variables are pairwise different.  If 'stronger_propagation'
1024        is true, stronger, and potentially slower propagation will
1025        occur. This API will be deprecated in the future.
1026        """
1027        return _pywrapcp.Solver_AllDifferent(self, *args)
1028
1029    def AllDifferentExcept(self, vars, escape_value):
1030        r"""
1031        All variables are pairwise different, unless they are assigned to
1032        the escape value.
1033        """
1034        return _pywrapcp.Solver_AllDifferentExcept(self, vars, escape_value)
1035
1036    def SortingConstraint(self, vars, sorted):
1037        r"""
1038        Creates a constraint binding the arrays of variables "vars" and
1039        "sorted_vars": sorted_vars[0] must be equal to the minimum of all
1040        variables in vars, and so on: the value of sorted_vars[i] must be
1041        equal to the i-th value of variables invars.
1042
1043        This constraint propagates in both directions: from "vars" to
1044        "sorted_vars" and vice-versa.
1045
1046        Behind the scenes, this constraint maintains that:
1047          - sorted is always increasing.
1048          - whatever the values of vars, there exists a permutation that
1049            injects its values into the sorted variables.
1050
1051        For more info, please have a look at:
1052          https://mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Thiel.pdf
1053        """
1054        return _pywrapcp.Solver_SortingConstraint(self, vars, sorted)
1055
1056    def LexicalLess(self, left, right):
1057        r"""
1058        Creates a constraint that enforces that left is lexicographically less
1059        than right.
1060        """
1061        return _pywrapcp.Solver_LexicalLess(self, left, right)
1062
1063    def LexicalLessOrEqual(self, left, right):
1064        r"""
1065        Creates a constraint that enforces that left is lexicographically less
1066        than or equal to right.
1067        """
1068        return _pywrapcp.Solver_LexicalLessOrEqual(self, left, right)
1069
1070    def InversePermutationConstraint(self, left, right):
1071        r"""
1072        Creates a constraint that enforces that 'left' and 'right' both
1073        represent permutations of [0..left.size()-1], and that 'right' is
1074        the inverse permutation of 'left', i.e. for all i in
1075        [0..left.size()-1], right[left[i]] = i.
1076        """
1077        return _pywrapcp.Solver_InversePermutationConstraint(self, left, right)
1078
1079    def NullIntersect(self, first_vars, second_vars):
1080        r"""
1081        Creates a constraint that states that all variables in the first
1082        vector are different from all variables in the second
1083        group. Thus the set of values in the first vector does not
1084        intersect with the set of values in the second vector.
1085        """
1086        return _pywrapcp.Solver_NullIntersect(self, first_vars, second_vars)
1087
1088    def NullIntersectExcept(self, first_vars, second_vars, escape_value):
1089        r"""
1090        Creates a constraint that states that all variables in the first
1091        vector are different from all variables from the second group,
1092        unless they are assigned to the escape value. Thus the set of
1093        values in the first vector minus the escape value does not
1094        intersect with the set of values in the second vector.
1095        """
1096        return _pywrapcp.Solver_NullIntersectExcept(self, first_vars, second_vars, escape_value)
1097
1098    def Circuit(self, nexts):
1099        r""" Force the "nexts" variable to create a complete Hamiltonian path."""
1100        return _pywrapcp.Solver_Circuit(self, nexts)
1101
1102    def SubCircuit(self, nexts):
1103        r"""
1104        Force the "nexts" variable to create a complete Hamiltonian path
1105        for those that do not loop upon themselves.
1106        """
1107        return _pywrapcp.Solver_SubCircuit(self, nexts)
1108
1109    def DelayedPathCumul(self, nexts, active, cumuls, transits):
1110        r"""
1111        Delayed version of the same constraint: propagation on the nexts variables
1112        is delayed until all constraints have propagated.
1113        """
1114        return _pywrapcp.Solver_DelayedPathCumul(self, nexts, active, cumuls, transits)
1115
1116    def PathCumul(self, *args):
1117        r"""
1118        *Overload 1:*
1119        Creates a constraint which accumulates values along a path such that:
1120        cumuls[next[i]] = cumuls[i] + transits[i].
1121        Active variables indicate if the corresponding next variable is active;
1122        this could be useful to model unperformed nodes in a routing problem.
1123
1124        |
1125
1126        *Overload 2:*
1127        Creates a constraint which accumulates values along a path such that:
1128        cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]).
1129        Active variables indicate if the corresponding next variable is active;
1130        this could be useful to model unperformed nodes in a routing problem.
1131        Ownership of transit_evaluator is taken and it must be a repeatable
1132        callback.
1133
1134        |
1135
1136        *Overload 3:*
1137        Creates a constraint which accumulates values along a path such that:
1138        cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]) + slacks[i].
1139        Active variables indicate if the corresponding next variable is active;
1140        this could be useful to model unperformed nodes in a routing problem.
1141        Ownership of transit_evaluator is taken and it must be a repeatable
1142        callback.
1143        """
1144        return _pywrapcp.Solver_PathCumul(self, *args)
1145
1146    def AllowedAssignments(self, *args):
1147        r"""
1148        *Overload 1:*
1149        This method creates a constraint where the graph of the relation
1150        between the variables is given in extension. There are 'arity'
1151        variables involved in the relation and the graph is given by a
1152        integer tuple set.
1153
1154        |
1155
1156        *Overload 2:*
1157        Compatibility layer for Python API.
1158        """
1159        return _pywrapcp.Solver_AllowedAssignments(self, *args)
1160
1161    def TransitionConstraint(self, *args):
1162        return _pywrapcp.Solver_TransitionConstraint(self, *args)
1163
1164    def NonOverlappingBoxesConstraint(self, *args):
1165        return _pywrapcp.Solver_NonOverlappingBoxesConstraint(self, *args)
1166
1167    def Pack(self, vars, number_of_bins):
1168        r"""
1169        This constraint packs all variables onto 'number_of_bins'
1170        variables.  For any given variable, a value of 'number_of_bins'
1171        indicates that the variable is not assigned to any bin.
1172        Dimensions, i.e., cumulative constraints on this packing, can be
1173        added directly from the pack class.
1174        """
1175        return _pywrapcp.Solver_Pack(self, vars, number_of_bins)
1176
1177    def FixedDurationIntervalVar(self, *args):
1178        r"""
1179        *Overload 1:*
1180        Creates an interval var with a fixed duration. The duration must
1181        be greater than 0. If optional is true, then the interval can be
1182        performed or unperformed. If optional is false, then the interval
1183        is always performed.
1184
1185        |
1186
1187        *Overload 2:*
1188        Creates a performed interval var with a fixed duration. The duration must
1189        be greater than 0.
1190
1191        |
1192
1193        *Overload 3:*
1194        Creates an interval var with a fixed duration, and performed_variable.
1195        The duration must be greater than 0.
1196        """
1197        return _pywrapcp.Solver_FixedDurationIntervalVar(self, *args)
1198
1199    def FixedInterval(self, start, duration, name):
1200        r""" Creates a fixed and performed interval."""
1201        return _pywrapcp.Solver_FixedInterval(self, start, duration, name)
1202
1203    def IntervalVar(self, start_min, start_max, duration_min, duration_max, end_min, end_max, optional, name):
1204        r"""
1205        Creates an interval var by specifying the bounds on start,
1206        duration, and end.
1207        """
1208        return _pywrapcp.Solver_IntervalVar(self, start_min, start_max, duration_min, duration_max, end_min, end_max, optional, name)
1209
1210    def MirrorInterval(self, interval_var):
1211        r"""
1212        Creates an interval var that is the mirror image of the given one, that
1213        is, the interval var obtained by reversing the axis.
1214        """
1215        return _pywrapcp.Solver_MirrorInterval(self, interval_var)
1216
1217    def FixedDurationStartSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1218        r"""
1219        Creates an interval var with a fixed duration whose start is
1220        synchronized with the start of another interval, with a given
1221        offset. The performed status is also in sync with the performed
1222        status of the given interval variable.
1223        """
1224        return _pywrapcp.Solver_FixedDurationStartSyncedOnStartIntervalVar(self, interval_var, duration, offset)
1225
1226    def FixedDurationStartSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1227        r"""
1228        Creates an interval var with a fixed duration whose start is
1229        synchronized with the end of another interval, with a given
1230        offset. The performed status is also in sync with the performed
1231        status of the given interval variable.
1232        """
1233        return _pywrapcp.Solver_FixedDurationStartSyncedOnEndIntervalVar(self, interval_var, duration, offset)
1234
1235    def FixedDurationEndSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1236        r"""
1237        Creates an interval var with a fixed duration whose end is
1238        synchronized with the start of another interval, with a given
1239        offset. The performed status is also in sync with the performed
1240        status of the given interval variable.
1241        """
1242        return _pywrapcp.Solver_FixedDurationEndSyncedOnStartIntervalVar(self, interval_var, duration, offset)
1243
1244    def FixedDurationEndSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1245        r"""
1246        Creates an interval var with a fixed duration whose end is
1247        synchronized with the end of another interval, with a given
1248        offset. The performed status is also in sync with the performed
1249        status of the given interval variable.
1250        """
1251        return _pywrapcp.Solver_FixedDurationEndSyncedOnEndIntervalVar(self, interval_var, duration, offset)
1252
1253    def IntervalRelaxedMin(self, interval_var):
1254        r"""
1255         Creates and returns an interval variable that wraps around the given one,
1256         relaxing the min start and end. Relaxing means making unbounded when
1257         optional. If the variable is non-optional, this method returns
1258         interval_var.
1259
1260         More precisely, such an interval variable behaves as follows:
1261        When the underlying must be performed, the returned interval variable
1262             behaves exactly as the underlying;
1263        When the underlying may or may not be performed, the returned interval
1264             variable behaves like the underlying, except that it is unbounded on
1265             the min side;
1266        When the underlying cannot be performed, the returned interval variable
1267             is of duration 0 and must be performed in an interval unbounded on
1268             both sides.
1269
1270         This is very useful to implement propagators that may only modify
1271         the start max or end max.
1272        """
1273        return _pywrapcp.Solver_IntervalRelaxedMin(self, interval_var)
1274
1275    def IntervalRelaxedMax(self, interval_var):
1276        r"""
1277         Creates and returns an interval variable that wraps around the given one,
1278         relaxing the max start and end. Relaxing means making unbounded when
1279         optional. If the variable is non optional, this method returns
1280         interval_var.
1281
1282         More precisely, such an interval variable behaves as follows:
1283        When the underlying must be performed, the returned interval variable
1284             behaves exactly as the underlying;
1285        When the underlying may or may not be performed, the returned interval
1286             variable behaves like the underlying, except that it is unbounded on
1287             the max side;
1288        When the underlying cannot be performed, the returned interval variable
1289             is of duration 0 and must be performed in an interval unbounded on
1290             both sides.
1291
1292         This is very useful for implementing propagators that may only modify
1293         the start min or end min.
1294        """
1295        return _pywrapcp.Solver_IntervalRelaxedMax(self, interval_var)
1296
1297    def TemporalDisjunction(self, *args):
1298        r"""
1299        *Overload 1:*
1300        This constraint implements a temporal disjunction between two
1301        interval vars t1 and t2. 'alt' indicates which alternative was
1302        chosen (alt == 0 is equivalent to t1 before t2).
1303
1304        |
1305
1306        *Overload 2:*
1307        This constraint implements a temporal disjunction between two
1308        interval vars.
1309        """
1310        return _pywrapcp.Solver_TemporalDisjunction(self, *args)
1311
1312    def DisjunctiveConstraint(self, intervals, name):
1313        r"""
1314        This constraint forces all interval vars into an non-overlapping
1315        sequence. Intervals with zero duration can be scheduled anywhere.
1316        """
1317        return _pywrapcp.Solver_DisjunctiveConstraint(self, intervals, name)
1318
1319    def Cumulative(self, *args):
1320        r"""
1321        *Overload 1:*
1322        This constraint forces that, for any integer t, the sum of the demands
1323        corresponding to an interval containing t does not exceed the given
1324        capacity.
1325
1326        Intervals and demands should be vectors of equal size.
1327
1328        Demands should only contain non-negative values. Zero values are
1329        supported, and the corresponding intervals are filtered out, as they
1330        neither impact nor are impacted by this constraint.
1331
1332        |
1333
1334        *Overload 2:*
1335        This constraint forces that, for any integer t, the sum of the demands
1336        corresponding to an interval containing t does not exceed the given
1337        capacity.
1338
1339        Intervals and demands should be vectors of equal size.
1340
1341        Demands should only contain non-negative values. Zero values are
1342        supported, and the corresponding intervals are filtered out, as they
1343        neither impact nor are impacted by this constraint.
1344
1345        |
1346
1347        *Overload 3:*
1348        This constraint forces that, for any integer t, the sum of the demands
1349        corresponding to an interval containing t does not exceed the given
1350        capacity.
1351
1352        Intervals and demands should be vectors of equal size.
1353
1354        Demands should only contain non-negative values. Zero values are
1355        supported, and the corresponding intervals are filtered out, as they
1356        neither impact nor are impacted by this constraint.
1357
1358        |
1359
1360        *Overload 4:*
1361        This constraint enforces that, for any integer t, the sum of the demands
1362        corresponding to an interval containing t does not exceed the given
1363        capacity.
1364
1365        Intervals and demands should be vectors of equal size.
1366
1367        Demands should only contain non-negative values. Zero values are
1368        supported, and the corresponding intervals are filtered out, as they
1369        neither impact nor are impacted by this constraint.
1370
1371        |
1372
1373        *Overload 5:*
1374        This constraint enforces that, for any integer t, the sum of demands
1375        corresponding to an interval containing t does not exceed the given
1376        capacity.
1377
1378        Intervals and demands should be vectors of equal size.
1379
1380        Demands should be positive.
1381
1382        |
1383
1384        *Overload 6:*
1385        This constraint enforces that, for any integer t, the sum of demands
1386        corresponding to an interval containing t does not exceed the given
1387        capacity.
1388
1389        Intervals and demands should be vectors of equal size.
1390
1391        Demands should be positive.
1392        """
1393        return _pywrapcp.Solver_Cumulative(self, *args)
1394
1395    def Cover(self, vars, target_var):
1396        r"""
1397        This constraint states that the target_var is the convex hull of
1398        the intervals. If none of the interval variables is performed,
1399        then the target var is unperformed too. Also, if the target
1400        variable is unperformed, then all the intervals variables are
1401        unperformed too.
1402        """
1403        return _pywrapcp.Solver_Cover(self, vars, target_var)
1404
1405    def Assignment(self, *args):
1406        r"""
1407        *Overload 1:*
1408        This method creates an empty assignment.
1409
1410        |
1411
1412        *Overload 2:*
1413        This method creates an assignment which is a copy of 'a'.
1414        """
1415        return _pywrapcp.Solver_Assignment(self, *args)
1416
1417    def FirstSolutionCollector(self, *args):
1418        r"""
1419        *Overload 1:*
1420        Collect the first solution of the search.
1421
1422        |
1423
1424        *Overload 2:*
1425        Collect the first solution of the search. The variables will need to
1426        be added later.
1427        """
1428        return _pywrapcp.Solver_FirstSolutionCollector(self, *args)
1429
1430    def LastSolutionCollector(self, *args):
1431        r"""
1432        *Overload 1:*
1433        Collect the last solution of the search.
1434
1435        |
1436
1437        *Overload 2:*
1438        Collect the last solution of the search. The variables will need to
1439        be added later.
1440        """
1441        return _pywrapcp.Solver_LastSolutionCollector(self, *args)
1442
1443    def BestValueSolutionCollector(self, *args):
1444        r"""
1445        *Overload 1:*
1446        Collect the solution corresponding to the optimal value of the objective
1447        of 'assignment'; if 'assignment' does not have an objective no solution is
1448        collected. This collector only collects one solution corresponding to the
1449        best objective value (the first one found).
1450
1451        |
1452
1453        *Overload 2:*
1454        Collect the solution corresponding to the optimal value of the
1455        objective of the internal assignment; if this assignment does not have an
1456        objective no solution is collected. This collector only collects one
1457        solution corresponding to the best objective value (the first one found).
1458        The variables and objective(s) will need to be added later.
1459        """
1460        return _pywrapcp.Solver_BestValueSolutionCollector(self, *args)
1461
1462    def AllSolutionCollector(self, *args):
1463        r"""
1464        *Overload 1:*
1465        Collect all solutions of the search.
1466
1467        |
1468
1469        *Overload 2:*
1470        Collect all solutions of the search. The variables will need to
1471        be added later.
1472        """
1473        return _pywrapcp.Solver_AllSolutionCollector(self, *args)
1474
1475    def Minimize(self, v, step):
1476        r""" Creates a minimization objective."""
1477        return _pywrapcp.Solver_Minimize(self, v, step)
1478
1479    def Maximize(self, v, step):
1480        r""" Creates a maximization objective."""
1481        return _pywrapcp.Solver_Maximize(self, v, step)
1482
1483    def Optimize(self, maximize, v, step):
1484        r""" Creates a objective with a given sense (true = maximization)."""
1485        return _pywrapcp.Solver_Optimize(self, maximize, v, step)
1486
1487    def WeightedMinimize(self, *args):
1488        r"""
1489        *Overload 1:*
1490        Creates a minimization weighted objective. The actual objective is
1491        scalar_prod(sub_objectives, weights).
1492
1493        |
1494
1495        *Overload 2:*
1496        Creates a minimization weighted objective. The actual objective is
1497        scalar_prod(sub_objectives, weights).
1498        """
1499        return _pywrapcp.Solver_WeightedMinimize(self, *args)
1500
1501    def WeightedMaximize(self, *args):
1502        r"""
1503        *Overload 1:*
1504        Creates a maximization weigthed objective.
1505
1506        |
1507
1508        *Overload 2:*
1509        Creates a maximization weigthed objective.
1510        """
1511        return _pywrapcp.Solver_WeightedMaximize(self, *args)
1512
1513    def WeightedOptimize(self, *args):
1514        r"""
1515        *Overload 1:*
1516        Creates a weighted objective with a given sense (true = maximization).
1517
1518        |
1519
1520        *Overload 2:*
1521        Creates a weighted objective with a given sense (true = maximization).
1522        """
1523        return _pywrapcp.Solver_WeightedOptimize(self, *args)
1524
1525    def TabuSearch(self, maximize, objective, step, vars, keep_tenure, forbid_tenure, tabu_factor):
1526        r"""
1527        MetaHeuristics which try to get the search out of local optima.
1528        Creates a Tabu Search monitor.
1529        In the context of local search the behavior is similar to MakeOptimize(),
1530        creating an objective in a given sense. The behavior differs once a local
1531        optimum is reached: thereafter solutions which degrade the value of the
1532        objective are allowed if they are not "tabu". A solution is "tabu" if it
1533        doesn't respect the following rules:
1534        - improving the best solution found so far
1535        - variables in the "keep" list must keep their value, variables in the
1536        "forbid" list must not take the value they have in the list.
1537        Variables with new values enter the tabu lists after each new solution
1538        found and leave the lists after a given number of iterations (called
1539        tenure). Only the variables passed to the method can enter the lists.
1540        The tabu criterion is softened by the tabu factor which gives the number
1541        of "tabu" violations which is tolerated; a factor of 1 means no violations
1542        allowed; a factor of 0 means all violations are allowed.
1543        """
1544        return _pywrapcp.Solver_TabuSearch(self, maximize, objective, step, vars, keep_tenure, forbid_tenure, tabu_factor)
1545
1546    def SimulatedAnnealing(self, maximize, v, step, initial_temperature):
1547        r""" Creates a Simulated Annealing monitor."""
1548        return _pywrapcp.Solver_SimulatedAnnealing(self, maximize, v, step, initial_temperature)
1549
1550    def LubyRestart(self, scale_factor):
1551        r"""
1552        This search monitor will restart the search periodically.
1553        At the iteration n, it will restart after scale_factor * Luby(n) failures
1554        where Luby is the Luby Strategy (i.e. 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8...).
1555        """
1556        return _pywrapcp.Solver_LubyRestart(self, scale_factor)
1557
1558    def ConstantRestart(self, frequency):
1559        r"""
1560        This search monitor will restart the search periodically after 'frequency'
1561        failures.
1562        """
1563        return _pywrapcp.Solver_ConstantRestart(self, frequency)
1564
1565    def TimeLimit(self, *args):
1566        return _pywrapcp.Solver_TimeLimit(self, *args)
1567
1568    def BranchesLimit(self, branches):
1569        r"""
1570        Creates a search limit that constrains the number of branches
1571        explored in the search tree.
1572        """
1573        return _pywrapcp.Solver_BranchesLimit(self, branches)
1574
1575    def FailuresLimit(self, failures):
1576        r"""
1577        Creates a search limit that constrains the number of failures
1578        that can happen when exploring the search tree.
1579        """
1580        return _pywrapcp.Solver_FailuresLimit(self, failures)
1581
1582    def SolutionsLimit(self, solutions):
1583        r"""
1584        Creates a search limit that constrains the number of solutions found
1585        during the search.
1586        """
1587        return _pywrapcp.Solver_SolutionsLimit(self, solutions)
1588
1589    def Limit(self, *args):
1590        r"""
1591        *Overload 1:*
1592        Limits the search with the 'time', 'branches', 'failures' and
1593        'solutions' limits. 'smart_time_check' reduces the calls to the wall
1594
1595        |
1596
1597        *Overload 2:*
1598        Creates a search limit from its protobuf description
1599
1600        |
1601
1602        *Overload 3:*
1603        Creates a search limit that is reached when either of the underlying limit
1604        is reached. That is, the returned limit is more stringent than both
1605        argument limits.
1606        """
1607        return _pywrapcp.Solver_Limit(self, *args)
1608
1609    def CustomLimit(self, limiter):
1610        r"""
1611        Callback-based search limit. Search stops when limiter returns true; if
1612        this happens at a leaf the corresponding solution will be rejected.
1613        """
1614        return _pywrapcp.Solver_CustomLimit(self, limiter)
1615
1616    def SearchLog(self, *args):
1617        return _pywrapcp.Solver_SearchLog(self, *args)
1618
1619    def SearchTrace(self, prefix):
1620        r"""
1621        Creates a search monitor that will trace precisely the behavior of the
1622        search. Use this only for low level debugging.
1623        """
1624        return _pywrapcp.Solver_SearchTrace(self, prefix)
1625
1626    def PrintModelVisitor(self):
1627        r""" Prints the model."""
1628        return _pywrapcp.Solver_PrintModelVisitor(self)
1629
1630    def StatisticsModelVisitor(self):
1631        r""" Displays some nice statistics on the model."""
1632        return _pywrapcp.Solver_StatisticsModelVisitor(self)
1633
1634    def AssignVariableValue(self, var, val):
1635        r""" Decisions."""
1636        return _pywrapcp.Solver_AssignVariableValue(self, var, val)
1637
1638    def VariableLessOrEqualValue(self, var, value):
1639        return _pywrapcp.Solver_VariableLessOrEqualValue(self, var, value)
1640
1641    def VariableGreaterOrEqualValue(self, var, value):
1642        return _pywrapcp.Solver_VariableGreaterOrEqualValue(self, var, value)
1643
1644    def SplitVariableDomain(self, var, val, start_with_lower_half):
1645        return _pywrapcp.Solver_SplitVariableDomain(self, var, val, start_with_lower_half)
1646
1647    def AssignVariableValueOrFail(self, var, value):
1648        return _pywrapcp.Solver_AssignVariableValueOrFail(self, var, value)
1649
1650    def AssignVariablesValues(self, vars, values):
1651        return _pywrapcp.Solver_AssignVariablesValues(self, vars, values)
1652
1653    def FailDecision(self):
1654        return _pywrapcp.Solver_FailDecision(self)
1655
1656    def Decision(self, apply, refute):
1657        return _pywrapcp.Solver_Decision(self, apply, refute)
1658
1659    def Compose(self, dbs):
1660        return _pywrapcp.Solver_Compose(self, dbs)
1661
1662    def Try(self, dbs):
1663        return _pywrapcp.Solver_Try(self, dbs)
1664
1665    def DefaultPhase(self, *args):
1666        return _pywrapcp.Solver_DefaultPhase(self, *args)
1667
1668    def ScheduleOrPostpone(self, var, est, marker):
1669        r"""
1670        Returns a decision that tries to schedule a task at a given time.
1671        On the Apply branch, it will set that interval var as performed and set
1672        its start to 'est'. On the Refute branch, it will just update the
1673        'marker' to 'est' + 1. This decision is used in the
1674        INTERVAL_SET_TIMES_FORWARD strategy.
1675        """
1676        return _pywrapcp.Solver_ScheduleOrPostpone(self, var, est, marker)
1677
1678    def ScheduleOrExpedite(self, var, est, marker):
1679        r"""
1680        Returns a decision that tries to schedule a task at a given time.
1681        On the Apply branch, it will set that interval var as performed and set
1682        its end to 'est'. On the Refute branch, it will just update the
1683        'marker' to 'est' - 1. This decision is used in the
1684        INTERVAL_SET_TIMES_BACKWARD strategy.
1685        """
1686        return _pywrapcp.Solver_ScheduleOrExpedite(self, var, est, marker)
1687
1688    def RankFirstInterval(self, sequence, index):
1689        r"""
1690        Returns a decision that tries to rank first the ith interval var
1691        in the sequence variable.
1692        """
1693        return _pywrapcp.Solver_RankFirstInterval(self, sequence, index)
1694
1695    def RankLastInterval(self, sequence, index):
1696        r"""
1697        Returns a decision that tries to rank last the ith interval var
1698        in the sequence variable.
1699        """
1700        return _pywrapcp.Solver_RankLastInterval(self, sequence, index)
1701
1702    def Phase(self, *args):
1703        return _pywrapcp.Solver_Phase(self, *args)
1704
1705    def DecisionBuilderFromAssignment(self, assignment, db, vars):
1706        r"""
1707        Returns a decision builder for which the left-most leaf corresponds
1708        to assignment, the rest of the tree being explored using 'db'.
1709        """
1710        return _pywrapcp.Solver_DecisionBuilderFromAssignment(self, assignment, db, vars)
1711
1712    def ConstraintAdder(self, ct):
1713        r"""
1714        Returns a decision builder that will add the given constraint to
1715        the model.
1716        """
1717        return _pywrapcp.Solver_ConstraintAdder(self, ct)
1718
1719    def SolveOnce(self, db, monitors):
1720        return _pywrapcp.Solver_SolveOnce(self, db, monitors)
1721
1722    def NestedOptimize(self, *args):
1723        return _pywrapcp.Solver_NestedOptimize(self, *args)
1724
1725    def RestoreAssignment(self, assignment):
1726        r"""
1727        Returns a DecisionBuilder which restores an Assignment
1728        (calls void Assignment::Restore())
1729        """
1730        return _pywrapcp.Solver_RestoreAssignment(self, assignment)
1731
1732    def StoreAssignment(self, assignment):
1733        r"""
1734        Returns a DecisionBuilder which stores an Assignment
1735        (calls void Assignment::Store())
1736        """
1737        return _pywrapcp.Solver_StoreAssignment(self, assignment)
1738
1739    def Operator(self, *args):
1740        return _pywrapcp.Solver_Operator(self, *args)
1741
1742    def RandomLnsOperator(self, *args):
1743        return _pywrapcp.Solver_RandomLnsOperator(self, *args)
1744
1745    def MoveTowardTargetOperator(self, *args):
1746        r"""
1747        *Overload 1:*
1748        Creates a local search operator that tries to move the assignment of some
1749        variables toward a target. The target is given as an Assignment. This
1750        operator generates neighbors in which the only difference compared to the
1751        current state is that one variable that belongs to the target assignment
1752        is set to its target value.
1753
1754        |
1755
1756        *Overload 2:*
1757        Creates a local search operator that tries to move the assignment of some
1758        variables toward a target. The target is given either as two vectors: a
1759        vector of variables and a vector of associated target values. The two
1760        vectors should be of the same length. This operator generates neighbors in
1761        which the only difference compared to the current state is that one
1762        variable that belongs to the given vector is set to its target value.
1763        """
1764        return _pywrapcp.Solver_MoveTowardTargetOperator(self, *args)
1765
1766    def ConcatenateOperators(self, *args):
1767        return _pywrapcp.Solver_ConcatenateOperators(self, *args)
1768
1769    def RandomConcatenateOperators(self, *args):
1770        r"""
1771        *Overload 1:*
1772        Randomized version of local search concatenator; calls a random operator
1773        at each call to MakeNextNeighbor().
1774
1775        |
1776
1777        *Overload 2:*
1778        Randomized version of local search concatenator; calls a random operator
1779        at each call to MakeNextNeighbor(). The provided seed is used to
1780        initialize the random number generator.
1781        """
1782        return _pywrapcp.Solver_RandomConcatenateOperators(self, *args)
1783
1784    def NeighborhoodLimit(self, op, limit):
1785        r"""
1786        Creates a local search operator that wraps another local search
1787        operator and limits the number of neighbors explored (i.e., calls
1788        to MakeNextNeighbor from the current solution (between two calls
1789        to Start()). When this limit is reached, MakeNextNeighbor()
1790        returns false. The counter is cleared when Start() is called.
1791        """
1792        return _pywrapcp.Solver_NeighborhoodLimit(self, op, limit)
1793
1794    def LocalSearchPhase(self, *args):
1795        return _pywrapcp.Solver_LocalSearchPhase(self, *args)
1796
1797    def LocalSearchPhaseParameters(self, *args):
1798        return _pywrapcp.Solver_LocalSearchPhaseParameters(self, *args)
1799
1800    def TopProgressPercent(self):
1801        r"""
1802        Returns a percentage representing the propress of the search before
1803        reaching the limits of the top-level search (can be called from a nested
1804        solve).
1805        """
1806        return _pywrapcp.Solver_TopProgressPercent(self)
1807
1808    def SearchDepth(self):
1809        r"""
1810        Gets the search depth of the current active search. Returns -1 if
1811        there is no active search opened.
1812        """
1813        return _pywrapcp.Solver_SearchDepth(self)
1814
1815    def SearchLeftDepth(self):
1816        r"""
1817        Gets the search left depth of the current active search. Returns -1 if
1818        there is no active search opened.
1819        """
1820        return _pywrapcp.Solver_SearchLeftDepth(self)
1821
1822    def SolveDepth(self):
1823        r"""
1824        Gets the number of nested searches. It returns 0 outside search,
1825        1 during the top level search, 2 or more in case of nested searches.
1826        """
1827        return _pywrapcp.Solver_SolveDepth(self)
1828
1829    def Rand64(self, size):
1830        r""" Returns a random value between 0 and 'size' - 1;"""
1831        return _pywrapcp.Solver_Rand64(self, size)
1832
1833    def Rand32(self, size):
1834        r""" Returns a random value between 0 and 'size' - 1;"""
1835        return _pywrapcp.Solver_Rand32(self, size)
1836
1837    def ReSeed(self, seed):
1838        r""" Reseed the solver random generator."""
1839        return _pywrapcp.Solver_ReSeed(self, seed)
1840
1841    def LocalSearchProfile(self):
1842        r""" Returns local search profiling information in a human readable format."""
1843        return _pywrapcp.Solver_LocalSearchProfile(self)
1844
1845    def Constraints(self):
1846        r"""
1847        Counts the number of constraints that have been added
1848        to the solver before the search.
1849        """
1850        return _pywrapcp.Solver_Constraints(self)
1851
1852    def Accept(self, visitor):
1853        r""" Accepts the given model visitor."""
1854        return _pywrapcp.Solver_Accept(self, visitor)
1855
1856    def FinishCurrentSearch(self):
1857        r""" Tells the solver to kill or restart the current search."""
1858        return _pywrapcp.Solver_FinishCurrentSearch(self)
1859
1860    def RestartCurrentSearch(self):
1861        return _pywrapcp.Solver_RestartCurrentSearch(self)
1862
1863    def ShouldFail(self):
1864        r"""
1865        These methods are only useful for the SWIG wrappers, which need a way
1866        to externally cause the Solver to fail.
1867        """
1868        return _pywrapcp.Solver_ShouldFail(self)
1869
1870    def __str__(self):
1871        return _pywrapcp.Solver___str__(self)
1872
1873    def Add(self, ct):
1874      if isinstance(ct, PyConstraint):
1875        self.__python_constraints.append(ct)
1876      self.AddConstraint(ct)
1877
1878
1879    def TreeNoCycle(self, nexts, active, callback=0):
1880        return _pywrapcp.Solver_TreeNoCycle(self, nexts, active, callback)
1881
1882    def SearchLogWithCallback(self, period, callback):
1883        return _pywrapcp.Solver_SearchLogWithCallback(self, period, callback)
1884
1885    def ElementFunction(self, values, index):
1886        return _pywrapcp.Solver_ElementFunction(self, values, index)
1887
1888    def VarEvalValStrPhase(self, vars, var_evaluator, val_str):
1889        return _pywrapcp.Solver_VarEvalValStrPhase(self, vars, var_evaluator, val_str)
1890
1891    def VarStrValEvalPhase(self, vars, var_str, val_eval):
1892        return _pywrapcp.Solver_VarStrValEvalPhase(self, vars, var_str, val_eval)
1893
1894    def VarEvalValEvalPhase(self, vars, var_eval, val_eval):
1895        return _pywrapcp.Solver_VarEvalValEvalPhase(self, vars, var_eval, val_eval)
1896
1897    def VarStrValEvalTieBreakPhase(self, vars, var_str, val_eval, tie_breaker):
1898        return _pywrapcp.Solver_VarStrValEvalTieBreakPhase(self, vars, var_str, val_eval, tie_breaker)
1899
1900    def VarEvalValEvalTieBreakPhase(self, vars, var_eval, val_eval, tie_breaker):
1901        return _pywrapcp.Solver_VarEvalValEvalTieBreakPhase(self, vars, var_eval, val_eval, tie_breaker)
1902
1903    def EvalEvalStrPhase(self, vars, evaluator, str):
1904        return _pywrapcp.Solver_EvalEvalStrPhase(self, vars, evaluator, str)
1905
1906    def EvalEvalStrTieBreakPhase(self, vars, evaluator, tie_breaker, str):
1907        return _pywrapcp.Solver_EvalEvalStrTieBreakPhase(self, vars, evaluator, tie_breaker, str)
1908
1909    def GuidedLocalSearch(self, *args):
1910        return _pywrapcp.Solver_GuidedLocalSearch(self, *args)
1911
1912    def SumObjectiveFilter(self, vars, values, filter_enum):
1913        return _pywrapcp.Solver_SumObjectiveFilter(self, vars, values, filter_enum)
1914
1915# Register Solver in _pywrapcp:
1916_pywrapcp.Solver_swigregister(Solver)
1917class BaseObject(object):
1918    r"""
1919    A BaseObject is the root of all reversibly allocated objects.
1920    A DebugString method and the associated << operator are implemented
1921    as a convenience.
1922    """
1923
1924    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
1925
1926    def __init__(self):
1927        if self.__class__ == BaseObject:
1928            _self = None
1929        else:
1930            _self = self
1931        _pywrapcp.BaseObject_swiginit(self, _pywrapcp.new_BaseObject(_self, ))
1932    __swig_destroy__ = _pywrapcp.delete_BaseObject
1933
1934    def DebugString(self):
1935        return _pywrapcp.BaseObject_DebugString(self)
1936
1937    def __str__(self):
1938        return _pywrapcp.BaseObject___str__(self)
1939
1940    def __repr__(self):
1941        return _pywrapcp.BaseObject___repr__(self)
1942    def __disown__(self):
1943        self.this.disown()
1944        _pywrapcp.disown_BaseObject(self)
1945        return weakref.proxy(self)
1946
1947# Register BaseObject in _pywrapcp:
1948_pywrapcp.BaseObject_swigregister(BaseObject)
1949class PropagationBaseObject(BaseObject):
1950    r"""
1951    NOLINT
1952    The PropagationBaseObject is a subclass of BaseObject that is also
1953    friend to the Solver class. It allows accessing methods useful when
1954    writing new constraints or new expressions.
1955    """
1956
1957    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
1958    __repr__ = _swig_repr
1959
1960    def __init__(self, s):
1961        if self.__class__ == PropagationBaseObject:
1962            _self = None
1963        else:
1964            _self = self
1965        _pywrapcp.PropagationBaseObject_swiginit(self, _pywrapcp.new_PropagationBaseObject(_self, s))
1966    __swig_destroy__ = _pywrapcp.delete_PropagationBaseObject
1967
1968    def DebugString(self):
1969        return _pywrapcp.PropagationBaseObject_DebugString(self)
1970
1971    def solver(self):
1972        return _pywrapcp.PropagationBaseObject_solver(self)
1973
1974    def Name(self):
1975        r""" Object naming."""
1976        return _pywrapcp.PropagationBaseObject_Name(self)
1977    def __disown__(self):
1978        self.this.disown()
1979        _pywrapcp.disown_PropagationBaseObject(self)
1980        return weakref.proxy(self)
1981
1982# Register PropagationBaseObject in _pywrapcp:
1983_pywrapcp.PropagationBaseObject_swigregister(PropagationBaseObject)
1984class Decision(BaseObject):
1985    r"""
1986    A Decision represents a choice point in the search tree. The two main
1987    methods are Apply() to go left, or Refute() to go right.
1988    """
1989
1990    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
1991
1992    def __init__(self):
1993        if self.__class__ == Decision:
1994            _self = None
1995        else:
1996            _self = self
1997        _pywrapcp.Decision_swiginit(self, _pywrapcp.new_Decision(_self, ))
1998    __swig_destroy__ = _pywrapcp.delete_Decision
1999
2000    def ApplyWrapper(self, s):
2001        r""" Apply will be called first when the decision is executed."""
2002        return _pywrapcp.Decision_ApplyWrapper(self, s)
2003
2004    def RefuteWrapper(self, s):
2005        r""" Refute will be called after a backtrack."""
2006        return _pywrapcp.Decision_RefuteWrapper(self, s)
2007
2008    def DebugString(self):
2009        return _pywrapcp.Decision_DebugString(self)
2010
2011    def __repr__(self):
2012        return _pywrapcp.Decision___repr__(self)
2013
2014    def __str__(self):
2015        return _pywrapcp.Decision___str__(self)
2016    def __disown__(self):
2017        self.this.disown()
2018        _pywrapcp.disown_Decision(self)
2019        return weakref.proxy(self)
2020
2021# Register Decision in _pywrapcp:
2022_pywrapcp.Decision_swigregister(Decision)
2023class DecisionBuilder(BaseObject):
2024    r"""
2025    A DecisionBuilder is responsible for creating the search tree. The
2026    important method is Next(), which returns the next decision to execute.
2027    """
2028
2029    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2030
2031    def __init__(self):
2032        if self.__class__ == DecisionBuilder:
2033            _self = None
2034        else:
2035            _self = self
2036        _pywrapcp.DecisionBuilder_swiginit(self, _pywrapcp.new_DecisionBuilder(_self, ))
2037    __swig_destroy__ = _pywrapcp.delete_DecisionBuilder
2038
2039    def NextWrapper(self, s):
2040        r"""
2041        This is the main method of the decision builder class. It must
2042        return a decision (an instance of the class Decision). If it
2043        returns nullptr, this means that the decision builder has finished
2044        its work.
2045        """
2046        return _pywrapcp.DecisionBuilder_NextWrapper(self, s)
2047
2048    def DebugString(self):
2049        return _pywrapcp.DecisionBuilder_DebugString(self)
2050
2051    def __repr__(self):
2052        return _pywrapcp.DecisionBuilder___repr__(self)
2053
2054    def __str__(self):
2055        return _pywrapcp.DecisionBuilder___str__(self)
2056    def __disown__(self):
2057        self.this.disown()
2058        _pywrapcp.disown_DecisionBuilder(self)
2059        return weakref.proxy(self)
2060
2061# Register DecisionBuilder in _pywrapcp:
2062_pywrapcp.DecisionBuilder_swigregister(DecisionBuilder)
2063class Demon(BaseObject):
2064    r"""
2065    A Demon is the base element of a propagation queue. It is the main
2066      object responsible for implementing the actual propagation
2067      of the constraint and pruning the inconsistent values in the domains
2068      of the variables. The main concept is that demons are listeners that are
2069      attached to the variables and listen to their modifications.
2070    There are two methods:
2071     - Run() is the actual method called when the demon is processed.
2072     - priority() returns its priority. Standard priorities are slow, normal
2073       or fast. "immediate" is reserved for variables and is treated separately.
2074    """
2075
2076    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2077    __repr__ = _swig_repr
2078
2079    def __init__(self):
2080        r"""
2081        This indicates the priority of a demon. Immediate demons are treated
2082        separately and corresponds to variables.
2083        """
2084        if self.__class__ == Demon:
2085            _self = None
2086        else:
2087            _self = self
2088        _pywrapcp.Demon_swiginit(self, _pywrapcp.new_Demon(_self, ))
2089    __swig_destroy__ = _pywrapcp.delete_Demon
2090
2091    def RunWrapper(self, s):
2092        r""" This is the main callback of the demon."""
2093        return _pywrapcp.Demon_RunWrapper(self, s)
2094
2095    def Priority(self):
2096        r"""
2097        This method returns the priority of the demon. Usually a demon is
2098        fast, slow or normal. Immediate demons are reserved for internal
2099        use to maintain variables.
2100        """
2101        return _pywrapcp.Demon_Priority(self)
2102
2103    def DebugString(self):
2104        return _pywrapcp.Demon_DebugString(self)
2105
2106    def Inhibit(self, s):
2107        r"""
2108        This method inhibits the demon in the search tree below the
2109        current position.
2110        """
2111        return _pywrapcp.Demon_Inhibit(self, s)
2112
2113    def Desinhibit(self, s):
2114        r""" This method un-inhibits the demon that was previously inhibited."""
2115        return _pywrapcp.Demon_Desinhibit(self, s)
2116    def __disown__(self):
2117        self.this.disown()
2118        _pywrapcp.disown_Demon(self)
2119        return weakref.proxy(self)
2120
2121# Register Demon in _pywrapcp:
2122_pywrapcp.Demon_swigregister(Demon)
2123class Constraint(PropagationBaseObject):
2124    r"""
2125    A constraint is the main modeling object. It provides two methods:
2126      - Post() is responsible for creating the demons and attaching them to
2127        immediate demons().
2128      - InitialPropagate() is called once just after Post and performs
2129        the initial propagation. The subsequent propagations will be performed
2130        by the demons Posted during the post() method.
2131    """
2132
2133    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2134
2135    def __init__(self, solver):
2136        if self.__class__ == Constraint:
2137            _self = None
2138        else:
2139            _self = self
2140        _pywrapcp.Constraint_swiginit(self, _pywrapcp.new_Constraint(_self, solver))
2141    __swig_destroy__ = _pywrapcp.delete_Constraint
2142
2143    def Post(self):
2144        r"""
2145        This method is called when the constraint is processed by the
2146        solver. Its main usage is to attach demons to variables.
2147        """
2148        return _pywrapcp.Constraint_Post(self)
2149
2150    def InitialPropagateWrapper(self):
2151        r"""
2152        This method performs the initial propagation of the
2153        constraint. It is called just after the post.
2154        """
2155        return _pywrapcp.Constraint_InitialPropagateWrapper(self)
2156
2157    def DebugString(self):
2158        return _pywrapcp.Constraint_DebugString(self)
2159
2160    def Var(self):
2161        r"""
2162        Creates a Boolean variable representing the status of the constraint
2163        (false = constraint is violated, true = constraint is satisfied). It
2164        returns nullptr if the constraint does not support this API.
2165        """
2166        return _pywrapcp.Constraint_Var(self)
2167
2168    def __repr__(self):
2169        return _pywrapcp.Constraint___repr__(self)
2170
2171    def __str__(self):
2172        return _pywrapcp.Constraint___str__(self)
2173
2174    def __add__(self, *args):
2175        return _pywrapcp.Constraint___add__(self, *args)
2176
2177    def __radd__(self, v):
2178        return _pywrapcp.Constraint___radd__(self, v)
2179
2180    def __sub__(self, *args):
2181        return _pywrapcp.Constraint___sub__(self, *args)
2182
2183    def __rsub__(self, v):
2184        return _pywrapcp.Constraint___rsub__(self, v)
2185
2186    def __mul__(self, *args):
2187        return _pywrapcp.Constraint___mul__(self, *args)
2188
2189    def __rmul__(self, v):
2190        return _pywrapcp.Constraint___rmul__(self, v)
2191
2192    def __floordiv__(self, v):
2193        return _pywrapcp.Constraint___floordiv__(self, v)
2194
2195    def __neg__(self):
2196        return _pywrapcp.Constraint___neg__(self)
2197
2198    def __abs__(self):
2199        return _pywrapcp.Constraint___abs__(self)
2200
2201    def Square(self):
2202        return _pywrapcp.Constraint_Square(self)
2203
2204    def __eq__(self, *args):
2205        return _pywrapcp.Constraint___eq__(self, *args)
2206
2207    def __ne__(self, *args):
2208        return _pywrapcp.Constraint___ne__(self, *args)
2209
2210    def __ge__(self, *args):
2211        return _pywrapcp.Constraint___ge__(self, *args)
2212
2213    def __gt__(self, *args):
2214        return _pywrapcp.Constraint___gt__(self, *args)
2215
2216    def __le__(self, *args):
2217        return _pywrapcp.Constraint___le__(self, *args)
2218
2219    def __lt__(self, *args):
2220        return _pywrapcp.Constraint___lt__(self, *args)
2221
2222    def MapTo(self, vars):
2223        return _pywrapcp.Constraint_MapTo(self, vars)
2224
2225    def IndexOf(self, *args):
2226        return _pywrapcp.Constraint_IndexOf(self, *args)
2227    def __disown__(self):
2228        self.this.disown()
2229        _pywrapcp.disown_Constraint(self)
2230        return weakref.proxy(self)
2231
2232# Register Constraint in _pywrapcp:
2233_pywrapcp.Constraint_swigregister(Constraint)
2234class SearchMonitor(BaseObject):
2235    r""" A search monitor is a simple set of callbacks to monitor all search events"""
2236
2237    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2238    kNoProgress = _pywrapcp.SearchMonitor_kNoProgress
2239
2240    def __init__(self, s):
2241        if self.__class__ == SearchMonitor:
2242            _self = None
2243        else:
2244            _self = self
2245        _pywrapcp.SearchMonitor_swiginit(self, _pywrapcp.new_SearchMonitor(_self, s))
2246    __swig_destroy__ = _pywrapcp.delete_SearchMonitor
2247
2248    def EnterSearch(self):
2249        r""" Beginning of the search."""
2250        return _pywrapcp.SearchMonitor_EnterSearch(self)
2251
2252    def RestartSearch(self):
2253        r""" Restart the search."""
2254        return _pywrapcp.SearchMonitor_RestartSearch(self)
2255
2256    def ExitSearch(self):
2257        r""" End of the search."""
2258        return _pywrapcp.SearchMonitor_ExitSearch(self)
2259
2260    def BeginNextDecision(self, b):
2261        r""" Before calling DecisionBuilder::Next."""
2262        return _pywrapcp.SearchMonitor_BeginNextDecision(self, b)
2263
2264    def EndNextDecision(self, b, d):
2265        r""" After calling DecisionBuilder::Next, along with the returned decision."""
2266        return _pywrapcp.SearchMonitor_EndNextDecision(self, b, d)
2267
2268    def ApplyDecision(self, d):
2269        r""" Before applying the decision."""
2270        return _pywrapcp.SearchMonitor_ApplyDecision(self, d)
2271
2272    def RefuteDecision(self, d):
2273        r""" Before refuting the decision."""
2274        return _pywrapcp.SearchMonitor_RefuteDecision(self, d)
2275
2276    def AfterDecision(self, d, apply):
2277        r"""
2278        Just after refuting or applying the decision, apply is true after Apply.
2279        This is called only if the Apply() or Refute() methods have not failed.
2280        """
2281        return _pywrapcp.SearchMonitor_AfterDecision(self, d, apply)
2282
2283    def BeginFail(self):
2284        r""" Just when the failure occurs."""
2285        return _pywrapcp.SearchMonitor_BeginFail(self)
2286
2287    def EndFail(self):
2288        r""" After completing the backtrack."""
2289        return _pywrapcp.SearchMonitor_EndFail(self)
2290
2291    def BeginInitialPropagation(self):
2292        r""" Before the initial propagation."""
2293        return _pywrapcp.SearchMonitor_BeginInitialPropagation(self)
2294
2295    def EndInitialPropagation(self):
2296        r""" After the initial propagation."""
2297        return _pywrapcp.SearchMonitor_EndInitialPropagation(self)
2298
2299    def AcceptSolution(self):
2300        r"""
2301        This method is called when a solution is found. It asserts whether the
2302        solution is valid. A value of false indicates that the solution
2303        should be discarded.
2304        """
2305        return _pywrapcp.SearchMonitor_AcceptSolution(self)
2306
2307    def AtSolution(self):
2308        r"""
2309        This method is called when a valid solution is found. If the
2310        return value is true, then search will resume after. If the result
2311        is false, then search will stop there.
2312        """
2313        return _pywrapcp.SearchMonitor_AtSolution(self)
2314
2315    def NoMoreSolutions(self):
2316        r""" When the search tree is finished."""
2317        return _pywrapcp.SearchMonitor_NoMoreSolutions(self)
2318
2319    def LocalOptimum(self):
2320        r"""
2321        When a local optimum is reached. If 'true' is returned, the last solution
2322        is discarded and the search proceeds with the next one.
2323        """
2324        return _pywrapcp.SearchMonitor_LocalOptimum(self)
2325
2326    def AcceptDelta(self, delta, deltadelta):
2327        
2328        return _pywrapcp.SearchMonitor_AcceptDelta(self, delta, deltadelta)
2329
2330    def AcceptNeighbor(self):
2331        r""" After accepting a neighbor during local search."""
2332        return _pywrapcp.SearchMonitor_AcceptNeighbor(self)
2333
2334    def ProgressPercent(self):
2335        r"""
2336        Returns a percentage representing the propress of the search before
2337        reaching limits.
2338        """
2339        return _pywrapcp.SearchMonitor_ProgressPercent(self)
2340
2341    def solver(self):
2342        return _pywrapcp.SearchMonitor_solver(self)
2343
2344    def __repr__(self):
2345        return _pywrapcp.SearchMonitor___repr__(self)
2346
2347    def __str__(self):
2348        return _pywrapcp.SearchMonitor___str__(self)
2349    def __disown__(self):
2350        self.this.disown()
2351        _pywrapcp.disown_SearchMonitor(self)
2352        return weakref.proxy(self)
2353
2354# Register SearchMonitor in _pywrapcp:
2355_pywrapcp.SearchMonitor_swigregister(SearchMonitor)
2356class IntExpr(PropagationBaseObject):
2357    r"""
2358    The class IntExpr is the base of all integer expressions in
2359    constraint programming.
2360    It contains the basic protocol for an expression:
2361      - setting and modifying its bound
2362      - querying if it is bound
2363      - listening to events modifying its bounds
2364      - casting it into a variable (instance of IntVar)
2365    """
2366
2367    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2368
2369    def __init__(self, *args, **kwargs):
2370        raise AttributeError("No constructor defined - class is abstract")
2371
2372    def Min(self):
2373        return _pywrapcp.IntExpr_Min(self)
2374
2375    def SetMin(self, m):
2376        return _pywrapcp.IntExpr_SetMin(self, m)
2377
2378    def Max(self):
2379        return _pywrapcp.IntExpr_Max(self)
2380
2381    def SetMax(self, m):
2382        return _pywrapcp.IntExpr_SetMax(self, m)
2383
2384    def SetRange(self, l, u):
2385        r""" This method sets both the min and the max of the expression."""
2386        return _pywrapcp.IntExpr_SetRange(self, l, u)
2387
2388    def SetValue(self, v):
2389        r""" This method sets the value of the expression."""
2390        return _pywrapcp.IntExpr_SetValue(self, v)
2391
2392    def Bound(self):
2393        r""" Returns true if the min and the max of the expression are equal."""
2394        return _pywrapcp.IntExpr_Bound(self)
2395
2396    def IsVar(self):
2397        r""" Returns true if the expression is indeed a variable."""
2398        return _pywrapcp.IntExpr_IsVar(self)
2399
2400    def Var(self):
2401        r""" Creates a variable from the expression."""
2402        return _pywrapcp.IntExpr_Var(self)
2403
2404    def VarWithName(self, name):
2405        r"""
2406        Creates a variable from the expression and set the name of the
2407        resulting var. If the expression is already a variable, then it
2408        will set the name of the expression, possibly overwriting it.
2409        This is just a shortcut to Var() followed by set_name().
2410        """
2411        return _pywrapcp.IntExpr_VarWithName(self, name)
2412
2413    def WhenRange(self, *args):
2414        r"""
2415        *Overload 1:*
2416        Attach a demon that will watch the min or the max of the expression.
2417
2418        |
2419
2420        *Overload 2:*
2421        Attach a demon that will watch the min or the max of the expression.
2422        """
2423        return _pywrapcp.IntExpr_WhenRange(self, *args)
2424
2425    def __repr__(self):
2426        return _pywrapcp.IntExpr___repr__(self)
2427
2428    def __str__(self):
2429        return _pywrapcp.IntExpr___str__(self)
2430
2431    def __add__(self, *args):
2432        return _pywrapcp.IntExpr___add__(self, *args)
2433
2434    def __radd__(self, v):
2435        return _pywrapcp.IntExpr___radd__(self, v)
2436
2437    def __sub__(self, *args):
2438        return _pywrapcp.IntExpr___sub__(self, *args)
2439
2440    def __rsub__(self, v):
2441        return _pywrapcp.IntExpr___rsub__(self, v)
2442
2443    def __mul__(self, *args):
2444        return _pywrapcp.IntExpr___mul__(self, *args)
2445
2446    def __rmul__(self, v):
2447        return _pywrapcp.IntExpr___rmul__(self, v)
2448
2449    def __floordiv__(self, *args):
2450        return _pywrapcp.IntExpr___floordiv__(self, *args)
2451
2452    def __mod__(self, *args):
2453        return _pywrapcp.IntExpr___mod__(self, *args)
2454
2455    def __neg__(self):
2456        return _pywrapcp.IntExpr___neg__(self)
2457
2458    def __abs__(self):
2459        return _pywrapcp.IntExpr___abs__(self)
2460
2461    def Square(self):
2462        return _pywrapcp.IntExpr_Square(self)
2463
2464    def __eq__(self, *args):
2465        return _pywrapcp.IntExpr___eq__(self, *args)
2466
2467    def __ne__(self, *args):
2468        return _pywrapcp.IntExpr___ne__(self, *args)
2469
2470    def __ge__(self, *args):
2471        return _pywrapcp.IntExpr___ge__(self, *args)
2472
2473    def __gt__(self, *args):
2474        return _pywrapcp.IntExpr___gt__(self, *args)
2475
2476    def __le__(self, *args):
2477        return _pywrapcp.IntExpr___le__(self, *args)
2478
2479    def __lt__(self, *args):
2480        return _pywrapcp.IntExpr___lt__(self, *args)
2481
2482    def MapTo(self, vars):
2483        return _pywrapcp.IntExpr_MapTo(self, vars)
2484
2485    def IndexOf(self, *args):
2486        return _pywrapcp.IntExpr_IndexOf(self, *args)
2487
2488    def IsMember(self, values):
2489        return _pywrapcp.IntExpr_IsMember(self, values)
2490
2491    def Member(self, values):
2492        return _pywrapcp.IntExpr_Member(self, values)
2493
2494    def NotMember(self, starts, ends):
2495        return _pywrapcp.IntExpr_NotMember(self, starts, ends)
2496
2497# Register IntExpr in _pywrapcp:
2498_pywrapcp.IntExpr_swigregister(IntExpr)
2499class IntVarIterator(BaseObject):
2500    r"""
2501     The class Iterator has two direct subclasses. HoleIterators
2502     iterates over all holes, that is value removed between the
2503     current min and max of the variable since the last time the
2504     variable was processed in the queue. DomainIterators iterates
2505     over all elements of the variable domain. Both iterators are not
2506     robust to domain changes. Hole iterators can also report values outside
2507     the current min and max of the variable.
2508     HoleIterators should only be called from a demon attached to the
2509     variable that has created this iterator.
2510     IntVar* current_var;
2511     std::unique_ptr<IntVarIterator> it(current_var->MakeHoleIterator(false));
2512     for (const int64_t hole : InitAndGetValues(it)) {
2513    use the hole
2514     }
2515    """
2516
2517    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2518
2519    def __init__(self, *args, **kwargs):
2520        raise AttributeError("No constructor defined - class is abstract")
2521    __repr__ = _swig_repr
2522
2523    def Init(self):
2524        r""" This method must be called before each loop."""
2525        return _pywrapcp.IntVarIterator_Init(self)
2526
2527    def Ok(self):
2528        r""" This method indicates if we can call Value() or not."""
2529        return _pywrapcp.IntVarIterator_Ok(self)
2530
2531    def Value(self):
2532        r""" This method returns the current value of the iterator."""
2533        return _pywrapcp.IntVarIterator_Value(self)
2534
2535    def Next(self):
2536        r""" This method moves the iterator to the next value."""
2537        return _pywrapcp.IntVarIterator_Next(self)
2538
2539    def DebugString(self):
2540        r""" Pretty Print."""
2541        return _pywrapcp.IntVarIterator_DebugString(self)
2542
2543    def __iter__(self):
2544      self.Init()
2545      return self
2546
2547    def next(self):
2548      if self.Ok():
2549        result = self.Value()
2550        self.Next()
2551        return result
2552      else:
2553        raise StopIteration()
2554
2555    def __next__(self):
2556      return self.next()
2557
2558
2559# Register IntVarIterator in _pywrapcp:
2560_pywrapcp.IntVarIterator_swigregister(IntVarIterator)
2561class IntVar(IntExpr):
2562    r"""
2563    The class IntVar is a subset of IntExpr. In addition to the
2564    IntExpr protocol, it offers persistence, removing values from the domains,
2565    and a finer model for events.
2566    """
2567
2568    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2569
2570    def __init__(self, *args, **kwargs):
2571        raise AttributeError("No constructor defined - class is abstract")
2572
2573    def IsVar(self):
2574        return _pywrapcp.IntVar_IsVar(self)
2575
2576    def Var(self):
2577        return _pywrapcp.IntVar_Var(self)
2578
2579    def Value(self):
2580        r"""
2581        This method returns the value of the variable. This method checks
2582        before that the variable is bound.
2583        """
2584        return _pywrapcp.IntVar_Value(self)
2585
2586    def RemoveValue(self, v):
2587        r""" This method removes the value 'v' from the domain of the variable."""
2588        return _pywrapcp.IntVar_RemoveValue(self, v)
2589
2590    def RemoveInterval(self, l, u):
2591        r"""
2592        This method removes the interval 'l' .. 'u' from the domain of
2593        the variable. It assumes that 'l' <= 'u'.
2594        """
2595        return _pywrapcp.IntVar_RemoveInterval(self, l, u)
2596
2597    def RemoveValues(self, values):
2598        r""" This method remove the values from the domain of the variable."""
2599        return _pywrapcp.IntVar_RemoveValues(self, values)
2600
2601    def SetValues(self, values):
2602        r""" This method intersects the current domain with the values in the array."""
2603        return _pywrapcp.IntVar_SetValues(self, values)
2604
2605    def WhenBound(self, *args):
2606        r"""
2607        *Overload 1:*
2608        This method attaches a demon that will be awakened when the
2609        variable is bound.
2610
2611        |
2612
2613        *Overload 2:*
2614        This method attaches a closure that will be awakened when the
2615        variable is bound.
2616        """
2617        return _pywrapcp.IntVar_WhenBound(self, *args)
2618
2619    def WhenDomain(self, *args):
2620        r"""
2621        *Overload 1:*
2622        This method attaches a demon that will watch any domain
2623        modification of the domain of the variable.
2624
2625        |
2626
2627        *Overload 2:*
2628        This method attaches a closure that will watch any domain
2629        modification of the domain of the variable.
2630        """
2631        return _pywrapcp.IntVar_WhenDomain(self, *args)
2632
2633    def Size(self):
2634        r""" This method returns the number of values in the domain of the variable."""
2635        return _pywrapcp.IntVar_Size(self)
2636
2637    def Contains(self, v):
2638        r"""
2639        This method returns whether the value 'v' is in the domain of the
2640        variable.
2641        """
2642        return _pywrapcp.IntVar_Contains(self, v)
2643
2644    def HoleIteratorAux(self, reversible):
2645        r"""
2646        Creates a hole iterator. When 'reversible' is false, the returned
2647        object is created on the normal C++ heap and the solver does NOT
2648        take ownership of the object.
2649        """
2650        return _pywrapcp.IntVar_HoleIteratorAux(self, reversible)
2651
2652    def DomainIteratorAux(self, reversible):
2653        r"""
2654        Creates a domain iterator. When 'reversible' is false, the
2655        returned object is created on the normal C++ heap and the solver
2656        does NOT take ownership of the object.
2657        """
2658        return _pywrapcp.IntVar_DomainIteratorAux(self, reversible)
2659
2660    def OldMin(self):
2661        r""" Returns the previous min."""
2662        return _pywrapcp.IntVar_OldMin(self)
2663
2664    def OldMax(self):
2665        r""" Returns the previous max."""
2666        return _pywrapcp.IntVar_OldMax(self)
2667
2668    def __repr__(self):
2669        return _pywrapcp.IntVar___repr__(self)
2670
2671    def __str__(self):
2672        return _pywrapcp.IntVar___str__(self)
2673
2674    def DomainIterator(self):
2675      return iter(self.DomainIteratorAux(False))
2676
2677    def HoleIterator(self):
2678      return iter(self.HoleIteratorAux(False))
2679
2680
2681# Register IntVar in _pywrapcp:
2682_pywrapcp.IntVar_swigregister(IntVar)
2683class SolutionCollector(SearchMonitor):
2684    r"""
2685    This class is the root class of all solution collectors.
2686    It implements a basic query API to be used independently
2687    of the collector used.
2688    """
2689
2690    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2691
2692    def __init__(self, *args, **kwargs):
2693        raise AttributeError("No constructor defined")
2694    __repr__ = _swig_repr
2695
2696    def DebugString(self):
2697        return _pywrapcp.SolutionCollector_DebugString(self)
2698
2699    def Add(self, *args):
2700        return _pywrapcp.SolutionCollector_Add(self, *args)
2701
2702    def AddObjective(self, objective):
2703        return _pywrapcp.SolutionCollector_AddObjective(self, objective)
2704
2705    def EnterSearch(self):
2706        r""" Beginning of the search."""
2707        return _pywrapcp.SolutionCollector_EnterSearch(self)
2708
2709    def SolutionCount(self):
2710        r""" Returns how many solutions were stored during the search."""
2711        return _pywrapcp.SolutionCollector_SolutionCount(self)
2712
2713    def Solution(self, n):
2714        r""" Returns the nth solution."""
2715        return _pywrapcp.SolutionCollector_Solution(self, n)
2716
2717    def WallTime(self, n):
2718        r""" Returns the wall time in ms for the nth solution."""
2719        return _pywrapcp.SolutionCollector_WallTime(self, n)
2720
2721    def Branches(self, n):
2722        r""" Returns the number of branches when the nth solution was found."""
2723        return _pywrapcp.SolutionCollector_Branches(self, n)
2724
2725    def Failures(self, n):
2726        r"""
2727        Returns the number of failures encountered at the time of the nth
2728        solution.
2729        """
2730        return _pywrapcp.SolutionCollector_Failures(self, n)
2731
2732    def ObjectiveValue(self, n):
2733        r""" Returns the objective value of the nth solution."""
2734        return _pywrapcp.SolutionCollector_ObjectiveValue(self, n)
2735
2736    def Value(self, n, var):
2737        r""" This is a shortcut to get the Value of 'var' in the nth solution."""
2738        return _pywrapcp.SolutionCollector_Value(self, n, var)
2739
2740    def StartValue(self, n, var):
2741        r""" This is a shortcut to get the StartValue of 'var' in the nth solution."""
2742        return _pywrapcp.SolutionCollector_StartValue(self, n, var)
2743
2744    def EndValue(self, n, var):
2745        r""" This is a shortcut to get the EndValue of 'var' in the nth solution."""
2746        return _pywrapcp.SolutionCollector_EndValue(self, n, var)
2747
2748    def DurationValue(self, n, var):
2749        r""" This is a shortcut to get the DurationValue of 'var' in the nth solution."""
2750        return _pywrapcp.SolutionCollector_DurationValue(self, n, var)
2751
2752    def PerformedValue(self, n, var):
2753        r""" This is a shortcut to get the PerformedValue of 'var' in the nth solution."""
2754        return _pywrapcp.SolutionCollector_PerformedValue(self, n, var)
2755
2756    def ForwardSequence(self, n, var):
2757        r"""
2758        This is a shortcut to get the ForwardSequence of 'var' in the
2759        nth solution. The forward sequence is the list of ranked interval
2760        variables starting from the start of the sequence.
2761        """
2762        return _pywrapcp.SolutionCollector_ForwardSequence(self, n, var)
2763
2764    def BackwardSequence(self, n, var):
2765        r"""
2766        This is a shortcut to get the BackwardSequence of 'var' in the
2767        nth solution. The backward sequence is the list of ranked interval
2768        variables starting from the end of the sequence.
2769        """
2770        return _pywrapcp.SolutionCollector_BackwardSequence(self, n, var)
2771
2772    def Unperformed(self, n, var):
2773        r"""
2774        This is a shortcut to get the list of unperformed of 'var' in the
2775        nth solution.
2776        """
2777        return _pywrapcp.SolutionCollector_Unperformed(self, n, var)
2778
2779# Register SolutionCollector in _pywrapcp:
2780_pywrapcp.SolutionCollector_swigregister(SolutionCollector)
2781class OptimizeVar(object):
2782    r"""
2783    This class encapsulates an objective. It requires the direction
2784    (minimize or maximize), the variable to optimize, and the
2785    improvement step.
2786    """
2787
2788    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2789
2790    def __init__(self, *args, **kwargs):
2791        raise AttributeError("No constructor defined")
2792    __repr__ = _swig_repr
2793
2794    def Best(self):
2795        r""" Returns the best value found during search."""
2796        return _pywrapcp.OptimizeVar_Best(self)
2797
2798    def BeginNextDecision(self, db):
2799        r""" Internal methods."""
2800        return _pywrapcp.OptimizeVar_BeginNextDecision(self, db)
2801
2802    def RefuteDecision(self, d):
2803        return _pywrapcp.OptimizeVar_RefuteDecision(self, d)
2804
2805    def AtSolution(self):
2806        return _pywrapcp.OptimizeVar_AtSolution(self)
2807
2808    def AcceptSolution(self):
2809        return _pywrapcp.OptimizeVar_AcceptSolution(self)
2810
2811    def DebugString(self):
2812        return _pywrapcp.OptimizeVar_DebugString(self)
2813    __swig_destroy__ = _pywrapcp.delete_OptimizeVar
2814
2815# Register OptimizeVar in _pywrapcp:
2816_pywrapcp.OptimizeVar_swigregister(OptimizeVar)
2817class SearchLimit(SearchMonitor):
2818    r""" Base class of all search limits."""
2819
2820    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2821
2822    def __init__(self, *args, **kwargs):
2823        raise AttributeError("No constructor defined - class is abstract")
2824    __repr__ = _swig_repr
2825    __swig_destroy__ = _pywrapcp.delete_SearchLimit
2826
2827    def Crossed(self):
2828        r""" Returns true if the limit has been crossed."""
2829        return _pywrapcp.SearchLimit_Crossed(self)
2830
2831    def Check(self):
2832        r"""
2833        This method is called to check the status of the limit. A return
2834        value of true indicates that we have indeed crossed the limit. In
2835        that case, this method will not be called again and the remaining
2836        search will be discarded.
2837        """
2838        return _pywrapcp.SearchLimit_Check(self)
2839
2840    def Init(self):
2841        r""" This method is called when the search limit is initialized."""
2842        return _pywrapcp.SearchLimit_Init(self)
2843
2844    def EnterSearch(self):
2845        r""" Internal methods."""
2846        return _pywrapcp.SearchLimit_EnterSearch(self)
2847
2848    def BeginNextDecision(self, b):
2849        return _pywrapcp.SearchLimit_BeginNextDecision(self, b)
2850
2851    def RefuteDecision(self, d):
2852        return _pywrapcp.SearchLimit_RefuteDecision(self, d)
2853
2854    def DebugString(self):
2855        return _pywrapcp.SearchLimit_DebugString(self)
2856
2857# Register SearchLimit in _pywrapcp:
2858_pywrapcp.SearchLimit_swigregister(SearchLimit)
2859class IntervalVar(PropagationBaseObject):
2860    r"""
2861    Interval variables are often used in scheduling. The main characteristics
2862    of an IntervalVar are the start position, duration, and end
2863    date. All these characteristics can be queried and set, and demons can
2864    be posted on their modifications.
2865
2866    An important aspect is optionality: an IntervalVar can be performed or not.
2867    If unperformed, then it simply does not exist, and its characteristics
2868    cannot be accessed any more. An interval var is automatically marked
2869    as unperformed when it is not consistent anymore (start greater
2870    than end, duration < 0...)
2871    """
2872
2873    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2874
2875    def __init__(self, *args, **kwargs):
2876        raise AttributeError("No constructor defined - class is abstract")
2877
2878    def StartMin(self):
2879        r"""
2880        These methods query, set, and watch the start position of the
2881        interval var.
2882        """
2883        return _pywrapcp.IntervalVar_StartMin(self)
2884
2885    def StartMax(self):
2886        return _pywrapcp.IntervalVar_StartMax(self)
2887
2888    def SetStartMin(self, m):
2889        return _pywrapcp.IntervalVar_SetStartMin(self, m)
2890
2891    def SetStartMax(self, m):
2892        return _pywrapcp.IntervalVar_SetStartMax(self, m)
2893
2894    def SetStartRange(self, mi, ma):
2895        return _pywrapcp.IntervalVar_SetStartRange(self, mi, ma)
2896
2897    def OldStartMin(self):
2898        return _pywrapcp.IntervalVar_OldStartMin(self)
2899
2900    def OldStartMax(self):
2901        return _pywrapcp.IntervalVar_OldStartMax(self)
2902
2903    def WhenStartRange(self, *args):
2904        return _pywrapcp.IntervalVar_WhenStartRange(self, *args)
2905
2906    def WhenStartBound(self, *args):
2907        return _pywrapcp.IntervalVar_WhenStartBound(self, *args)
2908
2909    def DurationMin(self):
2910        r""" These methods query, set, and watch the duration of the interval var."""
2911        return _pywrapcp.IntervalVar_DurationMin(self)
2912
2913    def DurationMax(self):
2914        return _pywrapcp.IntervalVar_DurationMax(self)
2915
2916    def SetDurationMin(self, m):
2917        return _pywrapcp.IntervalVar_SetDurationMin(self, m)
2918
2919    def SetDurationMax(self, m):
2920        return _pywrapcp.IntervalVar_SetDurationMax(self, m)
2921
2922    def SetDurationRange(self, mi, ma):
2923        return _pywrapcp.IntervalVar_SetDurationRange(self, mi, ma)
2924
2925    def OldDurationMin(self):
2926        return _pywrapcp.IntervalVar_OldDurationMin(self)
2927
2928    def OldDurationMax(self):
2929        return _pywrapcp.IntervalVar_OldDurationMax(self)
2930
2931    def WhenDurationRange(self, *args):
2932        return _pywrapcp.IntervalVar_WhenDurationRange(self, *args)
2933
2934    def WhenDurationBound(self, *args):
2935        return _pywrapcp.IntervalVar_WhenDurationBound(self, *args)
2936
2937    def EndMin(self):
2938        r""" These methods query, set, and watch the end position of the interval var."""
2939        return _pywrapcp.IntervalVar_EndMin(self)
2940
2941    def EndMax(self):
2942        return _pywrapcp.IntervalVar_EndMax(self)
2943
2944    def SetEndMin(self, m):
2945        return _pywrapcp.IntervalVar_SetEndMin(self, m)
2946
2947    def SetEndMax(self, m):
2948        return _pywrapcp.IntervalVar_SetEndMax(self, m)
2949
2950    def SetEndRange(self, mi, ma):
2951        return _pywrapcp.IntervalVar_SetEndRange(self, mi, ma)
2952
2953    def OldEndMin(self):
2954        return _pywrapcp.IntervalVar_OldEndMin(self)
2955
2956    def OldEndMax(self):
2957        return _pywrapcp.IntervalVar_OldEndMax(self)
2958
2959    def WhenEndRange(self, *args):
2960        return _pywrapcp.IntervalVar_WhenEndRange(self, *args)
2961
2962    def WhenEndBound(self, *args):
2963        return _pywrapcp.IntervalVar_WhenEndBound(self, *args)
2964
2965    def MustBePerformed(self):
2966        r"""
2967        These methods query, set, and watch the performed status of the
2968        interval var.
2969        """
2970        return _pywrapcp.IntervalVar_MustBePerformed(self)
2971
2972    def MayBePerformed(self):
2973        return _pywrapcp.IntervalVar_MayBePerformed(self)
2974
2975    def CannotBePerformed(self):
2976        return _pywrapcp.IntervalVar_CannotBePerformed(self)
2977
2978    def IsPerformedBound(self):
2979        return _pywrapcp.IntervalVar_IsPerformedBound(self)
2980
2981    def SetPerformed(self, val):
2982        return _pywrapcp.IntervalVar_SetPerformed(self, val)
2983
2984    def WasPerformedBound(self):
2985        return _pywrapcp.IntervalVar_WasPerformedBound(self)
2986
2987    def WhenPerformedBound(self, *args):
2988        return _pywrapcp.IntervalVar_WhenPerformedBound(self, *args)
2989
2990    def WhenAnything(self, *args):
2991        r"""
2992        *Overload 1:*
2993        Attaches a demon awakened when anything about this interval changes.
2994
2995        |
2996
2997        *Overload 2:*
2998        Attaches a closure awakened when anything about this interval changes.
2999        """
3000        return _pywrapcp.IntervalVar_WhenAnything(self, *args)
3001
3002    def StartExpr(self):
3003        r"""
3004        These methods create expressions encapsulating the start, end
3005        and duration of the interval var. Please note that these must not
3006        be used if the interval var is unperformed.
3007        """
3008        return _pywrapcp.IntervalVar_StartExpr(self)
3009
3010    def DurationExpr(self):
3011        return _pywrapcp.IntervalVar_DurationExpr(self)
3012
3013    def EndExpr(self):
3014        return _pywrapcp.IntervalVar_EndExpr(self)
3015
3016    def PerformedExpr(self):
3017        return _pywrapcp.IntervalVar_PerformedExpr(self)
3018
3019    def SafeStartExpr(self, unperformed_value):
3020        r"""
3021        These methods create expressions encapsulating the start, end
3022        and duration of the interval var. If the interval var is
3023        unperformed, they will return the unperformed_value.
3024        """
3025        return _pywrapcp.IntervalVar_SafeStartExpr(self, unperformed_value)
3026
3027    def SafeDurationExpr(self, unperformed_value):
3028        return _pywrapcp.IntervalVar_SafeDurationExpr(self, unperformed_value)
3029
3030    def SafeEndExpr(self, unperformed_value):
3031        return _pywrapcp.IntervalVar_SafeEndExpr(self, unperformed_value)
3032
3033    def EndsAfterEnd(self, other):
3034        return _pywrapcp.IntervalVar_EndsAfterEnd(self, other)
3035
3036    def EndsAfterEndWithDelay(self, other, delay):
3037        return _pywrapcp.IntervalVar_EndsAfterEndWithDelay(self, other, delay)
3038
3039    def EndsAfterStart(self, other):
3040        return _pywrapcp.IntervalVar_EndsAfterStart(self, other)
3041
3042    def EndsAfterStartWithDelay(self, other, delay):
3043        return _pywrapcp.IntervalVar_EndsAfterStartWithDelay(self, other, delay)
3044
3045    def EndsAtEnd(self, other):
3046        return _pywrapcp.IntervalVar_EndsAtEnd(self, other)
3047
3048    def EndsAtEndWithDelay(self, other, delay):
3049        return _pywrapcp.IntervalVar_EndsAtEndWithDelay(self, other, delay)
3050
3051    def EndsAtStart(self, other):
3052        return _pywrapcp.IntervalVar_EndsAtStart(self, other)
3053
3054    def EndsAtStartWithDelay(self, other, delay):
3055        return _pywrapcp.IntervalVar_EndsAtStartWithDelay(self, other, delay)
3056
3057    def StartsAfterEnd(self, other):
3058        return _pywrapcp.IntervalVar_StartsAfterEnd(self, other)
3059
3060    def StartsAfterEndWithDelay(self, other, delay):
3061        return _pywrapcp.IntervalVar_StartsAfterEndWithDelay(self, other, delay)
3062
3063    def StartsAfterStart(self, other):
3064        return _pywrapcp.IntervalVar_StartsAfterStart(self, other)
3065
3066    def StartsAfterStartWithDelay(self, other, delay):
3067        return _pywrapcp.IntervalVar_StartsAfterStartWithDelay(self, other, delay)
3068
3069    def StartsAtEnd(self, other):
3070        return _pywrapcp.IntervalVar_StartsAtEnd(self, other)
3071
3072    def StartsAtEndWithDelay(self, other, delay):
3073        return _pywrapcp.IntervalVar_StartsAtEndWithDelay(self, other, delay)
3074
3075    def StartsAtStart(self, other):
3076        return _pywrapcp.IntervalVar_StartsAtStart(self, other)
3077
3078    def StartsAtStartWithDelay(self, other, delay):
3079        return _pywrapcp.IntervalVar_StartsAtStartWithDelay(self, other, delay)
3080
3081    def StaysInSync(self, other):
3082        return _pywrapcp.IntervalVar_StaysInSync(self, other)
3083
3084    def StaysInSyncWithDelay(self, other, delay):
3085        return _pywrapcp.IntervalVar_StaysInSyncWithDelay(self, other, delay)
3086
3087    def EndsAfter(self, date):
3088        return _pywrapcp.IntervalVar_EndsAfter(self, date)
3089
3090    def EndsAt(self, date):
3091        return _pywrapcp.IntervalVar_EndsAt(self, date)
3092
3093    def EndsBefore(self, date):
3094        return _pywrapcp.IntervalVar_EndsBefore(self, date)
3095
3096    def StartsAfter(self, date):
3097        return _pywrapcp.IntervalVar_StartsAfter(self, date)
3098
3099    def StartsAt(self, date):
3100        return _pywrapcp.IntervalVar_StartsAt(self, date)
3101
3102    def StartsBefore(self, date):
3103        return _pywrapcp.IntervalVar_StartsBefore(self, date)
3104
3105    def CrossesDate(self, date):
3106        return _pywrapcp.IntervalVar_CrossesDate(self, date)
3107
3108    def AvoidsDate(self, date):
3109        return _pywrapcp.IntervalVar_AvoidsDate(self, date)
3110
3111    def __repr__(self):
3112        return _pywrapcp.IntervalVar___repr__(self)
3113
3114    def __str__(self):
3115        return _pywrapcp.IntervalVar___str__(self)
3116
3117# Register IntervalVar in _pywrapcp:
3118_pywrapcp.IntervalVar_swigregister(IntervalVar)
3119class SequenceVar(PropagationBaseObject):
3120    r"""
3121    A sequence variable is a variable whose domain is a set of possible
3122    orderings of the interval variables. It allows ordering of tasks. It
3123    has two sets of methods: ComputePossibleFirstsAndLasts(), which
3124    returns the list of interval variables that can be ranked first or
3125    last; and RankFirst/RankNotFirst/RankLast/RankNotLast, which can be
3126    used to create the search decision.
3127    """
3128
3129    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3130
3131    def __init__(self, *args, **kwargs):
3132        raise AttributeError("No constructor defined")
3133
3134    def DebugString(self):
3135        return _pywrapcp.SequenceVar_DebugString(self)
3136
3137    def RankFirst(self, index):
3138        r"""
3139        Ranks the index_th interval var first of all unranked interval
3140        vars. After that, it will no longer be considered ranked.
3141        """
3142        return _pywrapcp.SequenceVar_RankFirst(self, index)
3143
3144    def RankNotFirst(self, index):
3145        r"""
3146        Indicates that the index_th interval var will not be ranked first
3147        of all currently unranked interval vars.
3148        """
3149        return _pywrapcp.SequenceVar_RankNotFirst(self, index)
3150
3151    def RankLast(self, index):
3152        r"""
3153        Ranks the index_th interval var first of all unranked interval
3154        vars. After that, it will no longer be considered ranked.
3155        """
3156        return _pywrapcp.SequenceVar_RankLast(self, index)
3157
3158    def RankNotLast(self, index):
3159        r"""
3160        Indicates that the index_th interval var will not be ranked first
3161        of all currently unranked interval vars.
3162        """
3163        return _pywrapcp.SequenceVar_RankNotLast(self, index)
3164
3165    def Interval(self, index):
3166        r""" Returns the index_th interval of the sequence."""
3167        return _pywrapcp.SequenceVar_Interval(self, index)
3168
3169    def Next(self, index):
3170        r""" Returns the next of the index_th interval of the sequence."""
3171        return _pywrapcp.SequenceVar_Next(self, index)
3172
3173    def Size(self):
3174        r""" Returns the number of interval vars in the sequence."""
3175        return _pywrapcp.SequenceVar_Size(self)
3176
3177    def __repr__(self):
3178        return _pywrapcp.SequenceVar___repr__(self)
3179
3180    def __str__(self):
3181        return _pywrapcp.SequenceVar___str__(self)
3182
3183# Register SequenceVar in _pywrapcp:
3184_pywrapcp.SequenceVar_swigregister(SequenceVar)
3185class AssignmentElement(object):
3186    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3187
3188    def __init__(self, *args, **kwargs):
3189        raise AttributeError("No constructor defined")
3190    __repr__ = _swig_repr
3191
3192    def Activate(self):
3193        return _pywrapcp.AssignmentElement_Activate(self)
3194
3195    def Deactivate(self):
3196        return _pywrapcp.AssignmentElement_Deactivate(self)
3197
3198    def Activated(self):
3199        return _pywrapcp.AssignmentElement_Activated(self)
3200    __swig_destroy__ = _pywrapcp.delete_AssignmentElement
3201
3202# Register AssignmentElement in _pywrapcp:
3203_pywrapcp.AssignmentElement_swigregister(AssignmentElement)
3204class IntVarElement(AssignmentElement):
3205    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3206
3207    def __init__(self, *args, **kwargs):
3208        raise AttributeError("No constructor defined")
3209    __repr__ = _swig_repr
3210
3211    def Var(self):
3212        return _pywrapcp.IntVarElement_Var(self)
3213
3214    def Min(self):
3215        return _pywrapcp.IntVarElement_Min(self)
3216
3217    def SetMin(self, m):
3218        return _pywrapcp.IntVarElement_SetMin(self, m)
3219
3220    def Max(self):
3221        return _pywrapcp.IntVarElement_Max(self)
3222
3223    def SetMax(self, m):
3224        return _pywrapcp.IntVarElement_SetMax(self, m)
3225
3226    def Value(self):
3227        return _pywrapcp.IntVarElement_Value(self)
3228
3229    def Bound(self):
3230        return _pywrapcp.IntVarElement_Bound(self)
3231
3232    def SetRange(self, l, u):
3233        return _pywrapcp.IntVarElement_SetRange(self, l, u)
3234
3235    def SetValue(self, v):
3236        return _pywrapcp.IntVarElement_SetValue(self, v)
3237
3238    def __eq__(self, element):
3239        return _pywrapcp.IntVarElement___eq__(self, element)
3240
3241    def __ne__(self, element):
3242        return _pywrapcp.IntVarElement___ne__(self, element)
3243    __swig_destroy__ = _pywrapcp.delete_IntVarElement
3244
3245# Register IntVarElement in _pywrapcp:
3246_pywrapcp.IntVarElement_swigregister(IntVarElement)
3247class IntervalVarElement(AssignmentElement):
3248    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3249
3250    def __init__(self, *args, **kwargs):
3251        raise AttributeError("No constructor defined")
3252    __repr__ = _swig_repr
3253
3254    def Var(self):
3255        return _pywrapcp.IntervalVarElement_Var(self)
3256
3257    def StartMin(self):
3258        return _pywrapcp.IntervalVarElement_StartMin(self)
3259
3260    def StartMax(self):
3261        return _pywrapcp.IntervalVarElement_StartMax(self)
3262
3263    def StartValue(self):
3264        return _pywrapcp.IntervalVarElement_StartValue(self)
3265
3266    def DurationMin(self):
3267        return _pywrapcp.IntervalVarElement_DurationMin(self)
3268
3269    def DurationMax(self):
3270        return _pywrapcp.IntervalVarElement_DurationMax(self)
3271
3272    def DurationValue(self):
3273        return _pywrapcp.IntervalVarElement_DurationValue(self)
3274
3275    def EndMin(self):
3276        return _pywrapcp.IntervalVarElement_EndMin(self)
3277
3278    def EndMax(self):
3279        return _pywrapcp.IntervalVarElement_EndMax(self)
3280
3281    def EndValue(self):
3282        return _pywrapcp.IntervalVarElement_EndValue(self)
3283
3284    def PerformedMin(self):
3285        return _pywrapcp.IntervalVarElement_PerformedMin(self)
3286
3287    def PerformedMax(self):
3288        return _pywrapcp.IntervalVarElement_PerformedMax(self)
3289
3290    def PerformedValue(self):
3291        return _pywrapcp.IntervalVarElement_PerformedValue(self)
3292
3293    def SetStartMin(self, m):
3294        return _pywrapcp.IntervalVarElement_SetStartMin(self, m)
3295
3296    def SetStartMax(self, m):
3297        return _pywrapcp.IntervalVarElement_SetStartMax(self, m)
3298
3299    def SetStartRange(self, mi, ma):
3300        return _pywrapcp.IntervalVarElement_SetStartRange(self, mi, ma)
3301
3302    def SetStartValue(self, v):
3303        return _pywrapcp.IntervalVarElement_SetStartValue(self, v)
3304
3305    def SetDurationMin(self, m):
3306        return _pywrapcp.IntervalVarElement_SetDurationMin(self, m)
3307
3308    def SetDurationMax(self, m):
3309        return _pywrapcp.IntervalVarElement_SetDurationMax(self, m)
3310
3311    def SetDurationRange(self, mi, ma):
3312        return _pywrapcp.IntervalVarElement_SetDurationRange(self, mi, ma)
3313
3314    def SetDurationValue(self, v):
3315        return _pywrapcp.IntervalVarElement_SetDurationValue(self, v)
3316
3317    def SetEndMin(self, m):
3318        return _pywrapcp.IntervalVarElement_SetEndMin(self, m)
3319
3320    def SetEndMax(self, m):
3321        return _pywrapcp.IntervalVarElement_SetEndMax(self, m)
3322
3323    def SetEndRange(self, mi, ma):
3324        return _pywrapcp.IntervalVarElement_SetEndRange(self, mi, ma)
3325
3326    def SetEndValue(self, v):
3327        return _pywrapcp.IntervalVarElement_SetEndValue(self, v)
3328
3329    def SetPerformedMin(self, m):
3330        return _pywrapcp.IntervalVarElement_SetPerformedMin(self, m)
3331
3332    def SetPerformedMax(self, m):
3333        return _pywrapcp.IntervalVarElement_SetPerformedMax(self, m)
3334
3335    def SetPerformedRange(self, mi, ma):
3336        return _pywrapcp.IntervalVarElement_SetPerformedRange(self, mi, ma)
3337
3338    def SetPerformedValue(self, v):
3339        return _pywrapcp.IntervalVarElement_SetPerformedValue(self, v)
3340
3341    def __eq__(self, element):
3342        return _pywrapcp.IntervalVarElement___eq__(self, element)
3343
3344    def __ne__(self, element):
3345        return _pywrapcp.IntervalVarElement___ne__(self, element)
3346    __swig_destroy__ = _pywrapcp.delete_IntervalVarElement
3347
3348# Register IntervalVarElement in _pywrapcp:
3349_pywrapcp.IntervalVarElement_swigregister(IntervalVarElement)
3350class SequenceVarElement(AssignmentElement):
3351    r"""
3352    The SequenceVarElement stores a partial representation of ranked
3353    interval variables in the underlying sequence variable.
3354    This representation consists of three vectors:
3355      - the forward sequence. That is the list of interval variables
3356        ranked first in the sequence.  The first element of the backward
3357        sequence is the first interval in the sequence variable.
3358      - the backward sequence. That is the list of interval variables
3359        ranked last in the sequence. The first element of the backward
3360        sequence is the last interval in the sequence variable.
3361      - The list of unperformed interval variables.
3362     Furthermore, if all performed variables are ranked, then by
3363     convention, the forward_sequence will contain all such variables
3364     and the backward_sequence will be empty.
3365    """
3366
3367    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3368
3369    def __init__(self, *args, **kwargs):
3370        raise AttributeError("No constructor defined")
3371    __repr__ = _swig_repr
3372
3373    def Var(self):
3374        return _pywrapcp.SequenceVarElement_Var(self)
3375
3376    def ForwardSequence(self):
3377        return _pywrapcp.SequenceVarElement_ForwardSequence(self)
3378
3379    def BackwardSequence(self):
3380        return _pywrapcp.SequenceVarElement_BackwardSequence(self)
3381
3382    def Unperformed(self):
3383        return _pywrapcp.SequenceVarElement_Unperformed(self)
3384
3385    def SetSequence(self, forward_sequence, backward_sequence, unperformed):
3386        return _pywrapcp.SequenceVarElement_SetSequence(self, forward_sequence, backward_sequence, unperformed)
3387
3388    def SetForwardSequence(self, forward_sequence):
3389        return _pywrapcp.SequenceVarElement_SetForwardSequence(self, forward_sequence)
3390
3391    def SetBackwardSequence(self, backward_sequence):
3392        return _pywrapcp.SequenceVarElement_SetBackwardSequence(self, backward_sequence)
3393
3394    def SetUnperformed(self, unperformed):
3395        return _pywrapcp.SequenceVarElement_SetUnperformed(self, unperformed)
3396
3397    def __eq__(self, element):
3398        return _pywrapcp.SequenceVarElement___eq__(self, element)
3399
3400    def __ne__(self, element):
3401        return _pywrapcp.SequenceVarElement___ne__(self, element)
3402    __swig_destroy__ = _pywrapcp.delete_SequenceVarElement
3403
3404# Register SequenceVarElement in _pywrapcp:
3405_pywrapcp.SequenceVarElement_swigregister(SequenceVarElement)
3406class Assignment(PropagationBaseObject):
3407    r"""
3408    An Assignment is a variable -> domains mapping, used
3409    to report solutions to the user.
3410    """
3411
3412    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3413
3414    def __init__(self, *args, **kwargs):
3415        raise AttributeError("No constructor defined")
3416    __repr__ = _swig_repr
3417
3418    def Clear(self):
3419        return _pywrapcp.Assignment_Clear(self)
3420
3421    def Empty(self):
3422        return _pywrapcp.Assignment_Empty(self)
3423
3424    def Size(self):
3425        return _pywrapcp.Assignment_Size(self)
3426
3427    def NumIntVars(self):
3428        return _pywrapcp.Assignment_NumIntVars(self)
3429
3430    def NumIntervalVars(self):
3431        return _pywrapcp.Assignment_NumIntervalVars(self)
3432
3433    def NumSequenceVars(self):
3434        return _pywrapcp.Assignment_NumSequenceVars(self)
3435
3436    def Store(self):
3437        return _pywrapcp.Assignment_Store(self)
3438
3439    def Restore(self):
3440        return _pywrapcp.Assignment_Restore(self)
3441
3442    def Load(self, *args):
3443        return _pywrapcp.Assignment_Load(self, *args)
3444
3445    def Save(self, *args):
3446        return _pywrapcp.Assignment_Save(self, *args)
3447
3448    def AddObjective(self, v):
3449        return _pywrapcp.Assignment_AddObjective(self, v)
3450
3451    def Objective(self):
3452        return _pywrapcp.Assignment_Objective(self)
3453
3454    def HasObjective(self):
3455        return _pywrapcp.Assignment_HasObjective(self)
3456
3457    def ObjectiveMin(self):
3458        return _pywrapcp.Assignment_ObjectiveMin(self)
3459
3460    def ObjectiveMax(self):
3461        return _pywrapcp.Assignment_ObjectiveMax(self)
3462
3463    def ObjectiveValue(self):
3464        return _pywrapcp.Assignment_ObjectiveValue(self)
3465
3466    def ObjectiveBound(self):
3467        return _pywrapcp.Assignment_ObjectiveBound(self)
3468
3469    def SetObjectiveMin(self, m):
3470        return _pywrapcp.Assignment_SetObjectiveMin(self, m)
3471
3472    def SetObjectiveMax(self, m):
3473        return _pywrapcp.Assignment_SetObjectiveMax(self, m)
3474
3475    def SetObjectiveValue(self, value):
3476        return _pywrapcp.Assignment_SetObjectiveValue(self, value)
3477
3478    def SetObjectiveRange(self, l, u):
3479        return _pywrapcp.Assignment_SetObjectiveRange(self, l, u)
3480
3481    def Min(self, var):
3482        return _pywrapcp.Assignment_Min(self, var)
3483
3484    def Max(self, var):
3485        return _pywrapcp.Assignment_Max(self, var)
3486
3487    def Value(self, var):
3488        return _pywrapcp.Assignment_Value(self, var)
3489
3490    def Bound(self, var):
3491        return _pywrapcp.Assignment_Bound(self, var)
3492
3493    def SetMin(self, var, m):
3494        return _pywrapcp.Assignment_SetMin(self, var, m)
3495
3496    def SetMax(self, var, m):
3497        return _pywrapcp.Assignment_SetMax(self, var, m)
3498
3499    def SetRange(self, var, l, u):
3500        return _pywrapcp.Assignment_SetRange(self, var, l, u)
3501
3502    def SetValue(self, var, value):
3503        return _pywrapcp.Assignment_SetValue(self, var, value)
3504
3505    def StartMin(self, var):
3506        return _pywrapcp.Assignment_StartMin(self, var)
3507
3508    def StartMax(self, var):
3509        return _pywrapcp.Assignment_StartMax(self, var)
3510
3511    def StartValue(self, var):
3512        return _pywrapcp.Assignment_StartValue(self, var)
3513
3514    def DurationMin(self, var):
3515        return _pywrapcp.Assignment_DurationMin(self, var)
3516
3517    def DurationMax(self, var):
3518        return _pywrapcp.Assignment_DurationMax(self, var)
3519
3520    def DurationValue(self, var):
3521        return _pywrapcp.Assignment_DurationValue(self, var)
3522
3523    def EndMin(self, var):
3524        return _pywrapcp.Assignment_EndMin(self, var)
3525
3526    def EndMax(self, var):
3527        return _pywrapcp.Assignment_EndMax(self, var)
3528
3529    def EndValue(self, var):
3530        return _pywrapcp.Assignment_EndValue(self, var)
3531
3532    def PerformedMin(self, var):
3533        return _pywrapcp.Assignment_PerformedMin(self, var)
3534
3535    def PerformedMax(self, var):
3536        return _pywrapcp.Assignment_PerformedMax(self, var)
3537
3538    def PerformedValue(self, var):
3539        return _pywrapcp.Assignment_PerformedValue(self, var)
3540
3541    def SetStartMin(self, var, m):
3542        return _pywrapcp.Assignment_SetStartMin(self, var, m)
3543
3544    def SetStartMax(self, var, m):
3545        return _pywrapcp.Assignment_SetStartMax(self, var, m)
3546
3547    def SetStartRange(self, var, mi, ma):
3548        return _pywrapcp.Assignment_SetStartRange(self, var, mi, ma)
3549
3550    def SetStartValue(self, var, value):
3551        return _pywrapcp.Assignment_SetStartValue(self, var, value)
3552
3553    def SetDurationMin(self, var, m):
3554        return _pywrapcp.Assignment_SetDurationMin(self, var, m)
3555
3556    def SetDurationMax(self, var, m):
3557        return _pywrapcp.Assignment_SetDurationMax(self, var, m)
3558
3559    def SetDurationRange(self, var, mi, ma):
3560        return _pywrapcp.Assignment_SetDurationRange(self, var, mi, ma)
3561
3562    def SetDurationValue(self, var, value):
3563        return _pywrapcp.Assignment_SetDurationValue(self, var, value)
3564
3565    def SetEndMin(self, var, m):
3566        return _pywrapcp.Assignment_SetEndMin(self, var, m)
3567
3568    def SetEndMax(self, var, m):
3569        return _pywrapcp.Assignment_SetEndMax(self, var, m)
3570
3571    def SetEndRange(self, var, mi, ma):
3572        return _pywrapcp.Assignment_SetEndRange(self, var, mi, ma)
3573
3574    def SetEndValue(self, var, value):
3575        return _pywrapcp.Assignment_SetEndValue(self, var, value)
3576
3577    def SetPerformedMin(self, var, m):
3578        return _pywrapcp.Assignment_SetPerformedMin(self, var, m)
3579
3580    def SetPerformedMax(self, var, m):
3581        return _pywrapcp.Assignment_SetPerformedMax(self, var, m)
3582
3583    def SetPerformedRange(self, var, mi, ma):
3584        return _pywrapcp.Assignment_SetPerformedRange(self, var, mi, ma)
3585
3586    def SetPerformedValue(self, var, value):
3587        return _pywrapcp.Assignment_SetPerformedValue(self, var, value)
3588
3589    def Add(self, *args):
3590        return _pywrapcp.Assignment_Add(self, *args)
3591
3592    def ForwardSequence(self, var):
3593        return _pywrapcp.Assignment_ForwardSequence(self, var)
3594
3595    def BackwardSequence(self, var):
3596        return _pywrapcp.Assignment_BackwardSequence(self, var)
3597
3598    def Unperformed(self, var):
3599        return _pywrapcp.Assignment_Unperformed(self, var)
3600
3601    def SetSequence(self, var, forward_sequence, backward_sequence, unperformed):
3602        return _pywrapcp.Assignment_SetSequence(self, var, forward_sequence, backward_sequence, unperformed)
3603
3604    def SetForwardSequence(self, var, forward_sequence):
3605        return _pywrapcp.Assignment_SetForwardSequence(self, var, forward_sequence)
3606
3607    def SetBackwardSequence(self, var, backward_sequence):
3608        return _pywrapcp.Assignment_SetBackwardSequence(self, var, backward_sequence)
3609
3610    def SetUnperformed(self, var, unperformed):
3611        return _pywrapcp.Assignment_SetUnperformed(self, var, unperformed)
3612
3613    def Activate(self, *args):
3614        return _pywrapcp.Assignment_Activate(self, *args)
3615
3616    def Deactivate(self, *args):
3617        return _pywrapcp.Assignment_Deactivate(self, *args)
3618
3619    def Activated(self, *args):
3620        return _pywrapcp.Assignment_Activated(self, *args)
3621
3622    def DebugString(self):
3623        return _pywrapcp.Assignment_DebugString(self)
3624
3625    def IntVarContainer(self):
3626        return _pywrapcp.Assignment_IntVarContainer(self)
3627
3628    def MutableIntVarContainer(self):
3629        return _pywrapcp.Assignment_MutableIntVarContainer(self)
3630
3631    def IntervalVarContainer(self):
3632        return _pywrapcp.Assignment_IntervalVarContainer(self)
3633
3634    def MutableIntervalVarContainer(self):
3635        return _pywrapcp.Assignment_MutableIntervalVarContainer(self)
3636
3637    def SequenceVarContainer(self):
3638        return _pywrapcp.Assignment_SequenceVarContainer(self)
3639
3640    def MutableSequenceVarContainer(self):
3641        return _pywrapcp.Assignment_MutableSequenceVarContainer(self)
3642
3643    def __eq__(self, assignment):
3644        return _pywrapcp.Assignment___eq__(self, assignment)
3645
3646    def __ne__(self, assignment):
3647        return _pywrapcp.Assignment___ne__(self, assignment)
3648
3649# Register Assignment in _pywrapcp:
3650_pywrapcp.Assignment_swigregister(Assignment)
3651
3652def __lshift__(*args):
3653    return _pywrapcp.__lshift__(*args)
3654class Pack(Constraint):
3655    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3656
3657    def __init__(self, *args, **kwargs):
3658        raise AttributeError("No constructor defined")
3659    __repr__ = _swig_repr
3660
3661    def AddWeightedSumLessOrEqualConstantDimension(self, *args):
3662        r"""
3663        *Overload 1:*
3664        Dimensions are additional constraints than can restrict what is
3665        possible with the pack constraint. It can be used to set capacity
3666        limits, to count objects per bin, to compute unassigned
3667        penalties...
3668        This dimension imposes that for all bins b, the weighted sum
3669        (weights[i]) of all objects i assigned to 'b' is less or equal
3670        'bounds[b]'.
3671
3672        |
3673
3674        *Overload 2:*
3675        This dimension imposes that for all bins b, the weighted sum
3676        (weights->Run(i)) of all objects i assigned to 'b' is less or
3677        equal to 'bounds[b]'. Ownership of the callback is transferred to
3678        the pack constraint.
3679
3680        |
3681
3682        *Overload 3:*
3683        This dimension imposes that for all bins b, the weighted sum
3684        (weights->Run(i, b) of all objects i assigned to 'b' is less or
3685        equal to 'bounds[b]'. Ownership of the callback is transferred to
3686        the pack constraint.
3687        """
3688        return _pywrapcp.Pack_AddWeightedSumLessOrEqualConstantDimension(self, *args)
3689
3690    def AddWeightedSumEqualVarDimension(self, *args):
3691        r"""
3692        *Overload 1:*
3693        This dimension imposes that for all bins b, the weighted sum
3694        (weights[i]) of all objects i assigned to 'b' is equal to loads[b].
3695
3696        |
3697
3698        *Overload 2:*
3699        This dimension imposes that for all bins b, the weighted sum
3700        (weights->Run(i, b)) of all objects i assigned to 'b' is equal to
3701        loads[b].
3702        """
3703        return _pywrapcp.Pack_AddWeightedSumEqualVarDimension(self, *args)
3704
3705    def AddSumVariableWeightsLessOrEqualConstantDimension(self, usage, capacity):
3706        r"""
3707        This dimension imposes:
3708        forall b in bins,
3709           sum (i in items: usage[i] * is_assigned(i, b)) <= capacity[b]
3710        where is_assigned(i, b) is true if and only if item i is assigned
3711        to the bin b.
3712
3713        This can be used to model shapes of items by linking variables of
3714        the same item on parallel dimensions with an allowed assignment
3715        constraint.
3716        """
3717        return _pywrapcp.Pack_AddSumVariableWeightsLessOrEqualConstantDimension(self, usage, capacity)
3718
3719    def AddWeightedSumOfAssignedDimension(self, weights, cost_var):
3720        r"""
3721        This dimension enforces that cost_var == sum of weights[i] for
3722        all objects 'i' assigned to a bin.
3723        """
3724        return _pywrapcp.Pack_AddWeightedSumOfAssignedDimension(self, weights, cost_var)
3725
3726    def AddCountUsedBinDimension(self, count_var):
3727        r"""
3728        This dimension links 'count_var' to the actual number of bins used in the
3729        pack.
3730        """
3731        return _pywrapcp.Pack_AddCountUsedBinDimension(self, count_var)
3732
3733    def AddCountAssignedItemsDimension(self, count_var):
3734        r"""
3735        This dimension links 'count_var' to the actual number of items
3736        assigned to a bin in the pack.
3737        """
3738        return _pywrapcp.Pack_AddCountAssignedItemsDimension(self, count_var)
3739
3740    def Post(self):
3741        return _pywrapcp.Pack_Post(self)
3742
3743    def InitialPropagateWrapper(self):
3744        return _pywrapcp.Pack_InitialPropagateWrapper(self)
3745
3746    def DebugString(self):
3747        return _pywrapcp.Pack_DebugString(self)
3748
3749# Register Pack in _pywrapcp:
3750_pywrapcp.Pack_swigregister(Pack)
3751class DisjunctiveConstraint(Constraint):
3752    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3753
3754    def __init__(self, *args, **kwargs):
3755        raise AttributeError("No constructor defined - class is abstract")
3756    __repr__ = _swig_repr
3757
3758    def SequenceVar(self):
3759        r""" Creates a sequence variable from the constraint."""
3760        return _pywrapcp.DisjunctiveConstraint_SequenceVar(self)
3761
3762    def SetTransitionTime(self, transition_time):
3763        r"""
3764        Add a transition time between intervals.  It forces the distance between
3765        the end of interval a and start of interval b that follows it to be at
3766        least transition_time(a, b). This function must always return
3767        a positive or null value.
3768        """
3769        return _pywrapcp.DisjunctiveConstraint_SetTransitionTime(self, transition_time)
3770
3771    def TransitionTime(self, before_index, after_index):
3772        return _pywrapcp.DisjunctiveConstraint_TransitionTime(self, before_index, after_index)
3773
3774# Register DisjunctiveConstraint in _pywrapcp:
3775_pywrapcp.DisjunctiveConstraint_swigregister(DisjunctiveConstraint)
3776class RevInteger(object):
3777    r"""
3778    This class adds reversibility to a POD type.
3779    It contains the stamp optimization. i.e. the SaveValue call is done
3780    only once per node of the search tree.  Please note that actual
3781    stamps always starts at 1, thus an initial value of 0 will always
3782    trigger the first SaveValue.
3783    """
3784
3785    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3786    __repr__ = _swig_repr
3787
3788    def __init__(self, val):
3789        _pywrapcp.RevInteger_swiginit(self, _pywrapcp.new_RevInteger(val))
3790
3791    def Value(self):
3792        return _pywrapcp.RevInteger_Value(self)
3793
3794    def SetValue(self, s, val):
3795        return _pywrapcp.RevInteger_SetValue(self, s, val)
3796    __swig_destroy__ = _pywrapcp.delete_RevInteger
3797
3798# Register RevInteger in _pywrapcp:
3799_pywrapcp.RevInteger_swigregister(RevInteger)
3800class NumericalRevInteger(RevInteger):
3801    r""" Subclass of Rev<T> which adds numerical operations."""
3802
3803    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3804    __repr__ = _swig_repr
3805
3806    def __init__(self, val):
3807        _pywrapcp.NumericalRevInteger_swiginit(self, _pywrapcp.new_NumericalRevInteger(val))
3808
3809    def Add(self, s, to_add):
3810        return _pywrapcp.NumericalRevInteger_Add(self, s, to_add)
3811
3812    def Incr(self, s):
3813        return _pywrapcp.NumericalRevInteger_Incr(self, s)
3814
3815    def Decr(self, s):
3816        return _pywrapcp.NumericalRevInteger_Decr(self, s)
3817    __swig_destroy__ = _pywrapcp.delete_NumericalRevInteger
3818
3819# Register NumericalRevInteger in _pywrapcp:
3820_pywrapcp.NumericalRevInteger_swigregister(NumericalRevInteger)
3821class RevBool(object):
3822    r"""
3823    This class adds reversibility to a POD type.
3824    It contains the stamp optimization. i.e. the SaveValue call is done
3825    only once per node of the search tree.  Please note that actual
3826    stamps always starts at 1, thus an initial value of 0 will always
3827    trigger the first SaveValue.
3828    """
3829
3830    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3831    __repr__ = _swig_repr
3832
3833    def __init__(self, val):
3834        _pywrapcp.RevBool_swiginit(self, _pywrapcp.new_RevBool(val))
3835
3836    def Value(self):
3837        return _pywrapcp.RevBool_Value(self)
3838
3839    def SetValue(self, s, val):
3840        return _pywrapcp.RevBool_SetValue(self, s, val)
3841    __swig_destroy__ = _pywrapcp.delete_RevBool
3842
3843# Register RevBool in _pywrapcp:
3844_pywrapcp.RevBool_swigregister(RevBool)
3845class IntVarContainer(object):
3846    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3847
3848    def __init__(self, *args, **kwargs):
3849        raise AttributeError("No constructor defined")
3850    __repr__ = _swig_repr
3851
3852    def Contains(self, var):
3853        return _pywrapcp.IntVarContainer_Contains(self, var)
3854
3855    def Element(self, index):
3856        return _pywrapcp.IntVarContainer_Element(self, index)
3857
3858    def Size(self):
3859        return _pywrapcp.IntVarContainer_Size(self)
3860
3861    def Store(self):
3862        return _pywrapcp.IntVarContainer_Store(self)
3863
3864    def Restore(self):
3865        return _pywrapcp.IntVarContainer_Restore(self)
3866
3867    def __eq__(self, container):
3868        r"""
3869        Returns true if this and 'container' both represent the same V* -> E map.
3870        Runs in linear time; requires that the == operator on the type E is well
3871        defined.
3872        """
3873        return _pywrapcp.IntVarContainer___eq__(self, container)
3874
3875    def __ne__(self, container):
3876        return _pywrapcp.IntVarContainer___ne__(self, container)
3877    __swig_destroy__ = _pywrapcp.delete_IntVarContainer
3878
3879# Register IntVarContainer in _pywrapcp:
3880_pywrapcp.IntVarContainer_swigregister(IntVarContainer)
3881class IntervalVarContainer(object):
3882    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3883
3884    def __init__(self, *args, **kwargs):
3885        raise AttributeError("No constructor defined")
3886    __repr__ = _swig_repr
3887
3888    def Contains(self, var):
3889        return _pywrapcp.IntervalVarContainer_Contains(self, var)
3890
3891    def Element(self, index):
3892        return _pywrapcp.IntervalVarContainer_Element(self, index)
3893
3894    def Size(self):
3895        return _pywrapcp.IntervalVarContainer_Size(self)
3896
3897    def Store(self):
3898        return _pywrapcp.IntervalVarContainer_Store(self)
3899
3900    def Restore(self):
3901        return _pywrapcp.IntervalVarContainer_Restore(self)
3902
3903    def __eq__(self, container):
3904        r"""
3905        Returns true if this and 'container' both represent the same V* -> E map.
3906        Runs in linear time; requires that the == operator on the type E is well
3907        defined.
3908        """
3909        return _pywrapcp.IntervalVarContainer___eq__(self, container)
3910
3911    def __ne__(self, container):
3912        return _pywrapcp.IntervalVarContainer___ne__(self, container)
3913    __swig_destroy__ = _pywrapcp.delete_IntervalVarContainer
3914
3915# Register IntervalVarContainer in _pywrapcp:
3916_pywrapcp.IntervalVarContainer_swigregister(IntervalVarContainer)
3917class SequenceVarContainer(object):
3918    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3919
3920    def __init__(self, *args, **kwargs):
3921        raise AttributeError("No constructor defined")
3922    __repr__ = _swig_repr
3923
3924    def Contains(self, var):
3925        return _pywrapcp.SequenceVarContainer_Contains(self, var)
3926
3927    def Element(self, index):
3928        return _pywrapcp.SequenceVarContainer_Element(self, index)
3929
3930    def Size(self):
3931        return _pywrapcp.SequenceVarContainer_Size(self)
3932
3933    def Store(self):
3934        return _pywrapcp.SequenceVarContainer_Store(self)
3935
3936    def Restore(self):
3937        return _pywrapcp.SequenceVarContainer_Restore(self)
3938
3939    def __eq__(self, container):
3940        r"""
3941        Returns true if this and 'container' both represent the same V* -> E map.
3942        Runs in linear time; requires that the == operator on the type E is well
3943        defined.
3944        """
3945        return _pywrapcp.SequenceVarContainer___eq__(self, container)
3946
3947    def __ne__(self, container):
3948        return _pywrapcp.SequenceVarContainer___ne__(self, container)
3949    __swig_destroy__ = _pywrapcp.delete_SequenceVarContainer
3950
3951# Register SequenceVarContainer in _pywrapcp:
3952_pywrapcp.SequenceVarContainer_swigregister(SequenceVarContainer)
3953class LocalSearchOperator(BaseObject):
3954    r"""
3955    The base class for all local search operators.
3956
3957    A local search operator is an object that defines the neighborhood of a
3958    solution. In other words, a neighborhood is the set of solutions which can
3959    be reached from a given solution using an operator.
3960
3961    The behavior of the LocalSearchOperator class is similar to iterators.
3962    The operator is synchronized with an assignment (gives the
3963    current values of the variables); this is done in the Start() method.
3964
3965    Then one can iterate over the neighbors using the MakeNextNeighbor method.
3966    This method returns an assignment which represents the incremental changes
3967    to the current solution. It also returns a second assignment representing
3968    the changes to the last solution defined by the neighborhood operator; this
3969    assignment is empty if the neighborhood operator cannot track this
3970    information.
3971    """
3972
3973    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3974
3975    def __init__(self, *args, **kwargs):
3976        raise AttributeError("No constructor defined - class is abstract")
3977    __repr__ = _swig_repr
3978
3979    def NextNeighbor(self, delta, deltadelta):
3980        return _pywrapcp.LocalSearchOperator_NextNeighbor(self, delta, deltadelta)
3981
3982    def Start(self, assignment):
3983        return _pywrapcp.LocalSearchOperator_Start(self, assignment)
3984    def __disown__(self):
3985        self.this.disown()
3986        _pywrapcp.disown_LocalSearchOperator(self)
3987        return weakref.proxy(self)
3988
3989# Register LocalSearchOperator in _pywrapcp:
3990_pywrapcp.LocalSearchOperator_swigregister(LocalSearchOperator)
3991class IntVarLocalSearchOperator(LocalSearchOperator):
3992    r"""
3993    Specialization of LocalSearchOperator built from an array of IntVars
3994    which specifies the scope of the operator.
3995    This class also takes care of storing current variable values in Start(),
3996    keeps track of changes done by the operator and builds the delta.
3997    The Deactivate() method can be used to perform Large Neighborhood Search.
3998    """
3999
4000    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4001    __repr__ = _swig_repr
4002
4003    def __init__(self, vars, keep_inverse_values=False):
4004        if self.__class__ == IntVarLocalSearchOperator:
4005            _self = None
4006        else:
4007            _self = self
4008        _pywrapcp.IntVarLocalSearchOperator_swiginit(self, _pywrapcp.new_IntVarLocalSearchOperator(_self, vars, keep_inverse_values))
4009    __swig_destroy__ = _pywrapcp.delete_IntVarLocalSearchOperator
4010
4011    def Start(self, assignment):
4012        r"""
4013        This method should not be overridden. Override OnStart() instead which is
4014        called before exiting this method.
4015        """
4016        return _pywrapcp.IntVarLocalSearchOperator_Start(self, assignment)
4017
4018    def IsIncremental(self):
4019        return _pywrapcp.IntVarLocalSearchOperator_IsIncremental(self)
4020
4021    def Size(self):
4022        return _pywrapcp.IntVarLocalSearchOperator_Size(self)
4023
4024    def Value(self, index):
4025        r"""
4026        Returns the value in the current assignment of the variable of given
4027        index.
4028        """
4029        return _pywrapcp.IntVarLocalSearchOperator_Value(self, index)
4030
4031    def Var(self, index):
4032        r""" Returns the variable of given index."""
4033        return _pywrapcp.IntVarLocalSearchOperator_Var(self, index)
4034
4035    def OldValue(self, index):
4036        return _pywrapcp.IntVarLocalSearchOperator_OldValue(self, index)
4037
4038    def PrevValue(self, index):
4039        return _pywrapcp.IntVarLocalSearchOperator_PrevValue(self, index)
4040
4041    def SetValue(self, index, value):
4042        return _pywrapcp.IntVarLocalSearchOperator_SetValue(self, index, value)
4043
4044    def Activated(self, index):
4045        return _pywrapcp.IntVarLocalSearchOperator_Activated(self, index)
4046
4047    def Activate(self, index):
4048        return _pywrapcp.IntVarLocalSearchOperator_Activate(self, index)
4049
4050    def Deactivate(self, index):
4051        return _pywrapcp.IntVarLocalSearchOperator_Deactivate(self, index)
4052
4053    def AddVars(self, vars):
4054        return _pywrapcp.IntVarLocalSearchOperator_AddVars(self, vars)
4055
4056    def OnStart(self):
4057        r"""
4058        Called by Start() after synchronizing the operator with the current
4059        assignment. Should be overridden instead of Start() to avoid calling
4060        IntVarLocalSearchOperator::Start explicitly.
4061        """
4062        return _pywrapcp.IntVarLocalSearchOperator_OnStart(self)
4063
4064    def NextNeighbor(self, delta, deltadelta):
4065        r"""
4066        OnStart() should really be protected, but then SWIG doesn't see it. So we
4067        make it public, but only subclasses should access to it (to override it).
4068        Redefines MakeNextNeighbor to export a simpler interface. The calls to
4069        ApplyChanges() and RevertChanges() are factored in this method, hiding
4070        both delta and deltadelta from subclasses which only need to override
4071        MakeOneNeighbor().
4072        Therefore this method should not be overridden. Override MakeOneNeighbor()
4073        instead.
4074        """
4075        return _pywrapcp.IntVarLocalSearchOperator_NextNeighbor(self, delta, deltadelta)
4076
4077    def OneNeighbor(self):
4078        r"""
4079        Creates a new neighbor. It returns false when the neighborhood is
4080        completely explored.
4081        MakeNextNeighbor() in a subclass of IntVarLocalSearchOperator.
4082        """
4083        return _pywrapcp.IntVarLocalSearchOperator_OneNeighbor(self)
4084    def __disown__(self):
4085        self.this.disown()
4086        _pywrapcp.disown_IntVarLocalSearchOperator(self)
4087        return weakref.proxy(self)
4088
4089# Register IntVarLocalSearchOperator in _pywrapcp:
4090_pywrapcp.IntVarLocalSearchOperator_swigregister(IntVarLocalSearchOperator)
4091class BaseLns(IntVarLocalSearchOperator):
4092    r"""
4093    This is the base class for building an Lns operator. An Lns fragment is a
4094    collection of variables which will be relaxed. Fragments are built with
4095    NextFragment(), which returns false if there are no more fragments to build.
4096    Optionally one can override InitFragments, which is called from
4097    LocalSearchOperator::Start to initialize fragment data.
4098
4099    Here's a sample relaxing one variable at a time:
4100
4101    class OneVarLns : public BaseLns {
4102     public:
4103      OneVarLns(const std::vector<IntVar*>& vars) : BaseLns(vars), index_(0) {}
4104      virtual ~OneVarLns() {}
4105      virtual void InitFragments() { index_ = 0; }
4106      virtual bool NextFragment() {
4107        const int size = Size();
4108        if (index_ < size) {
4109          AppendToFragment(index_);
4110          ++index_;
4111          return true;
4112        } else {
4113          return false;
4114        }
4115      }
4116
4117     private:
4118      int index_;
4119    };
4120    """
4121
4122    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4123    __repr__ = _swig_repr
4124
4125    def __init__(self, vars):
4126        if self.__class__ == BaseLns:
4127            _self = None
4128        else:
4129            _self = self
4130        _pywrapcp.BaseLns_swiginit(self, _pywrapcp.new_BaseLns(_self, vars))
4131    __swig_destroy__ = _pywrapcp.delete_BaseLns
4132
4133    def InitFragments(self):
4134        return _pywrapcp.BaseLns_InitFragments(self)
4135
4136    def NextFragment(self):
4137        return _pywrapcp.BaseLns_NextFragment(self)
4138
4139    def AppendToFragment(self, index):
4140        return _pywrapcp.BaseLns_AppendToFragment(self, index)
4141
4142    def FragmentSize(self):
4143        return _pywrapcp.BaseLns_FragmentSize(self)
4144
4145    def __getitem__(self, index):
4146        return _pywrapcp.BaseLns___getitem__(self, index)
4147
4148    def __len__(self):
4149        return _pywrapcp.BaseLns___len__(self)
4150    def __disown__(self):
4151        self.this.disown()
4152        _pywrapcp.disown_BaseLns(self)
4153        return weakref.proxy(self)
4154
4155# Register BaseLns in _pywrapcp:
4156_pywrapcp.BaseLns_swigregister(BaseLns)
4157class ChangeValue(IntVarLocalSearchOperator):
4158    r"""
4159    Defines operators which change the value of variables;
4160    each neighbor corresponds to *one* modified variable.
4161    Sub-classes have to define ModifyValue which determines what the new
4162    variable value is going to be (given the current value and the variable).
4163    """
4164
4165    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4166    __repr__ = _swig_repr
4167
4168    def __init__(self, vars):
4169        if self.__class__ == ChangeValue:
4170            _self = None
4171        else:
4172            _self = self
4173        _pywrapcp.ChangeValue_swiginit(self, _pywrapcp.new_ChangeValue(_self, vars))
4174    __swig_destroy__ = _pywrapcp.delete_ChangeValue
4175
4176    def ModifyValue(self, index, value):
4177        return _pywrapcp.ChangeValue_ModifyValue(self, index, value)
4178
4179    def OneNeighbor(self):
4180        r""" This method should not be overridden. Override ModifyValue() instead."""
4181        return _pywrapcp.ChangeValue_OneNeighbor(self)
4182    def __disown__(self):
4183        self.this.disown()
4184        _pywrapcp.disown_ChangeValue(self)
4185        return weakref.proxy(self)
4186
4187# Register ChangeValue in _pywrapcp:
4188_pywrapcp.ChangeValue_swigregister(ChangeValue)
4189class PathOperator(IntVarLocalSearchOperator):
4190    r"""
4191    Base class of the local search operators dedicated to path modifications
4192    (a path is a set of nodes linked together by arcs).
4193    This family of neighborhoods supposes they are handling next variables
4194    representing the arcs (var[i] represents the node immediately after i on
4195    a path).
4196    Several services are provided:
4197    - arc manipulators (SetNext(), ReverseChain(), MoveChain())
4198    - path inspectors (Next(), Prev(), IsPathEnd())
4199    - path iterators: operators need a given number of nodes to define a
4200      neighbor; this class provides the iteration on a given number of (base)
4201      nodes which can be used to define a neighbor (through the BaseNode method)
4202    Subclasses only need to override MakeNeighbor to create neighbors using
4203    the services above (no direct manipulation of assignments).
4204    """
4205
4206    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4207
4208    def __init__(self, *args, **kwargs):
4209        raise AttributeError("No constructor defined - class is abstract")
4210    __repr__ = _swig_repr
4211
4212    def Neighbor(self):
4213        return _pywrapcp.PathOperator_Neighbor(self)
4214
4215# Register PathOperator in _pywrapcp:
4216_pywrapcp.PathOperator_swigregister(PathOperator)
4217class LocalSearchFilter(BaseObject):
4218    r"""
4219    Classes to which this template function can be applied to as of 04/2014.
4220    Usage: LocalSearchOperator* op = MakeLocalSearchOperator<Relocate>(...);
4221    class TwoOpt;
4222    class Relocate;
4223    class Exchange;
4224    class Cross;
4225    class MakeActiveOperator;
4226    class MakeInactiveOperator;
4227    class MakeChainInactiveOperator;
4228    class SwapActiveOperator;
4229    class ExtendedSwapActiveOperator;
4230    class MakeActiveAndRelocate;
4231    class RelocateAndMakeActiveOperator;
4232    class RelocateAndMakeInactiveOperator;
4233    Local Search Filters are used for fast neighbor pruning.
4234    Filtering a move is done in several phases:
4235    - in the Relax phase, filters determine which parts of their internals
4236      will be changed by the candidate, and modify intermediary State
4237    - in the Accept phase, filters check that the candidate is feasible,
4238    - if the Accept phase succeeds, the solver may decide to trigger a
4239      Synchronize phase that makes filters change their internal representation
4240      to the last candidate,
4241    - otherwise (Accept fails or the solver does not want to synchronize),
4242      a Revert phase makes filters erase any intermediary State generated by the
4243      Relax and Accept phases.
4244    A given filter has phases called with the following pattern:
4245    (Relax.Accept.Synchronize | Relax.Accept.Revert | Relax.Revert)*.
4246    Filters's Revert() is always called in the reverse order their Accept() was
4247    called, to allow late filters to use state done/undone by early filters'
4248    Accept()/Revert().
4249    """
4250
4251    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4252
4253    def __init__(self, *args, **kwargs):
4254        raise AttributeError("No constructor defined - class is abstract")
4255    __repr__ = _swig_repr
4256
4257    def Accept(self, delta, deltadelta, objective_min, objective_max):
4258        r"""
4259        Accepts a "delta" given the assignment with which the filter has been
4260        synchronized; the delta holds the variables which have been modified and
4261        their new value.
4262        If the filter represents a part of the global objective, its contribution
4263        must be between objective_min and objective_max.
4264        Sample: supposing one wants to maintain a[0,1] + b[0,1] <= 1,
4265        for the assignment (a,1), (b,0), the delta (b,1) will be rejected
4266        but the delta (a,0) will be accepted.
4267        TODO(user): Remove arguments when there are no more need for those.
4268        """
4269        return _pywrapcp.LocalSearchFilter_Accept(self, delta, deltadelta, objective_min, objective_max)
4270
4271    def IsIncremental(self):
4272        return _pywrapcp.LocalSearchFilter_IsIncremental(self)
4273
4274    def Synchronize(self, assignment, delta):
4275        r"""
4276        Synchronizes the filter with the current solution, delta being the
4277        difference with the solution passed to the previous call to Synchronize()
4278        or IncrementalSynchronize(). 'delta' can be used to incrementally
4279        synchronizing the filter with the new solution by only considering the
4280        changes in delta.
4281        """
4282        return _pywrapcp.LocalSearchFilter_Synchronize(self, assignment, delta)
4283    __swig_destroy__ = _pywrapcp.delete_LocalSearchFilter
4284
4285# Register LocalSearchFilter in _pywrapcp:
4286_pywrapcp.LocalSearchFilter_swigregister(LocalSearchFilter)
4287class LocalSearchFilterManager(BaseObject):
4288    r"""
4289    Filter manager: when a move is made, filters are executed to decide whether
4290    the solution is feasible and compute parts of the new cost. This class
4291    schedules filter execution and composes costs as a sum.
4292    """
4293
4294    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4295    __repr__ = _swig_repr
4296
4297    def DebugString(self):
4298        return _pywrapcp.LocalSearchFilterManager_DebugString(self)
4299
4300    def __init__(self, *args):
4301        _pywrapcp.LocalSearchFilterManager_swiginit(self, _pywrapcp.new_LocalSearchFilterManager(*args))
4302
4303    def Accept(self, monitor, delta, deltadelta, objective_min, objective_max):
4304        r"""
4305        Returns true iff all filters return true, and the sum of their accepted
4306        objectives is between objective_min and objective_max.
4307        The monitor has its Begin/EndFiltering events triggered.
4308        """
4309        return _pywrapcp.LocalSearchFilterManager_Accept(self, monitor, delta, deltadelta, objective_min, objective_max)
4310
4311    def Synchronize(self, assignment, delta):
4312        r""" Synchronizes all filters to assignment."""
4313        return _pywrapcp.LocalSearchFilterManager_Synchronize(self, assignment, delta)
4314    __swig_destroy__ = _pywrapcp.delete_LocalSearchFilterManager
4315
4316# Register LocalSearchFilterManager in _pywrapcp:
4317_pywrapcp.LocalSearchFilterManager_swigregister(LocalSearchFilterManager)
4318class IntVarLocalSearchFilter(LocalSearchFilter):
4319    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4320    __repr__ = _swig_repr
4321
4322    def __init__(self, vars):
4323        if self.__class__ == IntVarLocalSearchFilter:
4324            _self = None
4325        else:
4326            _self = self
4327        _pywrapcp.IntVarLocalSearchFilter_swiginit(self, _pywrapcp.new_IntVarLocalSearchFilter(_self, vars))
4328    __swig_destroy__ = _pywrapcp.delete_IntVarLocalSearchFilter
4329
4330    def Synchronize(self, assignment, delta):
4331        r"""
4332        This method should not be overridden. Override OnSynchronize() instead
4333        which is called before exiting this method.
4334        """
4335        return _pywrapcp.IntVarLocalSearchFilter_Synchronize(self, assignment, delta)
4336
4337    def Size(self):
4338        return _pywrapcp.IntVarLocalSearchFilter_Size(self)
4339
4340    def Value(self, index):
4341        return _pywrapcp.IntVarLocalSearchFilter_Value(self, index)
4342
4343    def IndexFromVar(self, var):
4344        return _pywrapcp.IntVarLocalSearchFilter_IndexFromVar(self, var)
4345    def __disown__(self):
4346        self.this.disown()
4347        _pywrapcp.disown_IntVarLocalSearchFilter(self)
4348        return weakref.proxy(self)
4349
4350# Register IntVarLocalSearchFilter in _pywrapcp:
4351_pywrapcp.IntVarLocalSearchFilter_swigregister(IntVarLocalSearchFilter)
4352class BooleanVar(IntVar):
4353    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4354
4355    def __init__(self, *args, **kwargs):
4356        raise AttributeError("No constructor defined - class is abstract")
4357    __repr__ = _swig_repr
4358
4359    def Min(self):
4360        return _pywrapcp.BooleanVar_Min(self)
4361
4362    def SetMin(self, m):
4363        return _pywrapcp.BooleanVar_SetMin(self, m)
4364
4365    def Max(self):
4366        return _pywrapcp.BooleanVar_Max(self)
4367
4368    def SetMax(self, m):
4369        return _pywrapcp.BooleanVar_SetMax(self, m)
4370
4371    def SetRange(self, mi, ma):
4372        return _pywrapcp.BooleanVar_SetRange(self, mi, ma)
4373
4374    def Bound(self):
4375        return _pywrapcp.BooleanVar_Bound(self)
4376
4377    def Value(self):
4378        return _pywrapcp.BooleanVar_Value(self)
4379
4380    def RemoveValue(self, v):
4381        return _pywrapcp.BooleanVar_RemoveValue(self, v)
4382
4383    def RemoveInterval(self, l, u):
4384        return _pywrapcp.BooleanVar_RemoveInterval(self, l, u)
4385
4386    def WhenBound(self, d):
4387        return _pywrapcp.BooleanVar_WhenBound(self, d)
4388
4389    def WhenRange(self, d):
4390        return _pywrapcp.BooleanVar_WhenRange(self, d)
4391
4392    def WhenDomain(self, d):
4393        return _pywrapcp.BooleanVar_WhenDomain(self, d)
4394
4395    def Size(self):
4396        return _pywrapcp.BooleanVar_Size(self)
4397
4398    def Contains(self, v):
4399        return _pywrapcp.BooleanVar_Contains(self, v)
4400
4401    def HoleIteratorAux(self, reversible):
4402        return _pywrapcp.BooleanVar_HoleIteratorAux(self, reversible)
4403
4404    def DomainIteratorAux(self, reversible):
4405        return _pywrapcp.BooleanVar_DomainIteratorAux(self, reversible)
4406
4407    def DebugString(self):
4408        return _pywrapcp.BooleanVar_DebugString(self)
4409
4410# Register BooleanVar in _pywrapcp:
4411_pywrapcp.BooleanVar_swigregister(BooleanVar)
4412
4413class PyDecision(Decision):
4414  def ApplyWrapper(self, solver):
4415    try:
4416       self.Apply(solver)
4417    except Exception as e:
4418      if 'CP Solver fail' in str(e):
4419        solver.ShouldFail()
4420      else:
4421        raise
4422
4423  def RefuteWrapper(self, solver):
4424    try:
4425       self.Refute(solver)
4426    except Exception as e:
4427      if 'CP Solver fail' in str(e):
4428        solver.ShouldFail()
4429      else:
4430        raise
4431
4432  def DebugString(self):
4433    return "PyDecision"
4434
4435
4436class PyDecisionBuilder(DecisionBuilder):
4437  def NextWrapper(self, solver):
4438    try:
4439      return self.Next(solver)
4440    except Exception as e:
4441      if 'CP Solver fail' in str(e):
4442        return solver.FailDecision()
4443      else:
4444        raise
4445
4446  def DebugString(self):
4447    return "PyDecisionBuilder"
4448
4449
4450class PyDemon(Demon):
4451  def RunWrapper(self, solver):
4452    try:
4453      self.Run(solver)
4454    except Exception as e:
4455      if 'CP Solver fail' in str(e):
4456        solver.ShouldFail()
4457      else:
4458        raise
4459
4460  def DebugString(self):
4461    return "PyDemon"
4462
4463
4464class PyConstraintDemon(PyDemon):
4465  def __init__(self, ct, method, delayed, *args):
4466    super().__init__()
4467    self.__constraint = ct
4468    self.__method = method
4469    self.__delayed = delayed
4470    self.__args = args
4471
4472  def Run(self, solver):
4473    self.__method(self.__constraint, *self.__args)
4474
4475  def Priority(self):
4476    return Solver.DELAYED_PRIORITY if self.__delayed else Solver.NORMAL_PRIORITY
4477
4478  def DebugString(self):
4479    return 'PyConstraintDemon'
4480
4481
4482class PyConstraint(Constraint):
4483  def __init__(self, solver):
4484    super().__init__(solver)
4485    self.__demons = []
4486
4487  def Demon(self, method, *args):
4488    demon = PyConstraintDemon(self, method, False, *args)
4489    self.__demons.append(demon)
4490    return demon
4491
4492  def DelayedDemon(self, method, *args):
4493    demon = PyConstraintDemon(self, method, True, *args)
4494    self.__demons.append(demon)
4495    return demon
4496
4497  def InitialPropagateDemon(self):
4498    return self.solver().ConstraintInitialPropagateCallback(self)
4499
4500  def DelayedInitialPropagateDemon(self):
4501    return self.solver().DelayedConstraintInitialPropagateCallback(self)
4502
4503  def InitialPropagateWrapper(self):
4504    try:
4505      self.InitialPropagate()
4506    except Exception as e:
4507      if 'CP Solver fail' in str(e):
4508        self.solver().ShouldFail()
4509      else:
4510        raise
4511
4512  def DebugString(self):
4513    return "PyConstraint"
4514
4515class RoutingIndexManager(object):
4516    r"""
4517    Manager for any NodeIndex <-> variable index conversion. The routing solver
4518    uses variable indices internally and through its API. These variable indices
4519    are tricky to manage directly because one Node can correspond to a multitude
4520    of variables, depending on the number of times they appear in the model, and
4521    if they're used as start and/or end points. This class aims to simplify
4522    variable index usage, allowing users to use NodeIndex instead.
4523
4524    Usage:
4525
4526      .. code-block:: c++
4527
4528          auto starts_ends = ...;  /// These are NodeIndex.
4529          RoutingIndexManager manager(10, 4, starts_ends);  // 10 nodes, 4 vehicles.
4530          RoutingModel model(manager);
4531
4532    Then, use 'manager.NodeToIndex(node)' whenever model requires a variable
4533    index.
4534
4535    Note: the mapping between node indices and variables indices is subject to
4536    change so no assumption should be made on it. The only guarantee is that
4537    indices range between 0 and n-1, where n = number of vehicles * 2 (for start
4538    and end nodes) + number of non-start or end nodes.
4539    """
4540
4541    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4542    __repr__ = _swig_repr
4543
4544    def __init__(self, *args):
4545        _pywrapcp.RoutingIndexManager_swiginit(self, _pywrapcp.new_RoutingIndexManager(*args))
4546
4547    def GetNumberOfNodes(self):
4548        return _pywrapcp.RoutingIndexManager_GetNumberOfNodes(self)
4549
4550    def GetNumberOfVehicles(self):
4551        return _pywrapcp.RoutingIndexManager_GetNumberOfVehicles(self)
4552
4553    def GetNumberOfIndices(self):
4554        return _pywrapcp.RoutingIndexManager_GetNumberOfIndices(self)
4555
4556    def GetStartIndex(self, vehicle):
4557        return _pywrapcp.RoutingIndexManager_GetStartIndex(self, vehicle)
4558
4559    def GetEndIndex(self, vehicle):
4560        return _pywrapcp.RoutingIndexManager_GetEndIndex(self, vehicle)
4561
4562    def NodeToIndex(self, node):
4563        return _pywrapcp.RoutingIndexManager_NodeToIndex(self, node)
4564
4565    def IndexToNode(self, index):
4566        return _pywrapcp.RoutingIndexManager_IndexToNode(self, index)
4567    __swig_destroy__ = _pywrapcp.delete_RoutingIndexManager
4568
4569# Register RoutingIndexManager in _pywrapcp:
4570_pywrapcp.RoutingIndexManager_swigregister(RoutingIndexManager)
4571
4572def DefaultRoutingModelParameters():
4573    return _pywrapcp.DefaultRoutingModelParameters()
4574
4575def DefaultRoutingSearchParameters():
4576    return _pywrapcp.DefaultRoutingSearchParameters()
4577
4578def FindErrorInRoutingSearchParameters(search_parameters):
4579    r"""
4580    Returns an empty std::string if the routing search parameters are valid, and
4581    a non-empty, human readable error description if they're not.
4582    """
4583    return _pywrapcp.FindErrorInRoutingSearchParameters(search_parameters)
4584BOOL_UNSPECIFIED = _pywrapcp.BOOL_UNSPECIFIED
4585BOOL_FALSE = _pywrapcp.BOOL_FALSE
4586BOOL_TRUE = _pywrapcp.BOOL_TRUE
4587class FirstSolutionStrategy(object):
4588    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4589    __repr__ = _swig_repr
4590
4591    def __init__(self):
4592        _pywrapcp.FirstSolutionStrategy_swiginit(self, _pywrapcp.new_FirstSolutionStrategy())
4593    __swig_destroy__ = _pywrapcp.delete_FirstSolutionStrategy
4594
4595# Register FirstSolutionStrategy in _pywrapcp:
4596_pywrapcp.FirstSolutionStrategy_swigregister(FirstSolutionStrategy)
4597class LocalSearchMetaheuristic(object):
4598    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4599    __repr__ = _swig_repr
4600
4601    def __init__(self):
4602        _pywrapcp.LocalSearchMetaheuristic_swiginit(self, _pywrapcp.new_LocalSearchMetaheuristic())
4603    __swig_destroy__ = _pywrapcp.delete_LocalSearchMetaheuristic
4604
4605# Register LocalSearchMetaheuristic in _pywrapcp:
4606_pywrapcp.LocalSearchMetaheuristic_swigregister(LocalSearchMetaheuristic)
4607class PathsMetadata(object):
4608    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4609    __repr__ = _swig_repr
4610
4611    def __init__(self, manager):
4612        _pywrapcp.PathsMetadata_swiginit(self, _pywrapcp.new_PathsMetadata(manager))
4613
4614    def IsStart(self, node):
4615        return _pywrapcp.PathsMetadata_IsStart(self, node)
4616
4617    def IsEnd(self, node):
4618        return _pywrapcp.PathsMetadata_IsEnd(self, node)
4619
4620    def GetPath(self, start_or_end_node):
4621        return _pywrapcp.PathsMetadata_GetPath(self, start_or_end_node)
4622
4623    def NumPaths(self):
4624        return _pywrapcp.PathsMetadata_NumPaths(self)
4625
4626    def Paths(self):
4627        return _pywrapcp.PathsMetadata_Paths(self)
4628
4629    def Starts(self):
4630        return _pywrapcp.PathsMetadata_Starts(self)
4631
4632    def Ends(self):
4633        return _pywrapcp.PathsMetadata_Ends(self)
4634    __swig_destroy__ = _pywrapcp.delete_PathsMetadata
4635
4636# Register PathsMetadata in _pywrapcp:
4637_pywrapcp.PathsMetadata_swigregister(PathsMetadata)
4638class RoutingModel(object):
4639    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4640    __repr__ = _swig_repr
4641    ROUTING_NOT_SOLVED = _pywrapcp.RoutingModel_ROUTING_NOT_SOLVED
4642    r""" Problem not solved yet (before calling RoutingModel::Solve())."""
4643    ROUTING_SUCCESS = _pywrapcp.RoutingModel_ROUTING_SUCCESS
4644    r""" Problem solved successfully after calling RoutingModel::Solve()."""
4645    ROUTING_PARTIAL_SUCCESS_LOCAL_OPTIMUM_NOT_REACHED = _pywrapcp.RoutingModel_ROUTING_PARTIAL_SUCCESS_LOCAL_OPTIMUM_NOT_REACHED
4646    r"""
4647    Problem solved successfully after calling RoutingModel::Solve(), except
4648    that a local optimum has not been reached. Leaving more time would allow
4649    improving the solution.
4650    """
4651    ROUTING_FAIL = _pywrapcp.RoutingModel_ROUTING_FAIL
4652    r""" No solution found to the problem after calling RoutingModel::Solve()."""
4653    ROUTING_FAIL_TIMEOUT = _pywrapcp.RoutingModel_ROUTING_FAIL_TIMEOUT
4654    r""" Time limit reached before finding a solution with RoutingModel::Solve()."""
4655    ROUTING_INVALID = _pywrapcp.RoutingModel_ROUTING_INVALID
4656    r""" Model, model parameters or flags are not valid."""
4657    ROUTING_INFEASIBLE = _pywrapcp.RoutingModel_ROUTING_INFEASIBLE
4658    r""" Problem proven to be infeasible."""
4659    ROUTING_OPTIMAL = _pywrapcp.RoutingModel_ROUTING_OPTIMAL
4660    r""" Problem has been solved to optimality."""
4661    PICKUP_AND_DELIVERY_NO_ORDER = _pywrapcp.RoutingModel_PICKUP_AND_DELIVERY_NO_ORDER
4662    r""" Any precedence is accepted."""
4663    PICKUP_AND_DELIVERY_LIFO = _pywrapcp.RoutingModel_PICKUP_AND_DELIVERY_LIFO
4664    r""" Deliveries must be performed in reverse order of pickups."""
4665    PICKUP_AND_DELIVERY_FIFO = _pywrapcp.RoutingModel_PICKUP_AND_DELIVERY_FIFO
4666    r""" Deliveries must be performed in the same order as pickups."""
4667
4668    def __init__(self, *args):
4669        _pywrapcp.RoutingModel_swiginit(self, _pywrapcp.new_RoutingModel(*args))
4670    __swig_destroy__ = _pywrapcp.delete_RoutingModel
4671    kTransitEvaluatorSignUnknown = _pywrapcp.RoutingModel_kTransitEvaluatorSignUnknown
4672    kTransitEvaluatorSignPositiveOrZero = _pywrapcp.RoutingModel_kTransitEvaluatorSignPositiveOrZero
4673    kTransitEvaluatorSignNegativeOrZero = _pywrapcp.RoutingModel_kTransitEvaluatorSignNegativeOrZero
4674
4675    def RegisterUnaryTransitVector(self, values):
4676        r"""
4677        Registers 'callback' and returns its index.
4678        The sign parameter allows to notify the solver that the callback only
4679        return values of the given sign. This can help the solver, but passing
4680        an incorrect sign may crash in non-opt compilation mode, and yield
4681        incorrect results in opt.
4682        """
4683        return _pywrapcp.RoutingModel_RegisterUnaryTransitVector(self, values)
4684
4685    def RegisterUnaryTransitCallback(self, *args):
4686        return _pywrapcp.RoutingModel_RegisterUnaryTransitCallback(self, *args)
4687
4688    def RegisterTransitMatrix(self, values):
4689        return _pywrapcp.RoutingModel_RegisterTransitMatrix(self, values)
4690
4691    def RegisterTransitCallback(self, *args):
4692        return _pywrapcp.RoutingModel_RegisterTransitCallback(self, *args)
4693
4694    def TransitCallback(self, callback_index):
4695        return _pywrapcp.RoutingModel_TransitCallback(self, callback_index)
4696
4697    def UnaryTransitCallbackOrNull(self, callback_index):
4698        return _pywrapcp.RoutingModel_UnaryTransitCallbackOrNull(self, callback_index)
4699
4700    def AddDimension(self, evaluator_index, slack_max, capacity, fix_start_cumul_to_zero, name):
4701        r"""
4702        Model creation
4703        Methods to add dimensions to routes; dimensions represent quantities
4704        accumulated at nodes along the routes. They represent quantities such as
4705        weights or volumes carried along the route, or distance or times.
4706        Quantities at a node are represented by "cumul" variables and the increase
4707        or decrease of quantities between nodes are represented by "transit"
4708        variables. These variables are linked as follows:
4709        if j == next(i), cumul(j) = cumul(i) + transit(i, j) + slack(i)
4710        where slack is a positive slack variable (can represent waiting times for
4711        a time dimension).
4712        Setting the value of fix_start_cumul_to_zero to true will force the
4713        "cumul" variable of the start node of all vehicles to be equal to 0.
4714        Creates a dimension where the transit variable is constrained to be
4715        equal to evaluator(i, next(i)); 'slack_max' is the upper bound of the
4716        slack variable and 'capacity' is the upper bound of the cumul variables.
4717        'name' is the name used to reference the dimension; this name is used to
4718        get cumul and transit variables from the routing model.
4719        Returns false if a dimension with the same name has already been created
4720        (and doesn't create the new dimension).
4721        Takes ownership of the callback 'evaluator'.
4722        """
4723        return _pywrapcp.RoutingModel_AddDimension(self, evaluator_index, slack_max, capacity, fix_start_cumul_to_zero, name)
4724
4725    def AddDimensionWithVehicleTransits(self, evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name):
4726        return _pywrapcp.RoutingModel_AddDimensionWithVehicleTransits(self, evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name)
4727
4728    def AddDimensionWithVehicleCapacity(self, evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4729        return _pywrapcp.RoutingModel_AddDimensionWithVehicleCapacity(self, evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name)
4730
4731    def AddDimensionWithVehicleTransitAndCapacity(self, evaluator_indices, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4732        return _pywrapcp.RoutingModel_AddDimensionWithVehicleTransitAndCapacity(self, evaluator_indices, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name)
4733
4734    def AddConstantDimensionWithSlack(self, value, capacity, slack_max, fix_start_cumul_to_zero, name):
4735        r"""
4736        Creates a dimension where the transit variable is constrained to be
4737        equal to 'value'; 'capacity' is the upper bound of the cumul variables.
4738        'name' is the name used to reference the dimension; this name is used to
4739        get cumul and transit variables from the routing model.
4740        Returns a pair consisting of an index to the registered unary transit
4741        callback and a bool denoting whether the dimension has been created.
4742        It is false if a dimension with the same name has already been created
4743        (and doesn't create the new dimension but still register a new callback).
4744        """
4745        return _pywrapcp.RoutingModel_AddConstantDimensionWithSlack(self, value, capacity, slack_max, fix_start_cumul_to_zero, name)
4746
4747    def AddConstantDimension(self, value, capacity, fix_start_cumul_to_zero, name):
4748        return _pywrapcp.RoutingModel_AddConstantDimension(self, value, capacity, fix_start_cumul_to_zero, name)
4749
4750    def AddVectorDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4751        r"""
4752        Creates a dimension where the transit variable is constrained to be
4753        equal to 'values[i]' for node i; 'capacity' is the upper bound of
4754        the cumul variables. 'name' is the name used to reference the dimension;
4755        this name is used to get cumul and transit variables from the routing
4756        model.
4757        Returns a pair consisting of an index to the registered unary transit
4758        callback and a bool denoting whether the dimension has been created.
4759        It is false if a dimension with the same name has already been created
4760        (and doesn't create the new dimension but still register a new callback).
4761        """
4762        return _pywrapcp.RoutingModel_AddVectorDimension(self, values, capacity, fix_start_cumul_to_zero, name)
4763
4764    def AddMatrixDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4765        r"""
4766        Creates a dimension where the transit variable is constrained to be
4767        equal to 'values[i][next(i)]' for node i; 'capacity' is the upper bound of
4768        the cumul variables. 'name' is the name used to reference the dimension;
4769        this name is used to get cumul and transit variables from the routing
4770        model.
4771        Returns a pair consisting of an index to the registered transit callback
4772        and a bool denoting whether the dimension has been created.
4773        It is false if a dimension with the same name has already been created
4774        (and doesn't create the new dimension but still register a new callback).
4775        """
4776        return _pywrapcp.RoutingModel_AddMatrixDimension(self, values, capacity, fix_start_cumul_to_zero, name)
4777
4778    def GetAllDimensionNames(self):
4779        r""" Outputs the names of all dimensions added to the routing engine."""
4780        return _pywrapcp.RoutingModel_GetAllDimensionNames(self)
4781
4782    def GetDimensions(self):
4783        r""" Returns all dimensions of the model."""
4784        return _pywrapcp.RoutingModel_GetDimensions(self)
4785
4786    def GetDimensionsWithSoftOrSpanCosts(self):
4787        r""" Returns dimensions with soft or vehicle span costs."""
4788        return _pywrapcp.RoutingModel_GetDimensionsWithSoftOrSpanCosts(self)
4789
4790    def GetUnaryDimensions(self):
4791        r""" Returns dimensions for which all transit evaluators are unary."""
4792        return _pywrapcp.RoutingModel_GetUnaryDimensions(self)
4793
4794    def GetDimensionsWithGlobalCumulOptimizers(self):
4795        r""" Returns the dimensions which have [global|local]_dimension_optimizers_."""
4796        return _pywrapcp.RoutingModel_GetDimensionsWithGlobalCumulOptimizers(self)
4797
4798    def GetDimensionsWithLocalCumulOptimizers(self):
4799        return _pywrapcp.RoutingModel_GetDimensionsWithLocalCumulOptimizers(self)
4800
4801    def HasGlobalCumulOptimizer(self, dimension):
4802        r""" Returns whether the given dimension has global/local cumul optimizers."""
4803        return _pywrapcp.RoutingModel_HasGlobalCumulOptimizer(self, dimension)
4804
4805    def HasLocalCumulOptimizer(self, dimension):
4806        return _pywrapcp.RoutingModel_HasLocalCumulOptimizer(self, dimension)
4807
4808    def GetMutableGlobalCumulLPOptimizer(self, dimension):
4809        r"""
4810        Returns the global/local dimension cumul optimizer for a given dimension,
4811        or nullptr if there is none.
4812        """
4813        return _pywrapcp.RoutingModel_GetMutableGlobalCumulLPOptimizer(self, dimension)
4814
4815    def GetMutableGlobalCumulMPOptimizer(self, dimension):
4816        return _pywrapcp.RoutingModel_GetMutableGlobalCumulMPOptimizer(self, dimension)
4817
4818    def GetMutableLocalCumulLPOptimizer(self, dimension):
4819        return _pywrapcp.RoutingModel_GetMutableLocalCumulLPOptimizer(self, dimension)
4820
4821    def GetMutableLocalCumulMPOptimizer(self, dimension):
4822        return _pywrapcp.RoutingModel_GetMutableLocalCumulMPOptimizer(self, dimension)
4823
4824    def HasDimension(self, dimension_name):
4825        r""" Returns true if a dimension exists for a given dimension name."""
4826        return _pywrapcp.RoutingModel_HasDimension(self, dimension_name)
4827
4828    def GetDimensionOrDie(self, dimension_name):
4829        r""" Returns a dimension from its name. Dies if the dimension does not exist."""
4830        return _pywrapcp.RoutingModel_GetDimensionOrDie(self, dimension_name)
4831
4832    def GetMutableDimension(self, dimension_name):
4833        r"""
4834        Returns a dimension from its name. Returns nullptr if the dimension does
4835        not exist.
4836        """
4837        return _pywrapcp.RoutingModel_GetMutableDimension(self, dimension_name)
4838
4839    def SetPrimaryConstrainedDimension(self, dimension_name):
4840        r"""
4841        Set the given dimension as "primary constrained". As of August 2013, this
4842        is only used by ArcIsMoreConstrainedThanArc().
4843        "dimension" must be the name of an existing dimension, or be empty, in
4844        which case there will not be a primary dimension after this call.
4845        """
4846        return _pywrapcp.RoutingModel_SetPrimaryConstrainedDimension(self, dimension_name)
4847
4848    def GetPrimaryConstrainedDimension(self):
4849        r""" Get the primary constrained dimension, or an empty string if it is unset."""
4850        return _pywrapcp.RoutingModel_GetPrimaryConstrainedDimension(self)
4851
4852    def GetResourceGroup(self, rg_index):
4853        return _pywrapcp.RoutingModel_GetResourceGroup(self, rg_index)
4854
4855    def GetDimensionResourceGroupIndices(self, dimension):
4856        r"""
4857        Returns the indices of resource groups for this dimension. This method can
4858        only be called after the model has been closed.
4859        """
4860        return _pywrapcp.RoutingModel_GetDimensionResourceGroupIndices(self, dimension)
4861
4862    def GetDimensionResourceGroupIndex(self, dimension):
4863        r"""
4864        Returns the index of the resource group attached to the dimension.
4865        DCHECKS that there's exactly one resource group for this dimension.
4866        """
4867        return _pywrapcp.RoutingModel_GetDimensionResourceGroupIndex(self, dimension)
4868
4869    def AddDisjunction(self, *args):
4870        r"""
4871        Adds a disjunction constraint on the indices: exactly 'max_cardinality' of
4872        the indices are active. Start and end indices of any vehicle cannot be
4873        part of a disjunction.
4874
4875        If a penalty is given, at most 'max_cardinality' of the indices can be
4876        active, and if less are active, 'penalty' is payed per inactive index.
4877        This is equivalent to adding the constraint:
4878            p + Sum(i)active[i] == max_cardinality
4879        where p is an integer variable, and the following cost to the cost
4880        function:
4881            p * penalty.
4882        'penalty' must be positive to make the disjunction optional; a negative
4883        penalty will force 'max_cardinality' indices of the disjunction to be
4884        performed, and therefore p == 0.
4885        Note: passing a vector with a single index will model an optional index
4886        with a penalty cost if it is not visited.
4887        """
4888        return _pywrapcp.RoutingModel_AddDisjunction(self, *args)
4889
4890    def GetDisjunctionIndices(self, index):
4891        r""" Returns the indices of the disjunctions to which an index belongs."""
4892        return _pywrapcp.RoutingModel_GetDisjunctionIndices(self, index)
4893
4894    def GetDisjunctionPenalty(self, index):
4895        r""" Returns the penalty of the node disjunction of index 'index'."""
4896        return _pywrapcp.RoutingModel_GetDisjunctionPenalty(self, index)
4897
4898    def GetDisjunctionMaxCardinality(self, index):
4899        r"""
4900        Returns the maximum number of possible active nodes of the node
4901        disjunction of index 'index'.
4902        """
4903        return _pywrapcp.RoutingModel_GetDisjunctionMaxCardinality(self, index)
4904
4905    def GetNumberOfDisjunctions(self):
4906        r""" Returns the number of node disjunctions in the model."""
4907        return _pywrapcp.RoutingModel_GetNumberOfDisjunctions(self)
4908
4909    def HasMandatoryDisjunctions(self):
4910        r"""
4911        Returns true if the model contains mandatory disjunctions (ones with
4912        kNoPenalty as penalty).
4913        """
4914        return _pywrapcp.RoutingModel_HasMandatoryDisjunctions(self)
4915
4916    def HasMaxCardinalityConstrainedDisjunctions(self):
4917        r"""
4918        Returns true if the model contains at least one disjunction which is
4919        constrained by its max_cardinality.
4920        """
4921        return _pywrapcp.RoutingModel_HasMaxCardinalityConstrainedDisjunctions(self)
4922
4923    def GetPerfectBinaryDisjunctions(self):
4924        r"""
4925        Returns the list of all perfect binary disjunctions, as pairs of variable
4926        indices: a disjunction is "perfect" when its variables do not appear in
4927        any other disjunction. Each pair is sorted (lowest variable index first),
4928        and the output vector is also sorted (lowest pairs first).
4929        """
4930        return _pywrapcp.RoutingModel_GetPerfectBinaryDisjunctions(self)
4931
4932    def IgnoreDisjunctionsAlreadyForcedToZero(self):
4933        r"""
4934        SPECIAL: Makes the solver ignore all the disjunctions whose active
4935        variables are all trivially zero (i.e. Max() == 0), by setting their
4936        max_cardinality to 0.
4937        This can be useful when using the BaseBinaryDisjunctionNeighborhood
4938        operators, in the context of arc-based routing.
4939        """
4940        return _pywrapcp.RoutingModel_IgnoreDisjunctionsAlreadyForcedToZero(self)
4941
4942    def AddSoftSameVehicleConstraint(self, indices, cost):
4943        r"""
4944        Adds a soft constraint to force a set of variable indices to be on the
4945        same vehicle. If all nodes are not on the same vehicle, each extra vehicle
4946        used adds 'cost' to the cost function.
4947        """
4948        return _pywrapcp.RoutingModel_AddSoftSameVehicleConstraint(self, indices, cost)
4949
4950    def SetAllowedVehiclesForIndex(self, vehicles, index):
4951        r"""
4952        Sets the vehicles which can visit a given node. If the node is in a
4953        disjunction, this will not prevent it from being unperformed.
4954        Specifying an empty vector of vehicles has no effect (all vehicles
4955        will be allowed to visit the node).
4956        """
4957        return _pywrapcp.RoutingModel_SetAllowedVehiclesForIndex(self, vehicles, index)
4958
4959    def IsVehicleAllowedForIndex(self, vehicle, index):
4960        r""" Returns true if a vehicle is allowed to visit a given node."""
4961        return _pywrapcp.RoutingModel_IsVehicleAllowedForIndex(self, vehicle, index)
4962
4963    def AddPickupAndDelivery(self, pickup, delivery):
4964        r"""
4965        Notifies that index1 and index2 form a pair of nodes which should belong
4966        to the same route. This methods helps the search find better solutions,
4967        especially in the local search phase.
4968        It should be called each time you have an equality constraint linking
4969        the vehicle variables of two node (including for instance pickup and
4970        delivery problems):
4971            Solver* const solver = routing.solver();
4972            int64_t index1 = manager.NodeToIndex(node1);
4973            int64_t index2 = manager.NodeToIndex(node2);
4974            solver->AddConstraint(solver->MakeEquality(
4975                routing.VehicleVar(index1),
4976                routing.VehicleVar(index2)));
4977            routing.AddPickupAndDelivery(index1, index2);
4978        """
4979        return _pywrapcp.RoutingModel_AddPickupAndDelivery(self, pickup, delivery)
4980
4981    def AddPickupAndDeliverySets(self, pickup_disjunction, delivery_disjunction):
4982        r"""
4983        Same as AddPickupAndDelivery but notifying that the performed node from
4984        the disjunction of index 'pickup_disjunction' is on the same route as the
4985        performed node from the disjunction of index 'delivery_disjunction'.
4986        """
4987        return _pywrapcp.RoutingModel_AddPickupAndDeliverySets(self, pickup_disjunction, delivery_disjunction)
4988
4989    def GetPickupPositions(self, node_index):
4990        r""" Returns the pickup and delivery positions where the node is a pickup."""
4991        return _pywrapcp.RoutingModel_GetPickupPositions(self, node_index)
4992
4993    def GetDeliveryPositions(self, node_index):
4994        r""" Returns the pickup and delivery positions where the node is a delivery."""
4995        return _pywrapcp.RoutingModel_GetDeliveryPositions(self, node_index)
4996
4997    def IsPickup(self, node_index):
4998        r""" Returns whether the node is a pickup (resp. delivery)."""
4999        return _pywrapcp.RoutingModel_IsPickup(self, node_index)
5000
5001    def IsDelivery(self, node_index):
5002        return _pywrapcp.RoutingModel_IsDelivery(self, node_index)
5003
5004    def SetPickupAndDeliveryPolicyOfAllVehicles(self, policy):
5005        r"""
5006        Sets the Pickup and delivery policy of all vehicles. It is equivalent to
5007        calling SetPickupAndDeliveryPolicyOfVehicle on all vehicles.
5008        """
5009        return _pywrapcp.RoutingModel_SetPickupAndDeliveryPolicyOfAllVehicles(self, policy)
5010
5011    def SetPickupAndDeliveryPolicyOfVehicle(self, policy, vehicle):
5012        return _pywrapcp.RoutingModel_SetPickupAndDeliveryPolicyOfVehicle(self, policy, vehicle)
5013
5014    def GetPickupAndDeliveryPolicyOfVehicle(self, vehicle):
5015        return _pywrapcp.RoutingModel_GetPickupAndDeliveryPolicyOfVehicle(self, vehicle)
5016
5017    def GetNumOfSingletonNodes(self):
5018        r"""
5019        Returns the number of non-start/end nodes which do not appear in a
5020        pickup/delivery pair.
5021        """
5022        return _pywrapcp.RoutingModel_GetNumOfSingletonNodes(self)
5023    TYPE_ADDED_TO_VEHICLE = _pywrapcp.RoutingModel_TYPE_ADDED_TO_VEHICLE
5024    r""" When visited, the number of types 'T' on the vehicle increases by one."""
5025    ADDED_TYPE_REMOVED_FROM_VEHICLE = _pywrapcp.RoutingModel_ADDED_TYPE_REMOVED_FROM_VEHICLE
5026    r"""
5027    When visited, one instance of type 'T' previously added to the route
5028    (TYPE_ADDED_TO_VEHICLE), if any, is removed from the vehicle.
5029    If the type was not previously added to the route or all added instances
5030    have already been removed, this visit has no effect on the types.
5031    """
5032    TYPE_ON_VEHICLE_UP_TO_VISIT = _pywrapcp.RoutingModel_TYPE_ON_VEHICLE_UP_TO_VISIT
5033    r"""
5034    With the following policy, the visit enforces that type 'T' is
5035    considered on the route from its start until this node is visited.
5036    """
5037    TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED = _pywrapcp.RoutingModel_TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED
5038    r"""
5039    The visit doesn't have an impact on the number of types 'T' on the
5040    route, as it's (virtually) added and removed directly.
5041    This policy can be used for visits which are part of an incompatibility
5042    or requirement set without affecting the type count on the route.
5043    """
5044
5045    def SetVisitType(self, index, type, type_policy):
5046        return _pywrapcp.RoutingModel_SetVisitType(self, index, type, type_policy)
5047
5048    def GetVisitType(self, index):
5049        return _pywrapcp.RoutingModel_GetVisitType(self, index)
5050
5051    def GetSingleNodesOfType(self, type):
5052        return _pywrapcp.RoutingModel_GetSingleNodesOfType(self, type)
5053
5054    def GetPairIndicesOfType(self, type):
5055        return _pywrapcp.RoutingModel_GetPairIndicesOfType(self, type)
5056
5057    def GetVisitTypePolicy(self, index):
5058        return _pywrapcp.RoutingModel_GetVisitTypePolicy(self, index)
5059
5060    def CloseVisitTypes(self):
5061        r"""
5062        This function should be called once all node visit types have been set and
5063        prior to adding any incompatibilities/requirements.
5064        "close" types.
5065        """
5066        return _pywrapcp.RoutingModel_CloseVisitTypes(self)
5067
5068    def GetNumberOfVisitTypes(self):
5069        return _pywrapcp.RoutingModel_GetNumberOfVisitTypes(self)
5070
5071    def AddHardTypeIncompatibility(self, type1, type2):
5072        r"""
5073        Incompatibilities:
5074        Two nodes with "hard" incompatible types cannot share the same route at
5075        all, while with a "temporal" incompatibility they can't be on the same
5076        route at the same time.
5077        """
5078        return _pywrapcp.RoutingModel_AddHardTypeIncompatibility(self, type1, type2)
5079
5080    def AddTemporalTypeIncompatibility(self, type1, type2):
5081        return _pywrapcp.RoutingModel_AddTemporalTypeIncompatibility(self, type1, type2)
5082
5083    def GetHardTypeIncompatibilitiesOfType(self, type):
5084        r""" Returns visit types incompatible with a given type."""
5085        return _pywrapcp.RoutingModel_GetHardTypeIncompatibilitiesOfType(self, type)
5086
5087    def GetTemporalTypeIncompatibilitiesOfType(self, type):
5088        return _pywrapcp.RoutingModel_GetTemporalTypeIncompatibilitiesOfType(self, type)
5089
5090    def HasHardTypeIncompatibilities(self):
5091        r"""
5092        Returns true iff any hard (resp. temporal) type incompatibilities have
5093        been added to the model.
5094        """
5095        return _pywrapcp.RoutingModel_HasHardTypeIncompatibilities(self)
5096
5097    def HasTemporalTypeIncompatibilities(self):
5098        return _pywrapcp.RoutingModel_HasTemporalTypeIncompatibilities(self)
5099
5100    def AddSameVehicleRequiredTypeAlternatives(self, dependent_type, required_type_alternatives):
5101        r"""
5102        Requirements:
5103        NOTE: As of 2019-04, cycles in the requirement graph are not supported,
5104        and lead to the dependent nodes being skipped if possible (otherwise
5105        the model is considered infeasible).
5106        The following functions specify that "dependent_type" requires at least
5107        one of the types in "required_type_alternatives".
5108
5109        For same-vehicle requirements, a node of dependent type type_D requires at
5110        least one node of type type_R among the required alternatives on the same
5111        route.
5112        """
5113        return _pywrapcp.RoutingModel_AddSameVehicleRequiredTypeAlternatives(self, dependent_type, required_type_alternatives)
5114
5115    def AddRequiredTypeAlternativesWhenAddingType(self, dependent_type, required_type_alternatives):
5116        r"""
5117        If type_D depends on type_R when adding type_D, any node_D of type_D and
5118        VisitTypePolicy TYPE_ADDED_TO_VEHICLE or
5119        TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED requires at least one type_R on its
5120        vehicle at the time node_D is visited.
5121        """
5122        return _pywrapcp.RoutingModel_AddRequiredTypeAlternativesWhenAddingType(self, dependent_type, required_type_alternatives)
5123
5124    def AddRequiredTypeAlternativesWhenRemovingType(self, dependent_type, required_type_alternatives):
5125        r"""
5126        The following requirements apply when visiting dependent nodes that remove
5127        their type from the route, i.e. type_R must be on the vehicle when type_D
5128        of VisitTypePolicy ADDED_TYPE_REMOVED_FROM_VEHICLE,
5129        TYPE_ON_VEHICLE_UP_TO_VISIT or TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED is
5130        visited.
5131        """
5132        return _pywrapcp.RoutingModel_AddRequiredTypeAlternativesWhenRemovingType(self, dependent_type, required_type_alternatives)
5133
5134    def GetSameVehicleRequiredTypeAlternativesOfType(self, type):
5135        r"""
5136        Returns the set of same-vehicle requirement alternatives for the given
5137        type.
5138        """
5139        return _pywrapcp.RoutingModel_GetSameVehicleRequiredTypeAlternativesOfType(self, type)
5140
5141    def GetRequiredTypeAlternativesWhenAddingType(self, type):
5142        r""" Returns the set of requirement alternatives when adding the given type."""
5143        return _pywrapcp.RoutingModel_GetRequiredTypeAlternativesWhenAddingType(self, type)
5144
5145    def GetRequiredTypeAlternativesWhenRemovingType(self, type):
5146        r""" Returns the set of requirement alternatives when removing the given type."""
5147        return _pywrapcp.RoutingModel_GetRequiredTypeAlternativesWhenRemovingType(self, type)
5148
5149    def HasSameVehicleTypeRequirements(self):
5150        r"""
5151        Returns true iff any same-route (resp. temporal) type requirements have
5152        been added to the model.
5153        """
5154        return _pywrapcp.RoutingModel_HasSameVehicleTypeRequirements(self)
5155
5156    def HasTemporalTypeRequirements(self):
5157        return _pywrapcp.RoutingModel_HasTemporalTypeRequirements(self)
5158
5159    def HasTypeRegulations(self):
5160        r"""
5161        Returns true iff the model has any incompatibilities or requirements set
5162        on node types.
5163        """
5164        return _pywrapcp.RoutingModel_HasTypeRegulations(self)
5165
5166    def UnperformedPenalty(self, var_index):
5167        r"""
5168        Get the "unperformed" penalty of a node. This is only well defined if the
5169        node is only part of a single Disjunction, and that disjunction has a
5170        penalty. For forced active nodes returns max int64_t. In all other cases,
5171        this returns 0.
5172        """
5173        return _pywrapcp.RoutingModel_UnperformedPenalty(self, var_index)
5174
5175    def UnperformedPenaltyOrValue(self, default_value, var_index):
5176        r"""
5177        Same as above except that it returns default_value instead of 0 when
5178        penalty is not well defined (default value is passed as first argument to
5179        simplify the usage of the method in a callback).
5180        """
5181        return _pywrapcp.RoutingModel_UnperformedPenaltyOrValue(self, default_value, var_index)
5182
5183    def GetDepot(self):
5184        r"""
5185        Returns the variable index of the first starting or ending node of all
5186        routes. If all routes start  and end at the same node (single depot), this
5187        is the node returned.
5188        """
5189        return _pywrapcp.RoutingModel_GetDepot(self)
5190
5191    def SetMaximumNumberOfActiveVehicles(self, max_active_vehicles):
5192        r"""
5193        Constrains the maximum number of active vehicles, aka the number of
5194        vehicles which do not have an empty route. For instance, this can be used
5195        to limit the number of routes in the case where there are fewer drivers
5196        than vehicles and that the fleet of vehicle is heterogeneous.
5197        """
5198        return _pywrapcp.RoutingModel_SetMaximumNumberOfActiveVehicles(self, max_active_vehicles)
5199
5200    def GetMaximumNumberOfActiveVehicles(self):
5201        r""" Returns the maximum number of active vehicles."""
5202        return _pywrapcp.RoutingModel_GetMaximumNumberOfActiveVehicles(self)
5203
5204    def SetArcCostEvaluatorOfAllVehicles(self, evaluator_index):
5205        r"""
5206        Sets the cost function of the model such that the cost of a segment of a
5207        route between node 'from' and 'to' is evaluator(from, to), whatever the
5208        route or vehicle performing the route.
5209        """
5210        return _pywrapcp.RoutingModel_SetArcCostEvaluatorOfAllVehicles(self, evaluator_index)
5211
5212    def SetArcCostEvaluatorOfVehicle(self, evaluator_index, vehicle):
5213        r""" Sets the cost function for a given vehicle route."""
5214        return _pywrapcp.RoutingModel_SetArcCostEvaluatorOfVehicle(self, evaluator_index, vehicle)
5215
5216    def SetFixedCostOfAllVehicles(self, cost):
5217        r"""
5218        Sets the fixed cost of all vehicle routes. It is equivalent to calling
5219        SetFixedCostOfVehicle on all vehicle routes.
5220        """
5221        return _pywrapcp.RoutingModel_SetFixedCostOfAllVehicles(self, cost)
5222
5223    def SetFixedCostOfVehicle(self, cost, vehicle):
5224        r""" Sets the fixed cost of one vehicle route."""
5225        return _pywrapcp.RoutingModel_SetFixedCostOfVehicle(self, cost, vehicle)
5226
5227    def GetFixedCostOfVehicle(self, vehicle):
5228        r"""
5229        Returns the route fixed cost taken into account if the route of the
5230        vehicle is not empty, aka there's at least one node on the route other
5231        than the first and last nodes.
5232        """
5233        return _pywrapcp.RoutingModel_GetFixedCostOfVehicle(self, vehicle)
5234
5235    def SetPathEnergyCostOfVehicle(self, force, distance, unit_cost, vehicle):
5236        return _pywrapcp.RoutingModel_SetPathEnergyCostOfVehicle(self, force, distance, unit_cost, vehicle)
5237
5238    def SetAmortizedCostFactorsOfAllVehicles(self, linear_cost_factor, quadratic_cost_factor):
5239        r"""
5240        The following methods set the linear and quadratic cost factors of
5241        vehicles (must be positive values). The default value of these parameters
5242        is zero for all vehicles.
5243
5244        When set, the cost_ of the model will contain terms aiming at reducing the
5245        number of vehicles used in the model, by adding the following to the
5246        objective for every vehicle v:
5247        INDICATOR(v used in the model) *
5248          [linear_cost_factor_of_vehicle_[v]
5249           - quadratic_cost_factor_of_vehicle_[v]*(square of length of route v)]
5250        i.e. for every used vehicle, we add the linear factor as fixed cost, and
5251        subtract the square of the route length multiplied by the quadratic
5252        factor. This second term aims at making the routes as dense as possible.
5253
5254        Sets the linear and quadratic cost factor of all vehicles.
5255        """
5256        return _pywrapcp.RoutingModel_SetAmortizedCostFactorsOfAllVehicles(self, linear_cost_factor, quadratic_cost_factor)
5257
5258    def SetAmortizedCostFactorsOfVehicle(self, linear_cost_factor, quadratic_cost_factor, vehicle):
5259        r""" Sets the linear and quadratic cost factor of the given vehicle."""
5260        return _pywrapcp.RoutingModel_SetAmortizedCostFactorsOfVehicle(self, linear_cost_factor, quadratic_cost_factor, vehicle)
5261
5262    def GetAmortizedLinearCostFactorOfVehicles(self):
5263        return _pywrapcp.RoutingModel_GetAmortizedLinearCostFactorOfVehicles(self)
5264
5265    def GetAmortizedQuadraticCostFactorOfVehicles(self):
5266        return _pywrapcp.RoutingModel_GetAmortizedQuadraticCostFactorOfVehicles(self)
5267
5268    def SetVehicleUsedWhenEmpty(self, is_used, vehicle):
5269        return _pywrapcp.RoutingModel_SetVehicleUsedWhenEmpty(self, is_used, vehicle)
5270
5271    def IsVehicleUsedWhenEmpty(self, vehicle):
5272        return _pywrapcp.RoutingModel_IsVehicleUsedWhenEmpty(self, vehicle)
5273
5274    def SetFirstSolutionEvaluator(self, evaluator):
5275        r"""
5276        Gets/sets the evaluator used during the search. Only relevant when
5277        RoutingSearchParameters.first_solution_strategy = EVALUATOR_STRATEGY.
5278        Takes ownership of evaluator.
5279        """
5280        return _pywrapcp.RoutingModel_SetFirstSolutionEvaluator(self, evaluator)
5281
5282    def AddLocalSearchOperator(self, ls_operator):
5283        r"""
5284        Adds a local search operator to the set of operators used to solve the
5285        vehicle routing problem.
5286        """
5287        return _pywrapcp.RoutingModel_AddLocalSearchOperator(self, ls_operator)
5288
5289    def AddSearchMonitor(self, monitor):
5290        r""" Adds a search monitor to the search used to solve the routing model."""
5291        return _pywrapcp.RoutingModel_AddSearchMonitor(self, monitor)
5292
5293    def AddAtSolutionCallback(self, callback, track_unchecked_neighbors=False):
5294        r"""
5295        Adds a callback called each time a solution is found during the search.
5296        This is a shortcut to creating a monitor to call the callback on
5297        AtSolution() and adding it with AddSearchMonitor.
5298        If track_unchecked_neighbors is true, the callback will also be called on
5299        AcceptUncheckedNeighbor() events, which is useful to grab solutions
5300        obtained when solver_parameters.check_solution_period > 1 (aka fastLS).
5301        """
5302        return _pywrapcp.RoutingModel_AddAtSolutionCallback(self, callback, track_unchecked_neighbors)
5303
5304    def AddVariableMinimizedByFinalizer(self, var):
5305        r"""
5306        Adds a variable to minimize in the solution finalizer. The solution
5307        finalizer is called each time a solution is found during the search and
5308        allows to instantiate secondary variables (such as dimension cumul
5309        variables).
5310        """
5311        return _pywrapcp.RoutingModel_AddVariableMinimizedByFinalizer(self, var)
5312
5313    def AddVariableMaximizedByFinalizer(self, var):
5314        r"""
5315        Adds a variable to maximize in the solution finalizer (see above for
5316        information on the solution finalizer).
5317        """
5318        return _pywrapcp.RoutingModel_AddVariableMaximizedByFinalizer(self, var)
5319
5320    def AddWeightedVariableMinimizedByFinalizer(self, var, cost):
5321        r"""
5322        Adds a variable to minimize in the solution finalizer, with a weighted
5323        priority: the higher the more priority it has.
5324        """
5325        return _pywrapcp.RoutingModel_AddWeightedVariableMinimizedByFinalizer(self, var, cost)
5326
5327    def AddWeightedVariableMaximizedByFinalizer(self, var, cost):
5328        r"""
5329        Adds a variable to maximize in the solution finalizer, with a weighted
5330        priority: the higher the more priority it has.
5331        """
5332        return _pywrapcp.RoutingModel_AddWeightedVariableMaximizedByFinalizer(self, var, cost)
5333
5334    def AddVariableTargetToFinalizer(self, var, target):
5335        r"""
5336        Add a variable to set the closest possible to the target value in the
5337        solution finalizer.
5338        """
5339        return _pywrapcp.RoutingModel_AddVariableTargetToFinalizer(self, var, target)
5340
5341    def AddWeightedVariableTargetToFinalizer(self, var, target, cost):
5342        r"""
5343        Same as above with a weighted priority: the higher the cost, the more
5344        priority it has to be set close to the target value.
5345        """
5346        return _pywrapcp.RoutingModel_AddWeightedVariableTargetToFinalizer(self, var, target, cost)
5347
5348    def CloseModel(self):
5349        r"""
5350        Closes the current routing model; after this method is called, no
5351        modification to the model can be done, but RoutesToAssignment becomes
5352        available. Note that CloseModel() is automatically called by Solve() and
5353        other methods that produce solution.
5354        This is equivalent to calling
5355        CloseModelWithParameters(DefaultRoutingSearchParameters()).
5356        """
5357        return _pywrapcp.RoutingModel_CloseModel(self)
5358
5359    def CloseModelWithParameters(self, search_parameters):
5360        r"""
5361        Same as above taking search parameters (as of 10/2015 some the parameters
5362        have to be set when closing the model).
5363        """
5364        return _pywrapcp.RoutingModel_CloseModelWithParameters(self, search_parameters)
5365
5366    def Solve(self, assignment=None):
5367        r"""
5368        Solves the current routing model; closes the current model.
5369        This is equivalent to calling
5370        SolveWithParameters(DefaultRoutingSearchParameters())
5371        or
5372        SolveFromAssignmentWithParameters(assignment,
5373                                          DefaultRoutingSearchParameters()).
5374        """
5375        return _pywrapcp.RoutingModel_Solve(self, assignment)
5376
5377    def SolveWithParameters(self, search_parameters, solutions=None):
5378        r"""
5379        Solves the current routing model with the given parameters. If 'solutions'
5380        is specified, it will contain the k best solutions found during the search
5381        (from worst to best, including the one returned by this method), where k
5382        corresponds to the 'number_of_solutions_to_collect' in
5383        'search_parameters'. Note that the Assignment returned by the method and
5384        the ones in solutions are owned by the underlying solver and should not be
5385        deleted.
5386        """
5387        return _pywrapcp.RoutingModel_SolveWithParameters(self, search_parameters, solutions)
5388
5389    def SolveFromAssignmentWithParameters(self, assignment, search_parameters, solutions=None):
5390        r"""
5391        Same as above, except that if assignment is not null, it will be used as
5392        the initial solution.
5393        """
5394        return _pywrapcp.RoutingModel_SolveFromAssignmentWithParameters(self, assignment, search_parameters, solutions)
5395
5396    def FastSolveFromAssignmentWithParameters(self, assignment, search_parameters, check_solution_in_cp, touched=None):
5397        r"""
5398        Improves a given assignment using unchecked local search.
5399        If check_solution_in_cp is true the final solution will be checked with
5400        the CP solver.
5401        As of 11/2023, only works with greedy descent.
5402        """
5403        return _pywrapcp.RoutingModel_FastSolveFromAssignmentWithParameters(self, assignment, search_parameters, check_solution_in_cp, touched)
5404
5405    def SolveFromAssignmentsWithParameters(self, assignments, search_parameters, solutions=None):
5406        r"""
5407        Same as above but will try all assignments in order as first solutions
5408        until one succeeds.
5409        """
5410        return _pywrapcp.RoutingModel_SolveFromAssignmentsWithParameters(self, assignments, search_parameters, solutions)
5411
5412    def SolveWithIteratedLocalSearch(self, search_parameters):
5413        r"""
5414        Solves the current routing model by using an Iterated Local Search
5415        approach.
5416        """
5417        return _pywrapcp.RoutingModel_SolveWithIteratedLocalSearch(self, search_parameters)
5418
5419    def SetAssignmentFromOtherModelAssignment(self, target_assignment, source_model, source_assignment):
5420        r"""
5421        Given a "source_model" and its "source_assignment", resets
5422        "target_assignment" with the IntVar variables (nexts_, and vehicle_vars_
5423        if costs aren't homogeneous across vehicles) of "this" model, with the
5424        values set according to those in "other_assignment".
5425        The objective_element of target_assignment is set to this->cost_.
5426        """
5427        return _pywrapcp.RoutingModel_SetAssignmentFromOtherModelAssignment(self, target_assignment, source_model, source_assignment)
5428
5429    def ComputeLowerBound(self):
5430        r"""
5431        Computes a lower bound to the routing problem solving a linear assignment
5432        problem. The routing model must be closed before calling this method.
5433        Note that problems with node disjunction constraints (including optional
5434        nodes) and non-homogenous costs are not supported (the method returns 0 in
5435        these cases).
5436        """
5437        return _pywrapcp.RoutingModel_ComputeLowerBound(self)
5438
5439    def objective_lower_bound(self):
5440        r"""
5441        Returns the current lower bound found by internal solvers during the
5442        search.
5443        """
5444        return _pywrapcp.RoutingModel_objective_lower_bound(self)
5445
5446    def status(self):
5447        r""" Returns the current status of the routing model."""
5448        return _pywrapcp.RoutingModel_status(self)
5449
5450    def enable_deep_serialization(self):
5451        r""" Returns the value of the internal enable_deep_serialization_ parameter."""
5452        return _pywrapcp.RoutingModel_enable_deep_serialization(self)
5453
5454    def ApplyLocks(self, locks):
5455        r"""
5456        Applies a lock chain to the next search. 'locks' represents an ordered
5457        vector of nodes representing a partial route which will be fixed during
5458        the next search; it will constrain next variables such that:
5459        next[locks[i]] == locks[i+1].
5460
5461        Returns the next variable at the end of the locked chain; this variable is
5462        not locked. An assignment containing the locks can be obtained by calling
5463        PreAssignment().
5464        """
5465        return _pywrapcp.RoutingModel_ApplyLocks(self, locks)
5466
5467    def ApplyLocksToAllVehicles(self, locks, close_routes):
5468        r"""
5469        Applies lock chains to all vehicles to the next search, such that locks[p]
5470        is the lock chain for route p. Returns false if the locks do not contain
5471        valid routes; expects that the routes do not contain the depots,
5472        i.e. there are empty vectors in place of empty routes.
5473        If close_routes is set to true, adds the end nodes to the route of each
5474        vehicle and deactivates other nodes.
5475        An assignment containing the locks can be obtained by calling
5476        PreAssignment().
5477        """
5478        return _pywrapcp.RoutingModel_ApplyLocksToAllVehicles(self, locks, close_routes)
5479
5480    def PreAssignment(self):
5481        r"""
5482        Returns an assignment used to fix some of the variables of the problem.
5483        In practice, this assignment locks partial routes of the problem. This
5484        can be used in the context of locking the parts of the routes which have
5485        already been driven in online routing problems.
5486        """
5487        return _pywrapcp.RoutingModel_PreAssignment(self)
5488
5489    def MutablePreAssignment(self):
5490        return _pywrapcp.RoutingModel_MutablePreAssignment(self)
5491
5492    def WriteAssignment(self, file_name):
5493        r"""
5494        Writes the current solution to a file containing an AssignmentProto.
5495        Returns false if the file cannot be opened or if there is no current
5496        solution.
5497        """
5498        return _pywrapcp.RoutingModel_WriteAssignment(self, file_name)
5499
5500    def ReadAssignment(self, file_name):
5501        r"""
5502        Reads an assignment from a file and returns the current solution.
5503        Returns nullptr if the file cannot be opened or if the assignment is not
5504        valid.
5505        """
5506        return _pywrapcp.RoutingModel_ReadAssignment(self, file_name)
5507
5508    def RestoreAssignment(self, solution):
5509        r"""
5510        Restores an assignment as a solution in the routing model and returns the
5511        new solution. Returns nullptr if the assignment is not valid.
5512        """
5513        return _pywrapcp.RoutingModel_RestoreAssignment(self, solution)
5514
5515    def ReadAssignmentFromRoutes(self, routes, ignore_inactive_indices):
5516        r"""
5517        Restores the routes as the current solution. Returns nullptr if the
5518        solution cannot be restored (routes do not contain a valid solution). Note
5519        that calling this method will run the solver to assign values to the
5520        dimension variables; this may take considerable amount of time, especially
5521        when using dimensions with slack.
5522        """
5523        return _pywrapcp.RoutingModel_ReadAssignmentFromRoutes(self, routes, ignore_inactive_indices)
5524
5525    def RoutesToAssignment(self, routes, ignore_inactive_indices, close_routes, assignment):
5526        r"""
5527        Fills an assignment from a specification of the routes of the
5528        vehicles. The routes are specified as lists of variable indices that
5529        appear on the routes of the vehicles. The indices of the outer vector in
5530        'routes' correspond to vehicles IDs, the inner vector contains the
5531        variable indices on the routes for the given vehicle. The inner vectors
5532        must not contain the start and end indices, as these are determined by the
5533        routing model.  Sets the value of NextVars in the assignment, adding the
5534        variables to the assignment if necessary. The method does not touch other
5535        variables in the assignment. The method can only be called after the model
5536        is closed.  With ignore_inactive_indices set to false, this method will
5537        fail (return nullptr) in case some of the route contain indices that are
5538        deactivated in the model; when set to true, these indices will be
5539        skipped.  Returns true if routes were successfully
5540        loaded. However, such assignment still might not be a valid
5541        solution to the routing problem due to more complex constraints;
5542        it is advisible to call solver()->CheckSolution() afterwards.
5543        """
5544        return _pywrapcp.RoutingModel_RoutesToAssignment(self, routes, ignore_inactive_indices, close_routes, assignment)
5545
5546    def AssignmentToRoutes(self, assignment, routes):
5547        r"""
5548        Converts the solution in the given assignment to routes for all vehicles.
5549        Expects that assignment contains a valid solution (i.e. routes for all
5550        vehicles end with an end index for that vehicle).
5551        """
5552        return _pywrapcp.RoutingModel_AssignmentToRoutes(self, assignment, routes)
5553
5554    def CompactAssignment(self, assignment):
5555        r"""
5556        Converts the solution in the given assignment to routes for all vehicles.
5557        If the returned vector is route_indices, route_indices[i][j] is the index
5558        for jth location visited on route i. Note that contrary to
5559        AssignmentToRoutes, the vectors do include start and end locations.
5560        Returns a compacted version of the given assignment, in which all vehicles
5561        with id lower or equal to some N have non-empty routes, and all vehicles
5562        with id greater than N have empty routes. Does not take ownership of the
5563        returned object.
5564        If found, the cost of the compact assignment is the same as in the
5565        original assignment and it preserves the values of 'active' variables.
5566        Returns nullptr if a compact assignment was not found.
5567        This method only works in homogenous mode, and it only swaps equivalent
5568        vehicles (vehicles with the same start and end nodes). When creating the
5569        compact assignment, the empty plan is replaced by the route assigned to
5570        the compatible vehicle with the highest id. Note that with more complex
5571        constraints on vehicle variables, this method might fail even if a compact
5572        solution exists.
5573        This method changes the vehicle and dimension variables as necessary.
5574        While compacting the solution, only basic checks on vehicle variables are
5575        performed; if one of these checks fails no attempts to repair it are made
5576        (instead, the method returns nullptr).
5577        """
5578        return _pywrapcp.RoutingModel_CompactAssignment(self, assignment)
5579
5580    def CompactAndCheckAssignment(self, assignment):
5581        r"""
5582        Same as CompactAssignment() but also checks the validity of the final
5583        compact solution; if it is not valid, no attempts to repair it are made
5584        (instead, the method returns nullptr).
5585        """
5586        return _pywrapcp.RoutingModel_CompactAndCheckAssignment(self, assignment)
5587
5588    def AddToAssignment(self, var):
5589        r""" Adds an extra variable to the vehicle routing assignment."""
5590        return _pywrapcp.RoutingModel_AddToAssignment(self, var)
5591
5592    def AddIntervalToAssignment(self, interval):
5593        return _pywrapcp.RoutingModel_AddIntervalToAssignment(self, interval)
5594
5595    def PackCumulsOfOptimizerDimensionsFromAssignment(self, original_assignment, duration_limit, time_limit_was_reached=None):
5596        r"""
5597        For every dimension in the model with an optimizer in
5598        local/global_dimension_optimizers_, this method tries to pack the cumul
5599        values of the dimension, such that:
5600        - The cumul costs (span costs, soft lower and upper bound costs, etc) are
5601          minimized.
5602        - The cumuls of the ends of the routes are minimized for this given
5603          minimal cumul cost.
5604        - Given these minimal end cumuls, the route start cumuls are maximized.
5605        Returns the assignment resulting from allocating these packed cumuls with
5606        the solver, and nullptr if these cumuls could not be set by the solver.
5607        """
5608        return _pywrapcp.RoutingModel_PackCumulsOfOptimizerDimensionsFromAssignment(self, original_assignment, duration_limit, time_limit_was_reached)
5609
5610    def GetOrCreateNodeNeighborsByCostClass(self, *args):
5611        r"""
5612        *Overload 1:*
5613        Returns neighbors of all nodes for every cost class. The result is cached
5614        and is computed once. The number of neighbors considered is based on a
5615        ratio of non-vehicle nodes, specified by neighbors_ratio, with a minimum
5616        of min-neighbors node considered.
5617
5618        |
5619
5620        *Overload 2:*
5621        Returns parameters.num_neighbors neighbors of all nodes for every cost
5622        class. The result is cached and is computed once.
5623
5624        |
5625
5626        *Overload 3:*
5627        Returns parameters.num_neighbors neighbors of all nodes for every cost
5628        class. The result is cached and is computed once.
5629        """
5630        return _pywrapcp.RoutingModel_GetOrCreateNodeNeighborsByCostClass(self, *args)
5631
5632    def AddLocalSearchFilter(self, filter):
5633        r"""
5634        Adds a custom local search filter to the list of filters used to speed up
5635        local search by pruning unfeasible variable assignments.
5636        Calling this method after the routing model has been closed (CloseModel()
5637        or Solve() has been called) has no effect.
5638        The routing model does not take ownership of the filter.
5639        """
5640        return _pywrapcp.RoutingModel_AddLocalSearchFilter(self, filter)
5641
5642    def Start(self, vehicle):
5643        r"""
5644        Model inspection.
5645        Returns the variable index of the starting node of a vehicle route.
5646        """
5647        return _pywrapcp.RoutingModel_Start(self, vehicle)
5648
5649    def End(self, vehicle):
5650        r""" Returns the variable index of the ending node of a vehicle route."""
5651        return _pywrapcp.RoutingModel_End(self, vehicle)
5652
5653    def IsStart(self, index):
5654        r""" Returns true if 'index' represents the first node of a route."""
5655        return _pywrapcp.RoutingModel_IsStart(self, index)
5656
5657    def IsEnd(self, index):
5658        r""" Returns true if 'index' represents the last node of a route."""
5659        return _pywrapcp.RoutingModel_IsEnd(self, index)
5660
5661    def VehicleIndex(self, index):
5662        r"""
5663        Returns the vehicle of the given start/end index, and -1 if the given
5664        index is not a vehicle start/end.
5665        """
5666        return _pywrapcp.RoutingModel_VehicleIndex(self, index)
5667
5668    def Next(self, assignment, index):
5669        r"""
5670        Assignment inspection
5671        Returns the variable index of the node directly after the node
5672        corresponding to 'index' in 'assignment'.
5673        """
5674        return _pywrapcp.RoutingModel_Next(self, assignment, index)
5675
5676    def IsVehicleUsed(self, assignment, vehicle):
5677        r""" Returns true if the route of 'vehicle' is non empty in 'assignment'."""
5678        return _pywrapcp.RoutingModel_IsVehicleUsed(self, assignment, vehicle)
5679
5680    def NextVar(self, index):
5681        r"""
5682        Returns the next variable of the node corresponding to index. Note that
5683        NextVar(index) == index is equivalent to ActiveVar(index) == 0.
5684        """
5685        return _pywrapcp.RoutingModel_NextVar(self, index)
5686
5687    def ActiveVar(self, index):
5688        r""" Returns the active variable of the node corresponding to index."""
5689        return _pywrapcp.RoutingModel_ActiveVar(self, index)
5690
5691    def ActiveVehicleVar(self, vehicle):
5692        r"""
5693        Returns the active variable of the vehicle. It will be equal to 1 iff the
5694        route of the vehicle is not empty, 0 otherwise.
5695        """
5696        return _pywrapcp.RoutingModel_ActiveVehicleVar(self, vehicle)
5697
5698    def VehicleRouteConsideredVar(self, vehicle):
5699        r"""
5700        Returns the variable specifying whether or not the given vehicle route is
5701        considered for costs and constraints. It will be equal to 1 iff the route
5702        of the vehicle is not empty OR vehicle_used_when_empty_[vehicle] is true.
5703        """
5704        return _pywrapcp.RoutingModel_VehicleRouteConsideredVar(self, vehicle)
5705
5706    def VehicleVar(self, index):
5707        r"""
5708        Returns the vehicle variable of the node corresponding to index. Note that
5709        VehicleVar(index) == -1 is equivalent to ActiveVar(index) == 0.
5710        """
5711        return _pywrapcp.RoutingModel_VehicleVar(self, index)
5712
5713    def ResourceVar(self, vehicle, resource_group):
5714        r"""
5715        Returns the resource variable for the given vehicle index in the given
5716        resource group. If a vehicle doesn't require a resource from the
5717        corresponding resource group, then ResourceVar(v, r_g) == -1.
5718        """
5719        return _pywrapcp.RoutingModel_ResourceVar(self, vehicle, resource_group)
5720
5721    def CostVar(self):
5722        r""" Returns the global cost variable which is being minimized."""
5723        return _pywrapcp.RoutingModel_CostVar(self)
5724
5725    def GetArcCostForVehicle(self, from_index, to_index, vehicle):
5726        r"""
5727        Returns the cost of the transit arc between two nodes for a given vehicle.
5728        Input are variable indices of node. This returns 0 if vehicle < 0.
5729        """
5730        return _pywrapcp.RoutingModel_GetArcCostForVehicle(self, from_index, to_index, vehicle)
5731
5732    def CostsAreHomogeneousAcrossVehicles(self):
5733        r""" Whether costs are homogeneous across all vehicles."""
5734        return _pywrapcp.RoutingModel_CostsAreHomogeneousAcrossVehicles(self)
5735
5736    def GetHomogeneousCost(self, from_index, to_index):
5737        r"""
5738        Returns the cost of the segment between two nodes supposing all vehicle
5739        costs are the same (returns the cost for the first vehicle otherwise).
5740        """
5741        return _pywrapcp.RoutingModel_GetHomogeneousCost(self, from_index, to_index)
5742
5743    def GetArcCostForFirstSolution(self, from_index, to_index):
5744        r"""
5745        Returns the cost of the arc in the context of the first solution strategy.
5746        This is typically a simplification of the actual cost; see the .cc.
5747        """
5748        return _pywrapcp.RoutingModel_GetArcCostForFirstSolution(self, from_index, to_index)
5749
5750    def GetArcCostForClass(self, from_index, to_index, cost_class_index):
5751        r"""
5752        Returns the cost of the segment between two nodes for a given cost
5753        class. Input are variable indices of nodes and the cost class.
5754        Unlike GetArcCostForVehicle(), if cost_class is kNoCost, then the
5755        returned cost won't necessarily be zero: only some of the components
5756        of the cost that depend on the cost class will be omited. See the code
5757        for details.
5758        """
5759        return _pywrapcp.RoutingModel_GetArcCostForClass(self, from_index, to_index, cost_class_index)
5760
5761    def GetCostClassIndexOfVehicle(self, vehicle):
5762        r""" Get the cost class index of the given vehicle."""
5763        return _pywrapcp.RoutingModel_GetCostClassIndexOfVehicle(self, vehicle)
5764
5765    def HasVehicleWithCostClassIndex(self, cost_class_index):
5766        r"""
5767        Returns true iff the model contains a vehicle with the given
5768        cost_class_index.
5769        """
5770        return _pywrapcp.RoutingModel_HasVehicleWithCostClassIndex(self, cost_class_index)
5771
5772    def GetCostClassesCount(self):
5773        r""" Returns the number of different cost classes in the model."""
5774        return _pywrapcp.RoutingModel_GetCostClassesCount(self)
5775
5776    def GetNonZeroCostClassesCount(self):
5777        r""" Ditto, minus the 'always zero', built-in cost class."""
5778        return _pywrapcp.RoutingModel_GetNonZeroCostClassesCount(self)
5779
5780    def GetVehicleClassIndexOfVehicle(self, vehicle):
5781        return _pywrapcp.RoutingModel_GetVehicleClassIndexOfVehicle(self, vehicle)
5782
5783    def GetVehicleOfClass(self, vehicle_class):
5784        r"""
5785        Returns a vehicle of the given vehicle class, and -1 if there are no
5786        vehicles for this class.
5787        """
5788        return _pywrapcp.RoutingModel_GetVehicleOfClass(self, vehicle_class)
5789
5790    def GetVehicleClassesCount(self):
5791        r""" Returns the number of different vehicle classes in the model."""
5792        return _pywrapcp.RoutingModel_GetVehicleClassesCount(self)
5793
5794    def GetSameVehicleIndicesOfIndex(self, node):
5795        r""" Returns variable indices of nodes constrained to be on the same route."""
5796        return _pywrapcp.RoutingModel_GetSameVehicleIndicesOfIndex(self, node)
5797
5798    def GetVehicleTypeContainer(self):
5799        return _pywrapcp.RoutingModel_GetVehicleTypeContainer(self)
5800
5801    def ArcIsMoreConstrainedThanArc(self, _from, to1, to2):
5802        r"""
5803        Returns whether the arc from->to1 is more constrained than from->to2,
5804        taking into account, in order:
5805        - whether the destination node isn't an end node
5806        - whether the destination node is mandatory
5807        - whether the destination node is bound to the same vehicle as the source
5808        - the "primary constrained" dimension (see SetPrimaryConstrainedDimension)
5809        It then breaks ties using, in order:
5810        - the arc cost (taking unperformed penalties into account)
5811        - the size of the vehicle vars of "to1" and "to2" (lowest size wins)
5812        - the value: the lowest value of the indices to1 and to2 wins.
5813        See the .cc for details.
5814        The more constrained arc is typically preferable when building a
5815        first solution. This method is intended to be used as a callback for the
5816        BestValueByComparisonSelector value selector.
5817        Args:
5818          from: the variable index of the source node
5819          to1: the variable index of the first candidate destination node.
5820          to2: the variable index of the second candidate destination node.
5821        """
5822        return _pywrapcp.RoutingModel_ArcIsMoreConstrainedThanArc(self, _from, to1, to2)
5823
5824    def DebugOutputAssignment(self, solution_assignment, dimension_to_print):
5825        r"""
5826        Print some debugging information about an assignment, including the
5827        feasible intervals of the CumulVar for dimension "dimension_to_print"
5828        at each step of the routes.
5829        If "dimension_to_print" is omitted, all dimensions will be printed.
5830        """
5831        return _pywrapcp.RoutingModel_DebugOutputAssignment(self, solution_assignment, dimension_to_print)
5832
5833    def CheckIfAssignmentIsFeasible(self, assignment, call_at_solution_monitors):
5834        r"""
5835        Returns a vector cumul_bounds, for which cumul_bounds[i][j] is a pair
5836        containing the minimum and maximum of the CumulVar of the jth node on
5837        route i.
5838        - cumul_bounds[i][j].first is the minimum.
5839        - cumul_bounds[i][j].second is the maximum.
5840        Checks if an assignment is feasible.
5841        """
5842        return _pywrapcp.RoutingModel_CheckIfAssignmentIsFeasible(self, assignment, call_at_solution_monitors)
5843
5844    def solver(self):
5845        r"""
5846        Returns the underlying constraint solver. Can be used to add extra
5847        constraints and/or modify search algorithms.
5848        """
5849        return _pywrapcp.RoutingModel_solver(self)
5850
5851    def CheckLimit(self, *args):
5852        r"""
5853        Returns true if the search limit has been crossed with the given time
5854        offset.
5855        """
5856        return _pywrapcp.RoutingModel_CheckLimit(self, *args)
5857
5858    def RemainingTime(self):
5859        r""" Returns the time left in the search limit."""
5860        return _pywrapcp.RoutingModel_RemainingTime(self)
5861
5862    def UpdateTimeLimit(self, time_limit):
5863        r""" Updates the time limit of the search limit."""
5864        return _pywrapcp.RoutingModel_UpdateTimeLimit(self, time_limit)
5865
5866    def TimeBuffer(self):
5867        r""" Returns the time buffer to safely return a solution."""
5868        return _pywrapcp.RoutingModel_TimeBuffer(self)
5869
5870    def GetMutableCPSatInterrupt(self):
5871        r""" Returns the atomic<bool> to stop the CP-SAT solver."""
5872        return _pywrapcp.RoutingModel_GetMutableCPSatInterrupt(self)
5873
5874    def GetMutableCPInterrupt(self):
5875        r""" Returns the atomic<bool> to stop the CP solver."""
5876        return _pywrapcp.RoutingModel_GetMutableCPInterrupt(self)
5877
5878    def CancelSearch(self):
5879        r""" Cancels the current search."""
5880        return _pywrapcp.RoutingModel_CancelSearch(self)
5881
5882    def nodes(self):
5883        r"""
5884        Sizes and indices
5885        Returns the number of nodes in the model.
5886        """
5887        return _pywrapcp.RoutingModel_nodes(self)
5888
5889    def vehicles(self):
5890        r""" Returns the number of vehicle routes in the model."""
5891        return _pywrapcp.RoutingModel_vehicles(self)
5892
5893    def Size(self):
5894        r""" Returns the number of next variables in the model."""
5895        return _pywrapcp.RoutingModel_Size(self)
5896
5897    def GetNumberOfDecisionsInFirstSolution(self, search_parameters):
5898        r"""
5899        Returns statistics on first solution search, number of decisions sent to
5900        filters, number of decisions rejected by filters.
5901        """
5902        return _pywrapcp.RoutingModel_GetNumberOfDecisionsInFirstSolution(self, search_parameters)
5903
5904    def GetNumberOfRejectsInFirstSolution(self, search_parameters):
5905        return _pywrapcp.RoutingModel_GetNumberOfRejectsInFirstSolution(self, search_parameters)
5906
5907    def GetAutomaticFirstSolutionStrategy(self):
5908        r""" Returns the automatic first solution strategy selected."""
5909        return _pywrapcp.RoutingModel_GetAutomaticFirstSolutionStrategy(self)
5910
5911    def IsMatchingModel(self):
5912        r""" Returns true if a vehicle/node matching problem is detected."""
5913        return _pywrapcp.RoutingModel_IsMatchingModel(self)
5914
5915    def AreRoutesInterdependent(self, parameters):
5916        r"""
5917        Returns true if routes are interdependent. This means that any
5918        modification to a route might impact another.
5919        """
5920        return _pywrapcp.RoutingModel_AreRoutesInterdependent(self, parameters)
5921
5922    def MakeGuidedSlackFinalizer(self, dimension, initializer):
5923        r"""
5924        The next few members are in the public section only for testing purposes.
5925
5926        MakeGuidedSlackFinalizer creates a DecisionBuilder for the slacks of a
5927        dimension using a callback to choose which values to start with.
5928        The finalizer works only when all next variables in the model have
5929        been fixed. It has the following two characteristics:
5930        1. It follows the routes defined by the nexts variables when choosing a
5931           variable to make a decision on.
5932        2. When it comes to choose a value for the slack of node i, the decision
5933           builder first calls the callback with argument i, and supposingly the
5934           returned value is x it creates decisions slack[i] = x, slack[i] = x +
5935           1, slack[i] = x - 1, slack[i] = x + 2, etc.
5936        """
5937        return _pywrapcp.RoutingModel_MakeGuidedSlackFinalizer(self, dimension, initializer)
5938
5939    def MakeSelfDependentDimensionFinalizer(self, dimension):
5940        r"""
5941        MakeSelfDependentDimensionFinalizer is a finalizer for the slacks of a
5942        self-dependent dimension. It makes an extensive use of the caches of the
5943        state dependent transits.
5944        In detail, MakeSelfDependentDimensionFinalizer returns a composition of a
5945        local search decision builder with a greedy descent operator for the cumul
5946        of the start of each route and a guided slack finalizer. Provided there
5947        are no time windows and the maximum slacks are large enough, once the
5948        cumul of the start of route is fixed, the guided finalizer can find
5949        optimal values of the slacks for the rest of the route in time
5950        proportional to the length of the route. Therefore the composed finalizer
5951        generally works in time O(log(t)*n*m), where t is the latest possible
5952        departute time, n is the number of nodes in the network and m is the
5953        number of vehicles.
5954        """
5955        return _pywrapcp.RoutingModel_MakeSelfDependentDimensionFinalizer(self, dimension)
5956
5957    def GetPathsMetadata(self):
5958        return _pywrapcp.RoutingModel_GetPathsMetadata(self)
5959
5960# Register RoutingModel in _pywrapcp:
5961_pywrapcp.RoutingModel_swigregister(RoutingModel)
5962cvar = _pywrapcp.cvar
5963RoutingModel.kNoPenalty = _pywrapcp.cvar.RoutingModel_kNoPenalty
5964RoutingModel.kNoDisjunction = _pywrapcp.cvar.RoutingModel_kNoDisjunction
5965RoutingModel.kNoDimension = _pywrapcp.cvar.RoutingModel_kNoDimension
5966
5967class RoutingModelVisitor(BaseObject):
5968    r""" Routing model visitor."""
5969
5970    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
5971    __repr__ = _swig_repr
5972
5973    def __init__(self):
5974        _pywrapcp.RoutingModelVisitor_swiginit(self, _pywrapcp.new_RoutingModelVisitor())
5975    __swig_destroy__ = _pywrapcp.delete_RoutingModelVisitor
5976
5977# Register RoutingModelVisitor in _pywrapcp:
5978_pywrapcp.RoutingModelVisitor_swigregister(RoutingModelVisitor)
5979RoutingModelVisitor.kLightElement = _pywrapcp.cvar.RoutingModelVisitor_kLightElement
5980RoutingModelVisitor.kLightElement2 = _pywrapcp.cvar.RoutingModelVisitor_kLightElement2
5981RoutingModelVisitor.kRemoveValues = _pywrapcp.cvar.RoutingModelVisitor_kRemoveValues
5982
5983class GlobalVehicleBreaksConstraint(Constraint):
5984    r"""
5985    GlobalVehicleBreaksConstraint ensures breaks constraints are enforced on
5986    all vehicles in the dimension passed to its constructor.
5987    It is intended to be used for dimensions representing time.
5988    A break constraint ensures break intervals fit on the route of a vehicle.
5989    For a given vehicle, it forces break intervals to be disjoint from visit
5990    intervals, where visit intervals start at CumulVar(node) and last for
5991    node_visit_transit[node]. Moreover, it ensures that there is enough time
5992    between two consecutive nodes of a route to do transit and vehicle breaks,
5993    i.e. if Next(nodeA) = nodeB, CumulVar(nodeA) = tA and CumulVar(nodeB) = tB,
5994    then SlackVar(nodeA) >= sum_{breaks [tA, tB)} duration(break).
5995    """
5996
5997    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
5998    __repr__ = _swig_repr
5999
6000    def __init__(self, dimension):
6001        _pywrapcp.GlobalVehicleBreaksConstraint_swiginit(self, _pywrapcp.new_GlobalVehicleBreaksConstraint(dimension))
6002
6003    def DebugString(self):
6004        return _pywrapcp.GlobalVehicleBreaksConstraint_DebugString(self)
6005
6006    def Post(self):
6007        return _pywrapcp.GlobalVehicleBreaksConstraint_Post(self)
6008
6009    def InitialPropagateWrapper(self):
6010        return _pywrapcp.GlobalVehicleBreaksConstraint_InitialPropagateWrapper(self)
6011    __swig_destroy__ = _pywrapcp.delete_GlobalVehicleBreaksConstraint
6012
6013# Register GlobalVehicleBreaksConstraint in _pywrapcp:
6014_pywrapcp.GlobalVehicleBreaksConstraint_swigregister(GlobalVehicleBreaksConstraint)
6015class TypeRegulationsChecker(object):
6016    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6017
6018    def __init__(self, *args, **kwargs):
6019        raise AttributeError("No constructor defined - class is abstract")
6020    __repr__ = _swig_repr
6021    __swig_destroy__ = _pywrapcp.delete_TypeRegulationsChecker
6022
6023    def CheckVehicle(self, vehicle, next_accessor):
6024        return _pywrapcp.TypeRegulationsChecker_CheckVehicle(self, vehicle, next_accessor)
6025
6026# Register TypeRegulationsChecker in _pywrapcp:
6027_pywrapcp.TypeRegulationsChecker_swigregister(TypeRegulationsChecker)
6028class TypeIncompatibilityChecker(TypeRegulationsChecker):
6029    r""" Checker for type incompatibilities."""
6030
6031    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6032    __repr__ = _swig_repr
6033
6034    def __init__(self, model, check_hard_incompatibilities):
6035        _pywrapcp.TypeIncompatibilityChecker_swiginit(self, _pywrapcp.new_TypeIncompatibilityChecker(model, check_hard_incompatibilities))
6036    __swig_destroy__ = _pywrapcp.delete_TypeIncompatibilityChecker
6037
6038# Register TypeIncompatibilityChecker in _pywrapcp:
6039_pywrapcp.TypeIncompatibilityChecker_swigregister(TypeIncompatibilityChecker)
6040class TypeRequirementChecker(TypeRegulationsChecker):
6041    r""" Checker for type requirements."""
6042
6043    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6044    __repr__ = _swig_repr
6045
6046    def __init__(self, model):
6047        _pywrapcp.TypeRequirementChecker_swiginit(self, _pywrapcp.new_TypeRequirementChecker(model))
6048    __swig_destroy__ = _pywrapcp.delete_TypeRequirementChecker
6049
6050# Register TypeRequirementChecker in _pywrapcp:
6051_pywrapcp.TypeRequirementChecker_swigregister(TypeRequirementChecker)
6052class TypeRegulationsConstraint(Constraint):
6053    r"""
6054    The following constraint ensures that incompatibilities and requirements
6055    between types are respected.
6056
6057    It verifies both "hard" and "temporal" incompatibilities.
6058    Two nodes with hard incompatible types cannot be served by the same vehicle
6059    at all, while with a temporal incompatibility they can't be on the same
6060    route at the same time.
6061    The VisitTypePolicy of a node determines how visiting it impacts the type
6062    count on the route.
6063
6064    For example, for
6065    - three temporally incompatible types T1 T2 and T3
6066    - 2 pairs of nodes a1/r1 and a2/r2 of type T1 and T2 respectively, with
6067        - a1 and a2 of VisitTypePolicy TYPE_ADDED_TO_VEHICLE
6068        - r1 and r2 of policy ADDED_TYPE_REMOVED_FROM_VEHICLE
6069    - 3 nodes A, UV and AR of type T3, respectively with type policies
6070      TYPE_ADDED_TO_VEHICLE, TYPE_ON_VEHICLE_UP_TO_VISIT and
6071      TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED
6072    the configurations
6073    UV --> a1 --> r1 --> a2 --> r2,   a1 --> r1 --> a2 --> r2 --> A and
6074    a1 --> r1 --> AR --> a2 --> r2 are acceptable, whereas the configurations
6075    a1 --> a2 --> r1 --> ..., or A --> a1 --> r1 --> ..., or
6076    a1 --> r1 --> UV --> ... are not feasible.
6077
6078    It also verifies same-vehicle and temporal type requirements.
6079    A node of type T_d with a same-vehicle requirement for type T_r needs to be
6080    served by the same vehicle as a node of type T_r.
6081    Temporal requirements, on the other hand, can take effect either when the
6082    dependent type is being added to the route or when it's removed from it,
6083    which is determined by the dependent node's VisitTypePolicy.
6084    In the above example:
6085    - If T3 is required on the same vehicle as T1, A, AR or UV must be on the
6086      same vehicle as a1.
6087    - If T2 is required when adding T1, a2 must be visited *before* a1, and if
6088      r2 is also visited on the route, it must be *after* a1, i.e. T2 must be on
6089      the vehicle when a1 is visited:
6090      ... --> a2 --> ... --> a1 --> ... --> r2 --> ...
6091    - If T3 is required when removing T1, T3 needs to be on the vehicle when
6092      r1 is visited:
6093      ... --> A --> ... --> r1 --> ...   OR   ... --> r1 --> ... --> UV --> ...
6094    """
6095
6096    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6097    __repr__ = _swig_repr
6098
6099    def __init__(self, model):
6100        _pywrapcp.TypeRegulationsConstraint_swiginit(self, _pywrapcp.new_TypeRegulationsConstraint(model))
6101
6102    def Post(self):
6103        return _pywrapcp.TypeRegulationsConstraint_Post(self)
6104
6105    def InitialPropagateWrapper(self):
6106        return _pywrapcp.TypeRegulationsConstraint_InitialPropagateWrapper(self)
6107    __swig_destroy__ = _pywrapcp.delete_TypeRegulationsConstraint
6108
6109# Register TypeRegulationsConstraint in _pywrapcp:
6110_pywrapcp.TypeRegulationsConstraint_swigregister(TypeRegulationsConstraint)
6111class BoundCost(object):
6112    r"""
6113    A structure meant to store soft bounds and associated violation constants.
6114    It is 'Simple' because it has one BoundCost per element,
6115    in contrast to 'Multiple'. Design notes:
6116    - it is meant to store model information to be shared through pointers,
6117      so it disallows copy and assign to avoid accidental duplication.
6118    - it keeps soft bounds as an array of structs to help cache,
6119      because code that uses such bounds typically use both bound and cost.
6120    - soft bounds are named pairs, prevents some mistakes.
6121    - using operator[] to access elements is not interesting,
6122      because the structure will be accessed through pointers, moreover having
6123      to type bound_cost reminds the user of the order if they do a copy
6124      assignment of the element.
6125    """
6126
6127    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6128    __repr__ = _swig_repr
6129    bound = property(_pywrapcp.BoundCost_bound_get, _pywrapcp.BoundCost_bound_set)
6130    cost = property(_pywrapcp.BoundCost_cost_get, _pywrapcp.BoundCost_cost_set)
6131
6132    def __init__(self, *args):
6133        _pywrapcp.BoundCost_swiginit(self, _pywrapcp.new_BoundCost(*args))
6134    __swig_destroy__ = _pywrapcp.delete_BoundCost
6135
6136# Register BoundCost in _pywrapcp:
6137_pywrapcp.BoundCost_swigregister(BoundCost)
6138class SimpleBoundCosts(object):
6139    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6140    __repr__ = _swig_repr
6141
6142    def __init__(self, num_bounds, default_bound_cost):
6143        _pywrapcp.SimpleBoundCosts_swiginit(self, _pywrapcp.new_SimpleBoundCosts(num_bounds, default_bound_cost))
6144
6145    def bound_cost(self, element):
6146        return _pywrapcp.SimpleBoundCosts_bound_cost(self, element)
6147
6148    def size(self):
6149        return _pywrapcp.SimpleBoundCosts_size(self)
6150    __swig_destroy__ = _pywrapcp.delete_SimpleBoundCosts
6151
6152# Register SimpleBoundCosts in _pywrapcp:
6153_pywrapcp.SimpleBoundCosts_swigregister(SimpleBoundCosts)
6154class RoutingDimension(object):
6155    r"""
6156    Dimensions represent quantities accumulated at nodes along the routes. They
6157    represent quantities such as weights or volumes carried along the route, or
6158    distance or times.
6159
6160    Quantities at a node are represented by "cumul" variables and the increase
6161    or decrease of quantities between nodes are represented by "transit"
6162    variables. These variables are linked as follows:
6163
6164    if j == next(i),
6165    cumuls(j) = cumuls(i) + transits(i) + slacks(i) +
6166                state_dependent_transits(i)
6167
6168    where slack is a positive slack variable (can represent waiting times for
6169    a time dimension), and state_dependent_transits is a non-purely functional
6170    version of transits_. Favour transits over state_dependent_transits when
6171    possible, because purely functional callbacks allow more optimisations and
6172    make the model faster and easier to solve.
6173    for a given vehicle, it is passed as an external vector, it would be better
6174    to have this information here.
6175    """
6176
6177    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6178
6179    def __init__(self, *args, **kwargs):
6180        raise AttributeError("No constructor defined")
6181    __repr__ = _swig_repr
6182    __swig_destroy__ = _pywrapcp.delete_RoutingDimension
6183
6184    def model(self):
6185        r""" Returns the model on which the dimension was created."""
6186        return _pywrapcp.RoutingDimension_model(self)
6187
6188    def GetTransitValue(self, from_index, to_index, vehicle):
6189        r"""
6190        Returns the transition value for a given pair of nodes (as var index);
6191        this value is the one taken by the corresponding transit variable when
6192        the 'next' variable for 'from_index' is bound to 'to_index'.
6193        """
6194        return _pywrapcp.RoutingDimension_GetTransitValue(self, from_index, to_index, vehicle)
6195
6196    def GetTransitValueFromClass(self, from_index, to_index, vehicle_class):
6197        r"""
6198        Same as above but taking a vehicle class of the dimension instead of a
6199        vehicle (the class of a vehicle can be obtained with vehicle_to_class()).
6200        """
6201        return _pywrapcp.RoutingDimension_GetTransitValueFromClass(self, from_index, to_index, vehicle_class)
6202
6203    def CumulVar(self, index):
6204        r"""
6205        Get the cumul, transit and slack variables for the given node (given as
6206        int64_t var index).
6207        """
6208        return _pywrapcp.RoutingDimension_CumulVar(self, index)
6209
6210    def TransitVar(self, index):
6211        return _pywrapcp.RoutingDimension_TransitVar(self, index)
6212
6213    def FixedTransitVar(self, index):
6214        return _pywrapcp.RoutingDimension_FixedTransitVar(self, index)
6215
6216    def SlackVar(self, index):
6217        return _pywrapcp.RoutingDimension_SlackVar(self, index)
6218
6219    def SetSpanUpperBoundForVehicle(self, upper_bound, vehicle):
6220        r"""
6221        Sets an upper bound on the dimension span on a given vehicle. This is the
6222        preferred way to limit the "length" of the route of a vehicle according to
6223        a dimension.
6224        """
6225        return _pywrapcp.RoutingDimension_SetSpanUpperBoundForVehicle(self, upper_bound, vehicle)
6226
6227    def SetSpanCostCoefficientForVehicle(self, coefficient, vehicle):
6228        r"""
6229        Sets a cost proportional to the dimension span on a given vehicle,
6230        or on all vehicles at once. "coefficient" must be nonnegative.
6231        This is handy to model costs proportional to idle time when the dimension
6232        represents time.
6233        The cost for a vehicle is
6234          span_cost = coefficient * (dimension end value - dimension start value).
6235        """
6236        return _pywrapcp.RoutingDimension_SetSpanCostCoefficientForVehicle(self, coefficient, vehicle)
6237
6238    def SetSpanCostCoefficientForAllVehicles(self, coefficient):
6239        return _pywrapcp.RoutingDimension_SetSpanCostCoefficientForAllVehicles(self, coefficient)
6240
6241    def SetSlackCostCoefficientForVehicle(self, coefficient, vehicle):
6242        r"""
6243        Sets a cost proportional to the dimension total slack on a given vehicle,
6244        or on all vehicles at once. "coefficient" must be nonnegative.
6245        This is handy to model costs only proportional to idle time when the
6246        dimension represents time.
6247        The cost for a vehicle is
6248          slack_cost = coefficient *
6249                (dimension end value - dimension start value - total_transit).
6250        """
6251        return _pywrapcp.RoutingDimension_SetSlackCostCoefficientForVehicle(self, coefficient, vehicle)
6252
6253    def SetSlackCostCoefficientForAllVehicles(self, coefficient):
6254        return _pywrapcp.RoutingDimension_SetSlackCostCoefficientForAllVehicles(self, coefficient)
6255
6256    def SetGlobalSpanCostCoefficient(self, coefficient):
6257        r"""
6258        Sets a cost proportional to the *global* dimension span, that is the
6259        difference between the largest value of route end cumul variables and
6260        the smallest value of route start cumul variables.
6261        In other words:
6262        global_span_cost =
6263          coefficient * (Max(dimension end value) - Min(dimension start value)).
6264        """
6265        return _pywrapcp.RoutingDimension_SetGlobalSpanCostCoefficient(self, coefficient)
6266
6267    def SetCumulVarSoftUpperBound(self, index, upper_bound, coefficient):
6268        r"""
6269        Sets a soft upper bound to the cumul variable of a given variable index.
6270        If the value of the cumul variable is greater than the bound, a cost
6271        proportional to the difference between this value and the bound is added
6272        to the cost function of the model:
6273          cumulVar <= upper_bound -> cost = 0
6274           cumulVar > upper_bound -> cost = coefficient * (cumulVar - upper_bound)
6275        This is also handy to model tardiness costs when the dimension represents
6276        time.
6277        """
6278        return _pywrapcp.RoutingDimension_SetCumulVarSoftUpperBound(self, index, upper_bound, coefficient)
6279
6280    def HasCumulVarSoftUpperBound(self, index):
6281        r"""
6282        Returns true if a soft upper bound has been set for a given variable
6283        index.
6284        """
6285        return _pywrapcp.RoutingDimension_HasCumulVarSoftUpperBound(self, index)
6286
6287    def GetCumulVarSoftUpperBound(self, index):
6288        r"""
6289        Returns the soft upper bound of a cumul variable for a given variable
6290        index. The "hard" upper bound of the variable is returned if no soft upper
6291        bound has been set.
6292        """
6293        return _pywrapcp.RoutingDimension_GetCumulVarSoftUpperBound(self, index)
6294
6295    def GetCumulVarSoftUpperBoundCoefficient(self, index):
6296        r"""
6297        Returns the cost coefficient of the soft upper bound of a cumul variable
6298        for a given variable index. If no soft upper bound has been set, 0 is
6299        returned.
6300        """
6301        return _pywrapcp.RoutingDimension_GetCumulVarSoftUpperBoundCoefficient(self, index)
6302
6303    def SetCumulVarSoftLowerBound(self, index, lower_bound, coefficient):
6304        r"""
6305        Sets a soft lower bound to the cumul variable of a given variable index.
6306        If the value of the cumul variable is less than the bound, a cost
6307        proportional to the difference between this value and the bound is added
6308        to the cost function of the model:
6309          cumulVar > lower_bound -> cost = 0
6310          cumulVar <= lower_bound -> cost = coefficient * (lower_bound -
6311                      cumulVar).
6312        This is also handy to model earliness costs when the dimension represents
6313        time.
6314        """
6315        return _pywrapcp.RoutingDimension_SetCumulVarSoftLowerBound(self, index, lower_bound, coefficient)
6316
6317    def HasCumulVarSoftLowerBound(self, index):
6318        r"""
6319        Returns true if a soft lower bound has been set for a given variable
6320        index.
6321        """
6322        return _pywrapcp.RoutingDimension_HasCumulVarSoftLowerBound(self, index)
6323
6324    def GetCumulVarSoftLowerBound(self, index):
6325        r"""
6326        Returns the soft lower bound of a cumul variable for a given variable
6327        index. The "hard" lower bound of the variable is returned if no soft lower
6328        bound has been set.
6329        """
6330        return _pywrapcp.RoutingDimension_GetCumulVarSoftLowerBound(self, index)
6331
6332    def GetCumulVarSoftLowerBoundCoefficient(self, index):
6333        r"""
6334        Returns the cost coefficient of the soft lower bound of a cumul variable
6335        for a given variable index. If no soft lower bound has been set, 0 is
6336        returned.
6337        """
6338        return _pywrapcp.RoutingDimension_GetCumulVarSoftLowerBoundCoefficient(self, index)
6339
6340    def SetBreakIntervalsOfVehicle(self, breaks, vehicle, node_visit_transits):
6341        r"""
6342        Sets the breaks for a given vehicle. Breaks are represented by
6343        IntervalVars. They may interrupt transits between nodes and increase
6344        the value of corresponding slack variables.
6345        A break may take place before the start of a vehicle, after the end of
6346        a vehicle, or during a travel i -> j.
6347
6348        In that case, the interval [break.Start(), break.End()) must be a subset
6349        of [CumulVar(i) + pre_travel(i, j), CumulVar(j) - post_travel(i, j)). In
6350        other words, a break may not overlap any node n's visit, given by
6351        [CumulVar(n) - post_travel(_, n), CumulVar(n) + pre_travel(n, _)).
6352        This formula considers post_travel(_, start) and pre_travel(end, _) to be
6353        0; pre_travel will never be called on any (_, start) and post_travel will
6354        never we called on any (end, _). If pre_travel_evaluator or
6355        post_travel_evaluator is -1, it will be taken as a function that always
6356        returns 0.
6357        Deprecated, sets pre_travel(i, j) = node_visit_transit[i].
6358        """
6359        return _pywrapcp.RoutingDimension_SetBreakIntervalsOfVehicle(self, breaks, vehicle, node_visit_transits)
6360
6361    def SetBreakDistanceDurationOfVehicle(self, distance, duration, vehicle):
6362        r"""
6363        With breaks supposed to be consecutive, this forces the distance between
6364        breaks of size at least minimum_break_duration to be at most distance.
6365        This supposes that the time until route start and after route end are
6366        infinite breaks.
6367        """
6368        return _pywrapcp.RoutingDimension_SetBreakDistanceDurationOfVehicle(self, distance, duration, vehicle)
6369
6370    def InitializeBreaks(self):
6371        r"""
6372        Sets up vehicle_break_intervals_, vehicle_break_distance_duration_,
6373        pre_travel_evaluators and post_travel_evaluators.
6374        """
6375        return _pywrapcp.RoutingDimension_InitializeBreaks(self)
6376
6377    def HasBreakConstraints(self):
6378        r""" Returns true if any break interval or break distance was defined."""
6379        return _pywrapcp.RoutingDimension_HasBreakConstraints(self)
6380
6381    def GetPreTravelEvaluatorOfVehicle(self, vehicle):
6382        return _pywrapcp.RoutingDimension_GetPreTravelEvaluatorOfVehicle(self, vehicle)
6383
6384    def GetPostTravelEvaluatorOfVehicle(self, vehicle):
6385        return _pywrapcp.RoutingDimension_GetPostTravelEvaluatorOfVehicle(self, vehicle)
6386
6387    def base_dimension(self):
6388        r""" Returns the parent in the dependency tree if any or nullptr otherwise."""
6389        return _pywrapcp.RoutingDimension_base_dimension(self)
6390
6391    def ShortestTransitionSlack(self, node):
6392        r"""
6393        It makes sense to use the function only for self-dependent dimension.
6394        For such dimensions the value of the slack of a node determines the
6395        transition cost of the next transit. Provided that
6396          1. cumul[node] is fixed,
6397          2. next[node] and next[next[node]] (if exists) are fixed,
6398        the value of slack[node] for which cumul[next[node]] + transit[next[node]]
6399        is minimized can be found in O(1) using this function.
6400        """
6401        return _pywrapcp.RoutingDimension_ShortestTransitionSlack(self, node)
6402
6403    def name(self):
6404        r""" Returns the name of the dimension."""
6405        return _pywrapcp.RoutingDimension_name(self)
6406
6407    def SetPickupToDeliveryLimitFunctionForPair(self, limit_function, pair_index):
6408        return _pywrapcp.RoutingDimension_SetPickupToDeliveryLimitFunctionForPair(self, limit_function, pair_index)
6409
6410    def HasPickupToDeliveryLimits(self):
6411        return _pywrapcp.RoutingDimension_HasPickupToDeliveryLimits(self)
6412
6413    def AddNodePrecedence(self, first_node, second_node, offset):
6414        return _pywrapcp.RoutingDimension_AddNodePrecedence(self, first_node, second_node, offset)
6415
6416    def GetSpanUpperBoundForVehicle(self, vehicle):
6417        return _pywrapcp.RoutingDimension_GetSpanUpperBoundForVehicle(self, vehicle)
6418
6419    def GetSpanCostCoefficientForVehicle(self, vehicle):
6420        return _pywrapcp.RoutingDimension_GetSpanCostCoefficientForVehicle(self, vehicle)
6421
6422    def GetSlackCostCoefficientForVehicle(self, vehicle):
6423        return _pywrapcp.RoutingDimension_GetSlackCostCoefficientForVehicle(self, vehicle)
6424
6425    def global_span_cost_coefficient(self):
6426        return _pywrapcp.RoutingDimension_global_span_cost_coefficient(self)
6427
6428    def GetGlobalOptimizerOffset(self):
6429        return _pywrapcp.RoutingDimension_GetGlobalOptimizerOffset(self)
6430
6431    def GetLocalOptimizerOffsetForVehicle(self, vehicle):
6432        return _pywrapcp.RoutingDimension_GetLocalOptimizerOffsetForVehicle(self, vehicle)
6433
6434    def SetSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6435        r"""
6436        If the span of vehicle on this dimension is larger than bound,
6437        the cost will be increased by cost * (span - bound).
6438        """
6439        return _pywrapcp.RoutingDimension_SetSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle)
6440
6441    def HasSoftSpanUpperBounds(self):
6442        return _pywrapcp.RoutingDimension_HasSoftSpanUpperBounds(self)
6443
6444    def GetSoftSpanUpperBoundForVehicle(self, vehicle):
6445        return _pywrapcp.RoutingDimension_GetSoftSpanUpperBoundForVehicle(self, vehicle)
6446
6447    def SetQuadraticCostSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6448        r"""
6449        If the span of vehicle on this dimension is larger than bound,
6450        the cost will be increased by cost * (span - bound)^2.
6451        """
6452        return _pywrapcp.RoutingDimension_SetQuadraticCostSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle)
6453
6454    def HasQuadraticCostSoftSpanUpperBounds(self):
6455        return _pywrapcp.RoutingDimension_HasQuadraticCostSoftSpanUpperBounds(self)
6456
6457    def GetQuadraticCostSoftSpanUpperBoundForVehicle(self, vehicle):
6458        return _pywrapcp.RoutingDimension_GetQuadraticCostSoftSpanUpperBoundForVehicle(self, vehicle)
6459
6460# Register RoutingDimension in _pywrapcp:
6461_pywrapcp.RoutingDimension_swigregister(RoutingDimension)
6462
6463def SolveModelWithSat(model, search_parameters, initial_solution, solution):
6464    r"""
6465    Attempts to solve the model using the cp-sat solver. As of 5/2019, will
6466    solve the TSP corresponding to the model if it has a single vehicle.
6467    Therefore the resulting solution might not actually be feasible. Will return
6468    false if a solution could not be found.
6469    """
6470    return _pywrapcp.SolveModelWithSat(model, search_parameters, initial_solution, solution)
class DefaultPhaseParameters:
 64class DefaultPhaseParameters(object):
 65    r"""
 66    This struct holds all parameters for the default search.
 67    DefaultPhaseParameters is only used by Solver::MakeDefaultPhase methods.
 68    Note this is for advanced users only.
 69    """
 70
 71    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 72    __repr__ = _swig_repr
 73    CHOOSE_MAX_SUM_IMPACT = _pywrapcp.DefaultPhaseParameters_CHOOSE_MAX_SUM_IMPACT
 74    CHOOSE_MAX_AVERAGE_IMPACT = _pywrapcp.DefaultPhaseParameters_CHOOSE_MAX_AVERAGE_IMPACT
 75    CHOOSE_MAX_VALUE_IMPACT = _pywrapcp.DefaultPhaseParameters_CHOOSE_MAX_VALUE_IMPACT
 76    SELECT_MIN_IMPACT = _pywrapcp.DefaultPhaseParameters_SELECT_MIN_IMPACT
 77    SELECT_MAX_IMPACT = _pywrapcp.DefaultPhaseParameters_SELECT_MAX_IMPACT
 78    NONE = _pywrapcp.DefaultPhaseParameters_NONE
 79    NORMAL = _pywrapcp.DefaultPhaseParameters_NORMAL
 80    VERBOSE = _pywrapcp.DefaultPhaseParameters_VERBOSE
 81    var_selection_schema = property(_pywrapcp.DefaultPhaseParameters_var_selection_schema_get, _pywrapcp.DefaultPhaseParameters_var_selection_schema_set, doc=r"""
 82    This parameter describes how the next variable to instantiate
 83    will be chosen.
 84    """)
 85    value_selection_schema = property(_pywrapcp.DefaultPhaseParameters_value_selection_schema_get, _pywrapcp.DefaultPhaseParameters_value_selection_schema_set, doc=r""" This parameter describes which value to select for a given var.""")
 86    initialization_splits = property(_pywrapcp.DefaultPhaseParameters_initialization_splits_get, _pywrapcp.DefaultPhaseParameters_initialization_splits_set, doc=r"""
 87    Maximum number of intervals that the initialization of impacts will scan
 88    per variable.
 89    """)
 90    run_all_heuristics = property(_pywrapcp.DefaultPhaseParameters_run_all_heuristics_get, _pywrapcp.DefaultPhaseParameters_run_all_heuristics_set, doc=r"""
 91    The default phase will run heuristics periodically. This parameter
 92    indicates if we should run all heuristics, or a randomly selected
 93    one.
 94    """)
 95    heuristic_period = property(_pywrapcp.DefaultPhaseParameters_heuristic_period_get, _pywrapcp.DefaultPhaseParameters_heuristic_period_set, doc=r"""
 96    The distance in nodes between each run of the heuristics. A
 97    negative or null value will mean that we will not run heuristics
 98    at all.
 99    """)
100    heuristic_num_failures_limit = property(_pywrapcp.DefaultPhaseParameters_heuristic_num_failures_limit_get, _pywrapcp.DefaultPhaseParameters_heuristic_num_failures_limit_set, doc=r""" The failure limit for each heuristic that we run.""")
101    persistent_impact = property(_pywrapcp.DefaultPhaseParameters_persistent_impact_get, _pywrapcp.DefaultPhaseParameters_persistent_impact_set, doc=r"""
102    Whether to keep the impact from the first search for other searches,
103    or to recompute the impact for each new search.
104    """)
105    random_seed = property(_pywrapcp.DefaultPhaseParameters_random_seed_get, _pywrapcp.DefaultPhaseParameters_random_seed_set, doc=r""" Seed used to initialize the random part in some heuristics.""")
106    display_level = property(_pywrapcp.DefaultPhaseParameters_display_level_get, _pywrapcp.DefaultPhaseParameters_display_level_set, doc=r"""
107    This represents the amount of information displayed by the default search.
108    NONE means no display, VERBOSE means extra information.
109    """)
110    decision_builder = property(_pywrapcp.DefaultPhaseParameters_decision_builder_get, _pywrapcp.DefaultPhaseParameters_decision_builder_set, doc=r""" When defined, this overrides the default impact based decision builder.""")
111
112    def __init__(self):
113        _pywrapcp.DefaultPhaseParameters_swiginit(self, _pywrapcp.new_DefaultPhaseParameters())
114    __swig_destroy__ = _pywrapcp.delete_DefaultPhaseParameters

This struct holds all parameters for the default search. DefaultPhaseParameters is only used by Solver::MakeDefaultPhase methods. Note this is for advanced users only.

thisown
71    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

CHOOSE_MAX_SUM_IMPACT = 0
CHOOSE_MAX_AVERAGE_IMPACT = 1
CHOOSE_MAX_VALUE_IMPACT = 2
SELECT_MIN_IMPACT = 0
SELECT_MAX_IMPACT = 1
NONE = 0
NORMAL = 1
VERBOSE = 2
var_selection_schema

This parameter describes how the next variable to instantiate will be chosen.

value_selection_schema

This parameter describes which value to select for a given var.

initialization_splits

Maximum number of intervals that the initialization of impacts will scan per variable.

run_all_heuristics

The default phase will run heuristics periodically. This parameter indicates if we should run all heuristics, or a randomly selected one.

heuristic_period

The distance in nodes between each run of the heuristics. A negative or null value will mean that we will not run heuristics at all.

heuristic_num_failures_limit

The failure limit for each heuristic that we run.

persistent_impact

Whether to keep the impact from the first search for other searches, or to recompute the impact for each new search.

random_seed

Seed used to initialize the random part in some heuristics.

display_level

This represents the amount of information displayed by the default search. NONE means no display, VERBOSE means extra information.

decision_builder

When defined, this overrides the default impact based decision builder.

class Solver:
 118class Solver(object):
 119    r"""
 120    Solver Class
 121
 122    A solver represents the main computation engine. It implements the entire
 123    range of Constraint Programming protocols:
 124      - Reversibility
 125      - Propagation
 126      - Search
 127
 128    Usually, Constraint Programming code consists of
 129      - the creation of the Solver,
 130      - the creation of the decision variables of the model,
 131      - the creation of the constraints of the model and their addition to the
 132        solver() through the AddConstraint() method,
 133      - the creation of the main DecisionBuilder class,
 134      - the launch of the solve() method with the decision builder.
 135
 136    For the time being, Solver is neither MT_SAFE nor MT_HOT.
 137    """
 138
 139    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
 140    __repr__ = _swig_repr
 141    INT_VAR_DEFAULT = _pywrapcp.Solver_INT_VAR_DEFAULT
 142    r""" The default behavior is CHOOSE_FIRST_UNBOUND."""
 143    INT_VAR_SIMPLE = _pywrapcp.Solver_INT_VAR_SIMPLE
 144    r""" The simple selection is CHOOSE_FIRST_UNBOUND."""
 145    CHOOSE_FIRST_UNBOUND = _pywrapcp.Solver_CHOOSE_FIRST_UNBOUND
 146    r"""
 147    Select the first unbound variable.
 148    Variables are considered in the order of the vector of IntVars used
 149    to create the selector.
 150    """
 151    CHOOSE_RANDOM = _pywrapcp.Solver_CHOOSE_RANDOM
 152    r""" Randomly select one of the remaining unbound variables."""
 153    CHOOSE_MIN_SIZE_LOWEST_MIN = _pywrapcp.Solver_CHOOSE_MIN_SIZE_LOWEST_MIN
 154    r"""
 155    Among unbound variables, select the variable with the smallest size,
 156    i.e., the smallest number of possible values.
 157    In case of a tie, the selected variables is the one with the lowest min
 158    value.
 159    In case of a tie, the first one is selected, first being defined by the
 160    order in the vector of IntVars used to create the selector.
 161    """
 162    CHOOSE_MIN_SIZE_HIGHEST_MIN = _pywrapcp.Solver_CHOOSE_MIN_SIZE_HIGHEST_MIN
 163    r"""
 164    Among unbound variables, select the variable with the smallest size,
 165    i.e., the smallest number of possible values.
 166    In case of a tie, the selected variable is the one with the highest min
 167    value.
 168    In case of a tie, the first one is selected, first being defined by the
 169    order in the vector of IntVars used to create the selector.
 170    """
 171    CHOOSE_MIN_SIZE_LOWEST_MAX = _pywrapcp.Solver_CHOOSE_MIN_SIZE_LOWEST_MAX
 172    r"""
 173    Among unbound variables, select the variable with the smallest size,
 174    i.e., the smallest number of possible values.
 175    In case of a tie, the selected variables is the one with the lowest max
 176    value.
 177    In case of a tie, the first one is selected, first being defined by the
 178    order in the vector of IntVars used to create the selector.
 179    """
 180    CHOOSE_MIN_SIZE_HIGHEST_MAX = _pywrapcp.Solver_CHOOSE_MIN_SIZE_HIGHEST_MAX
 181    r"""
 182    Among unbound variables, select the variable with the smallest size,
 183    i.e., the smallest number of possible values.
 184    In case of a tie, the selected variable is the one with the highest max
 185    value.
 186    In case of a tie, the first one is selected, first being defined by the
 187    order in the vector of IntVars used to create the selector.
 188    """
 189    CHOOSE_LOWEST_MIN = _pywrapcp.Solver_CHOOSE_LOWEST_MIN
 190    r"""
 191    Among unbound variables, select the variable with the smallest minimal
 192    value.
 193    In case of a tie, the first one is selected, "first" defined by the
 194    order in the vector of IntVars used to create the selector.
 195    """
 196    CHOOSE_HIGHEST_MAX = _pywrapcp.Solver_CHOOSE_HIGHEST_MAX
 197    r"""
 198    Among unbound variables, select the variable with the highest maximal
 199    value.
 200    In case of a tie, the first one is selected, first being defined by the
 201    order in the vector of IntVars used to create the selector.
 202    """
 203    CHOOSE_MIN_SIZE = _pywrapcp.Solver_CHOOSE_MIN_SIZE
 204    r"""
 205    Among unbound variables, select the variable with the smallest size.
 206    In case of a tie, the first one is selected, first being defined by the
 207    order in the vector of IntVars used to create the selector.
 208    """
 209    CHOOSE_MAX_SIZE = _pywrapcp.Solver_CHOOSE_MAX_SIZE
 210    r"""
 211    Among unbound variables, select the variable with the highest size.
 212    In case of a tie, the first one is selected, first being defined by the
 213    order in the vector of IntVars used to create the selector.
 214    """
 215    CHOOSE_MAX_REGRET_ON_MIN = _pywrapcp.Solver_CHOOSE_MAX_REGRET_ON_MIN
 216    r"""
 217    Among unbound variables, select the variable with the largest
 218    gap between the first and the second values of the domain.
 219    """
 220    CHOOSE_PATH = _pywrapcp.Solver_CHOOSE_PATH
 221    r"""
 222    Selects the next unbound variable on a path, the path being defined by
 223    the variables: var[i] corresponds to the index of the next of i.
 224    """
 225    INT_VALUE_DEFAULT = _pywrapcp.Solver_INT_VALUE_DEFAULT
 226    r""" The default behavior is ASSIGN_MIN_VALUE."""
 227    INT_VALUE_SIMPLE = _pywrapcp.Solver_INT_VALUE_SIMPLE
 228    r""" The simple selection is ASSIGN_MIN_VALUE."""
 229    ASSIGN_MIN_VALUE = _pywrapcp.Solver_ASSIGN_MIN_VALUE
 230    r""" Selects the min value of the selected variable."""
 231    ASSIGN_MAX_VALUE = _pywrapcp.Solver_ASSIGN_MAX_VALUE
 232    r""" Selects the max value of the selected variable."""
 233    ASSIGN_RANDOM_VALUE = _pywrapcp.Solver_ASSIGN_RANDOM_VALUE
 234    r""" Selects randomly one of the possible values of the selected variable."""
 235    ASSIGN_CENTER_VALUE = _pywrapcp.Solver_ASSIGN_CENTER_VALUE
 236    r"""
 237    Selects the first possible value which is the closest to the center
 238    of the domain of the selected variable.
 239    The center is defined as (min + max) / 2.
 240    """
 241    SPLIT_LOWER_HALF = _pywrapcp.Solver_SPLIT_LOWER_HALF
 242    r"""
 243    Split the domain in two around the center, and choose the lower
 244    part first.
 245    """
 246    SPLIT_UPPER_HALF = _pywrapcp.Solver_SPLIT_UPPER_HALF
 247    r"""
 248    Split the domain in two around the center, and choose the lower
 249    part first.
 250    """
 251    SEQUENCE_DEFAULT = _pywrapcp.Solver_SEQUENCE_DEFAULT
 252    SEQUENCE_SIMPLE = _pywrapcp.Solver_SEQUENCE_SIMPLE
 253    CHOOSE_MIN_SLACK_RANK_FORWARD = _pywrapcp.Solver_CHOOSE_MIN_SLACK_RANK_FORWARD
 254    CHOOSE_RANDOM_RANK_FORWARD = _pywrapcp.Solver_CHOOSE_RANDOM_RANK_FORWARD
 255    INTERVAL_DEFAULT = _pywrapcp.Solver_INTERVAL_DEFAULT
 256    r""" The default is INTERVAL_SET_TIMES_FORWARD."""
 257    INTERVAL_SIMPLE = _pywrapcp.Solver_INTERVAL_SIMPLE
 258    r""" The simple is INTERVAL_SET_TIMES_FORWARD."""
 259    INTERVAL_SET_TIMES_FORWARD = _pywrapcp.Solver_INTERVAL_SET_TIMES_FORWARD
 260    r"""
 261    Selects the variable with the lowest starting time of all variables,
 262    and fixes its starting time to this lowest value.
 263    """
 264    INTERVAL_SET_TIMES_BACKWARD = _pywrapcp.Solver_INTERVAL_SET_TIMES_BACKWARD
 265    r"""
 266    Selects the variable with the highest ending time of all variables,
 267    and fixes the ending time to this highest values.
 268    """
 269    TWOOPT = _pywrapcp.Solver_TWOOPT
 270    r"""
 271    Operator which reverses a sub-chain of a path. It is called TwoOpt
 272    because it breaks two arcs on the path; resulting paths are called
 273    two-optimal.
 274    Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5
 275    (where (1, 5) are first and last nodes of the path and can therefore not
 276    be moved):
 277      1 -> [3 -> 2] -> 4  -> 5
 278      1 -> [4 -> 3  -> 2] -> 5
 279      1 ->  2 -> [4 -> 3] -> 5
 280    """
 281    OROPT = _pywrapcp.Solver_OROPT
 282    r"""
 283    Relocate: OROPT and RELOCATE.
 284    Operator which moves a sub-chain of a path to another position; the
 285    specified chain length is the fixed length of the chains being moved.
 286    When this length is 1, the operator simply moves a node to another
 287    position.
 288    Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5, for a chain
 289    length of 2 (where (1, 5) are first and last nodes of the path and can
 290    therefore not be moved):
 291      1 ->  4 -> [2 -> 3] -> 5
 292      1 -> [3 -> 4] -> 2  -> 5
 293
 294    Using Relocate with chain lengths of 1, 2 and 3 together is equivalent
 295    to the OrOpt operator on a path. The OrOpt operator is a limited
 296     version of 3Opt (breaks 3 arcs on a path).
 297    """
 298    RELOCATE = _pywrapcp.Solver_RELOCATE
 299    r""" Relocate neighborhood with length of 1 (see OROPT comment)."""
 300    EXCHANGE = _pywrapcp.Solver_EXCHANGE
 301    r"""
 302    Operator which exchanges the positions of two nodes.
 303    Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5
 304    (where (1, 5) are first and last nodes of the path and can therefore not
 305    be moved):
 306      1 -> [3] -> [2] ->  4  -> 5
 307      1 -> [4] ->  3  -> [2] -> 5
 308      1 ->  2  -> [4] -> [3] -> 5
 309    """
 310    CROSS = _pywrapcp.Solver_CROSS
 311    r"""
 312    Operator which cross exchanges the starting chains of 2 paths, including
 313    exchanging the whole paths.
 314    First and last nodes are not moved.
 315    Possible neighbors for the paths 1 -> 2 -> 3 -> 4 -> 5 and 6 -> 7 -> 8
 316    (where (1, 5) and (6, 8) are first and last nodes of the paths and can
 317    therefore not be moved):
 318      1 -> [7] -> 3 -> 4 -> 5  6 -> [2] -> 8
 319      1 -> [7] -> 4 -> 5       6 -> [2 -> 3] -> 8
 320      1 -> [7] -> 5            6 -> [2 -> 3 -> 4] -> 8
 321    """
 322    MAKEACTIVE = _pywrapcp.Solver_MAKEACTIVE
 323    r"""
 324    Operator which inserts an inactive node into a path.
 325    Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive
 326    (where 1 and 4 are first and last nodes of the path) are:
 327      1 -> [5] ->  2  ->  3  -> 4
 328      1 ->  2  -> [5] ->  3  -> 4
 329      1 ->  2  ->  3  -> [5] -> 4
 330    """
 331    MAKEINACTIVE = _pywrapcp.Solver_MAKEINACTIVE
 332    r"""
 333    Operator which makes path nodes inactive.
 334    Possible neighbors for the path 1 -> 2 -> 3 -> 4 (where 1 and 4 are
 335    first and last nodes of the path) are:
 336      1 -> 3 -> 4 with 2 inactive
 337      1 -> 2 -> 4 with 3 inactive
 338    """
 339    MAKECHAININACTIVE = _pywrapcp.Solver_MAKECHAININACTIVE
 340    r"""
 341    Operator which makes a "chain" of path nodes inactive.
 342    Possible neighbors for the path 1 -> 2 -> 3 -> 4 (where 1 and 4 are
 343    first and last nodes of the path) are:
 344      1 -> 3 -> 4 with 2 inactive
 345      1 -> 2 -> 4 with 3 inactive
 346      1 -> 4 with 2 and 3 inactive
 347    """
 348    SWAPACTIVE = _pywrapcp.Solver_SWAPACTIVE
 349    r"""
 350    Operator which replaces an active node by an inactive one.
 351    Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive
 352    (where 1 and 4 are first and last nodes of the path) are:
 353      1 -> [5] ->  3  -> 4 with 2 inactive
 354      1 ->  2  -> [5] -> 4 with 3 inactive
 355    """
 356    EXTENDEDSWAPACTIVE = _pywrapcp.Solver_EXTENDEDSWAPACTIVE
 357    r"""
 358    Operator which makes an inactive node active and an active one inactive.
 359    It is similar to SwapActiveOperator except that it tries to insert the
 360    inactive node in all possible positions instead of just the position of
 361    the node made inactive.
 362    Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive
 363    (where 1 and 4 are first and last nodes of the path) are:
 364      1 -> [5] ->  3  -> 4 with 2 inactive
 365      1 ->  3  -> [5] -> 4 with 2 inactive
 366      1 -> [5] ->  2  -> 4 with 3 inactive
 367      1 ->  2  -> [5] -> 4 with 3 inactive
 368    """
 369    PATHLNS = _pywrapcp.Solver_PATHLNS
 370    r"""
 371    Operator which relaxes two sub-chains of three consecutive arcs each.
 372    Each sub-chain is defined by a start node and the next three arcs. Those
 373    six arcs are relaxed to build a new neighbor.
 374    PATHLNS explores all possible pairs of starting nodes and so defines
 375    n^2 neighbors, n being the number of nodes.
 376    Note that the two sub-chains can be part of the same path; they even may
 377    overlap.
 378    """
 379    FULLPATHLNS = _pywrapcp.Solver_FULLPATHLNS
 380    r"""
 381    Operator which relaxes one entire path and all inactive nodes, thus
 382    defining num_paths neighbors.
 383    """
 384    UNACTIVELNS = _pywrapcp.Solver_UNACTIVELNS
 385    r"""
 386    Operator which relaxes all inactive nodes and one sub-chain of six
 387    consecutive arcs. That way the path can be improved by inserting
 388    inactive nodes or swapping arcs.
 389    """
 390    INCREMENT = _pywrapcp.Solver_INCREMENT
 391    r"""
 392    Operator which defines one neighbor per variable. Each neighbor tries to
 393    increment by one the value of the corresponding variable. When a new
 394    solution is found the neighborhood is rebuilt from scratch, i.e., tries
 395    to increment values in the variable order.
 396    Consider for instance variables x and y. x is incremented one by one to
 397    its max, and when it is not possible to increment x anymore, y is
 398    incremented once. If this is a solution, then next neighbor tries to
 399    increment x.
 400    """
 401    DECREMENT = _pywrapcp.Solver_DECREMENT
 402    r"""
 403    Operator which defines a neighborhood to decrement values.
 404    The behavior is the same as INCREMENT, except values are decremented
 405    instead of incremented.
 406    """
 407    SIMPLELNS = _pywrapcp.Solver_SIMPLELNS
 408    r"""
 409    Operator which defines one neighbor per variable. Each neighbor relaxes
 410    one variable.
 411    When a new solution is found the neighborhood is rebuilt from scratch.
 412    Consider for instance variables x and y. First x is relaxed and the
 413    solver is looking for the best possible solution (with only x relaxed).
 414    Then y is relaxed, and the solver is looking for a new solution.
 415    If a new solution is found, then the next variable to be relaxed is x.
 416    """
 417    GE = _pywrapcp.Solver_GE
 418    r""" Move is accepted when the current objective value >= objective.Min."""
 419    LE = _pywrapcp.Solver_LE
 420    r""" Move is accepted when the current objective value <= objective.Max."""
 421    EQ = _pywrapcp.Solver_EQ
 422    r"""
 423    Move is accepted when the current objective value is in the interval
 424    objective.Min .. objective.Max.
 425    """
 426    DELAYED_PRIORITY = _pywrapcp.Solver_DELAYED_PRIORITY
 427    r"""
 428    DELAYED_PRIORITY is the lowest priority: Demons will be processed after
 429    VAR_PRIORITY and NORMAL_PRIORITY demons.
 430    """
 431    VAR_PRIORITY = _pywrapcp.Solver_VAR_PRIORITY
 432    r""" VAR_PRIORITY is between DELAYED_PRIORITY and NORMAL_PRIORITY."""
 433    NORMAL_PRIORITY = _pywrapcp.Solver_NORMAL_PRIORITY
 434    r""" NORMAL_PRIORITY is the highest priority: Demons will be processed first."""
 435
 436    def __init__(self, *args):
 437        _pywrapcp.Solver_swiginit(self, _pywrapcp.new_Solver(*args))
 438
 439        self.__python_constraints = []
 440
 441
 442
 443    __swig_destroy__ = _pywrapcp.delete_Solver
 444
 445    def Parameters(self):
 446        r""" Stored Parameters."""
 447        return _pywrapcp.Solver_Parameters(self)
 448
 449    @staticmethod
 450    def DefaultSolverParameters():
 451        r""" Create a ConstraintSolverParameters proto with all the default values."""
 452        return _pywrapcp.Solver_DefaultSolverParameters()
 453
 454    def AddConstraint(self, c):
 455        r"""
 456        Adds the constraint 'c' to the model.
 457
 458        After calling this method, and until there is a backtrack that undoes the
 459        addition, any assignment of variables to values must satisfy the given
 460        constraint in order to be considered feasible. There are two fairly
 461        different use cases:
 462
 463        - the most common use case is modeling: the given constraint is really
 464        part of the problem that the user is trying to solve. In this use case,
 465        AddConstraint is called outside of search (i.e., with state() ==
 466        OUTSIDE_SEARCH). Most users should only use AddConstraint in this
 467        way. In this case, the constraint will belong to the model forever: it
 468        cannot be removed by backtracking.
 469
 470        - a rarer use case is that 'c' is not a real constraint of the model. It
 471        may be a constraint generated by a branching decision (a constraint whose
 472        goal is to restrict the search space), a symmetry breaking constraint (a
 473        constraint that does restrict the search space, but in a way that cannot
 474        have an impact on the quality of the solutions in the subtree), or an
 475        inferred constraint that, while having no semantic value to the model (it
 476        does not restrict the set of solutions), is worth having because we
 477        believe it may strengthen the propagation. In these cases, it happens
 478        that the constraint is added during the search (i.e., with state() ==
 479        IN_SEARCH or state() == IN_ROOT_NODE). When a constraint is
 480        added during a search, it applies only to the subtree of the search tree
 481        rooted at the current node, and will be automatically removed by
 482        backtracking.
 483
 484        This method does not take ownership of the constraint. If the constraint
 485        has been created by any factory method (Solver::MakeXXX), it will
 486        automatically be deleted. However, power users who implement their own
 487        constraints should do: solver.AddConstraint(solver.RevAlloc(new
 488        MyConstraint(...));
 489        """
 490        return _pywrapcp.Solver_AddConstraint(self, c)
 491
 492    def Solve(self, *args):
 493        return _pywrapcp.Solver_Solve(self, *args)
 494
 495    def NewSearch(self, *args):
 496        return _pywrapcp.Solver_NewSearch(self, *args)
 497
 498    def NextSolution(self):
 499        return _pywrapcp.Solver_NextSolution(self)
 500
 501    def RestartSearch(self):
 502        return _pywrapcp.Solver_RestartSearch(self)
 503
 504    def EndSearch(self):
 505        return _pywrapcp.Solver_EndSearch(self)
 506
 507    def SolveAndCommit(self, *args):
 508        return _pywrapcp.Solver_SolveAndCommit(self, *args)
 509
 510    def CheckAssignment(self, solution):
 511        r""" Checks whether the given assignment satisfies all relevant constraints."""
 512        return _pywrapcp.Solver_CheckAssignment(self, solution)
 513
 514    def CheckConstraint(self, ct):
 515        r"""
 516        Checks whether adding this constraint will lead to an immediate
 517        failure. It will return false if the model is already inconsistent, or if
 518        adding the constraint makes it inconsistent.
 519        """
 520        return _pywrapcp.Solver_CheckConstraint(self, ct)
 521
 522    def Fail(self):
 523        r""" Abandon the current branch in the search tree. A backtrack will follow."""
 524        return _pywrapcp.Solver_Fail(self)
 525
 526    @staticmethod
 527    def MemoryUsage():
 528        r""" Current memory usage in bytes"""
 529        return _pywrapcp.Solver_MemoryUsage()
 530
 531    def WallTime(self):
 532        r"""
 533        DEPRECATED: Use Now() instead.
 534        Time elapsed, in ms since the creation of the solver.
 535        """
 536        return _pywrapcp.Solver_WallTime(self)
 537
 538    def Branches(self):
 539        r""" The number of branches explored since the creation of the solver."""
 540        return _pywrapcp.Solver_Branches(self)
 541
 542    def Solutions(self):
 543        r""" The number of solutions found since the start of the search."""
 544        return _pywrapcp.Solver_Solutions(self)
 545
 546    def Failures(self):
 547        r""" The number of failures encountered since the creation of the solver."""
 548        return _pywrapcp.Solver_Failures(self)
 549
 550    def AcceptedNeighbors(self):
 551        r""" The number of accepted neighbors."""
 552        return _pywrapcp.Solver_AcceptedNeighbors(self)
 553
 554    def Stamp(self):
 555        r"""
 556        The stamp indicates how many moves in the search tree we have performed.
 557        It is useful to detect if we need to update same lazy structures.
 558        """
 559        return _pywrapcp.Solver_Stamp(self)
 560
 561    def FailStamp(self):
 562        r""" The fail_stamp() is incremented after each backtrack."""
 563        return _pywrapcp.Solver_FailStamp(self)
 564
 565    def IntVar(self, *args):
 566        r"""
 567        *Overload 1:*
 568        MakeIntVar will create the best range based int var for the bounds given.
 569
 570        |
 571
 572        *Overload 2:*
 573        MakeIntVar will create a variable with the given sparse domain.
 574
 575        |
 576
 577        *Overload 3:*
 578        MakeIntVar will create a variable with the given sparse domain.
 579
 580        |
 581
 582        *Overload 4:*
 583        MakeIntVar will create the best range based int var for the bounds given.
 584
 585        |
 586
 587        *Overload 5:*
 588        MakeIntVar will create a variable with the given sparse domain.
 589
 590        |
 591
 592        *Overload 6:*
 593        MakeIntVar will create a variable with the given sparse domain.
 594        """
 595        return _pywrapcp.Solver_IntVar(self, *args)
 596
 597    def BoolVar(self, *args):
 598        r"""
 599        *Overload 1:*
 600        MakeBoolVar will create a variable with a {0, 1} domain.
 601
 602        |
 603
 604        *Overload 2:*
 605        MakeBoolVar will create a variable with a {0, 1} domain.
 606        """
 607        return _pywrapcp.Solver_BoolVar(self, *args)
 608
 609    def IntConst(self, *args):
 610        r"""
 611        *Overload 1:*
 612        IntConst will create a constant expression.
 613
 614        |
 615
 616        *Overload 2:*
 617        IntConst will create a constant expression.
 618        """
 619        return _pywrapcp.Solver_IntConst(self, *args)
 620
 621    def Sum(self, vars):
 622        r""" sum of all vars."""
 623        return _pywrapcp.Solver_Sum(self, vars)
 624
 625    def ScalProd(self, *args):
 626        r"""
 627        *Overload 1:*
 628        scalar product
 629
 630        |
 631
 632        *Overload 2:*
 633        scalar product
 634        """
 635        return _pywrapcp.Solver_ScalProd(self, *args)
 636
 637    def MonotonicElement(self, values, increasing, index):
 638        r"""
 639        Function based element. The constraint takes ownership of the
 640        callback.  The callback must be monotonic. It must be able to
 641        cope with any possible value in the domain of 'index'
 642        (potentially negative ones too). Furtermore, monotonicity is not
 643        checked. Thus giving a non-monotonic function, or specifying an
 644        incorrect increasing parameter will result in undefined behavior.
 645        """
 646        return _pywrapcp.Solver_MonotonicElement(self, values, increasing, index)
 647
 648    def Element(self, *args):
 649        r"""
 650        *Overload 1:*
 651        values[index]
 652
 653        |
 654
 655        *Overload 2:*
 656        values[index]
 657
 658        |
 659
 660        *Overload 3:*
 661        Function-based element. The constraint takes ownership of the
 662        callback. The callback must be able to cope with any possible
 663        value in the domain of 'index' (potentially negative ones too).
 664
 665        |
 666
 667        *Overload 4:*
 668        2D version of function-based element expression, values(expr1, expr2).
 669
 670        |
 671
 672        *Overload 5:*
 673        vars[expr]
 674        """
 675        return _pywrapcp.Solver_Element(self, *args)
 676
 677    def IndexExpression(self, vars, value):
 678        r"""
 679        Returns the expression expr such that vars[expr] == value.
 680        It assumes that vars are all different.
 681        """
 682        return _pywrapcp.Solver_IndexExpression(self, vars, value)
 683
 684    def Min(self, *args):
 685        r"""
 686        *Overload 1:*
 687        std::min(vars)
 688
 689        |
 690
 691        *Overload 2:*
 692        std::min (left, right)
 693
 694        |
 695
 696        *Overload 3:*
 697        std::min(expr, value)
 698
 699        |
 700
 701        *Overload 4:*
 702        std::min(expr, value)
 703        """
 704        return _pywrapcp.Solver_Min(self, *args)
 705
 706    def Max(self, *args):
 707        r"""
 708        *Overload 1:*
 709        std::max(vars)
 710
 711        |
 712
 713        *Overload 2:*
 714        std::max(left, right)
 715
 716        |
 717
 718        *Overload 3:*
 719        std::max(expr, value)
 720
 721        |
 722
 723        *Overload 4:*
 724        std::max(expr, value)
 725        """
 726        return _pywrapcp.Solver_Max(self, *args)
 727
 728    def ConvexPiecewiseExpr(self, expr, early_cost, early_date, late_date, late_cost):
 729        r""" Convex piecewise function."""
 730        return _pywrapcp.Solver_ConvexPiecewiseExpr(self, expr, early_cost, early_date, late_date, late_cost)
 731
 732    def SemiContinuousExpr(self, expr, fixed_charge, step):
 733        r"""
 734        Semi continuous Expression (x <= 0 -> f(x) = 0; x > 0 -> f(x) = ax + b)
 735        a >= 0 and b >= 0
 736        """
 737        return _pywrapcp.Solver_SemiContinuousExpr(self, expr, fixed_charge, step)
 738
 739    def ConditionalExpression(self, condition, expr, unperformed_value):
 740        r""" Conditional Expr condition ? expr : unperformed_value"""
 741        return _pywrapcp.Solver_ConditionalExpression(self, condition, expr, unperformed_value)
 742
 743    def TrueConstraint(self):
 744        r""" This constraint always succeeds."""
 745        return _pywrapcp.Solver_TrueConstraint(self)
 746
 747    def FalseConstraint(self, *args):
 748        return _pywrapcp.Solver_FalseConstraint(self, *args)
 749
 750    def IsEqualCstCt(self, var, value, boolvar):
 751        r""" boolvar == (var == value)"""
 752        return _pywrapcp.Solver_IsEqualCstCt(self, var, value, boolvar)
 753
 754    def IsEqualCstVar(self, var, value):
 755        r""" status var of (var == value)"""
 756        return _pywrapcp.Solver_IsEqualCstVar(self, var, value)
 757
 758    def IsEqualCt(self, v1, v2, b):
 759        r""" b == (v1 == v2)"""
 760        return _pywrapcp.Solver_IsEqualCt(self, v1, v2, b)
 761
 762    def IsEqualVar(self, v1, v2):
 763        r""" status var of (v1 == v2)"""
 764        return _pywrapcp.Solver_IsEqualVar(self, v1, v2)
 765
 766    def IsDifferentCstCt(self, var, value, boolvar):
 767        r""" boolvar == (var != value)"""
 768        return _pywrapcp.Solver_IsDifferentCstCt(self, var, value, boolvar)
 769
 770    def IsDifferentCstVar(self, var, value):
 771        r""" status var of (var != value)"""
 772        return _pywrapcp.Solver_IsDifferentCstVar(self, var, value)
 773
 774    def IsDifferentVar(self, v1, v2):
 775        r""" status var of (v1 != v2)"""
 776        return _pywrapcp.Solver_IsDifferentVar(self, v1, v2)
 777
 778    def IsDifferentCt(self, v1, v2, b):
 779        r""" b == (v1 != v2)"""
 780        return _pywrapcp.Solver_IsDifferentCt(self, v1, v2, b)
 781
 782    def IsLessOrEqualCstCt(self, var, value, boolvar):
 783        r""" boolvar == (var <= value)"""
 784        return _pywrapcp.Solver_IsLessOrEqualCstCt(self, var, value, boolvar)
 785
 786    def IsLessOrEqualCstVar(self, var, value):
 787        r""" status var of (var <= value)"""
 788        return _pywrapcp.Solver_IsLessOrEqualCstVar(self, var, value)
 789
 790    def IsLessOrEqualVar(self, left, right):
 791        r""" status var of (left <= right)"""
 792        return _pywrapcp.Solver_IsLessOrEqualVar(self, left, right)
 793
 794    def IsLessOrEqualCt(self, left, right, b):
 795        r""" b == (left <= right)"""
 796        return _pywrapcp.Solver_IsLessOrEqualCt(self, left, right, b)
 797
 798    def IsGreaterOrEqualCstCt(self, var, value, boolvar):
 799        r""" boolvar == (var >= value)"""
 800        return _pywrapcp.Solver_IsGreaterOrEqualCstCt(self, var, value, boolvar)
 801
 802    def IsGreaterOrEqualCstVar(self, var, value):
 803        r""" status var of (var >= value)"""
 804        return _pywrapcp.Solver_IsGreaterOrEqualCstVar(self, var, value)
 805
 806    def IsGreaterOrEqualVar(self, left, right):
 807        r""" status var of (left >= right)"""
 808        return _pywrapcp.Solver_IsGreaterOrEqualVar(self, left, right)
 809
 810    def IsGreaterOrEqualCt(self, left, right, b):
 811        r""" b == (left >= right)"""
 812        return _pywrapcp.Solver_IsGreaterOrEqualCt(self, left, right, b)
 813
 814    def IsGreaterCstCt(self, v, c, b):
 815        r""" b == (v > c)"""
 816        return _pywrapcp.Solver_IsGreaterCstCt(self, v, c, b)
 817
 818    def IsGreaterCstVar(self, var, value):
 819        r""" status var of (var > value)"""
 820        return _pywrapcp.Solver_IsGreaterCstVar(self, var, value)
 821
 822    def IsGreaterVar(self, left, right):
 823        r""" status var of (left > right)"""
 824        return _pywrapcp.Solver_IsGreaterVar(self, left, right)
 825
 826    def IsGreaterCt(self, left, right, b):
 827        r""" b == (left > right)"""
 828        return _pywrapcp.Solver_IsGreaterCt(self, left, right, b)
 829
 830    def IsLessCstCt(self, v, c, b):
 831        r""" b == (v < c)"""
 832        return _pywrapcp.Solver_IsLessCstCt(self, v, c, b)
 833
 834    def IsLessCstVar(self, var, value):
 835        r""" status var of (var < value)"""
 836        return _pywrapcp.Solver_IsLessCstVar(self, var, value)
 837
 838    def IsLessVar(self, left, right):
 839        r""" status var of (left < right)"""
 840        return _pywrapcp.Solver_IsLessVar(self, left, right)
 841
 842    def IsLessCt(self, left, right, b):
 843        r""" b == (left < right)"""
 844        return _pywrapcp.Solver_IsLessCt(self, left, right, b)
 845
 846    def SumLessOrEqual(self, vars, cst):
 847        r""" Variation on arrays."""
 848        return _pywrapcp.Solver_SumLessOrEqual(self, vars, cst)
 849
 850    def SumGreaterOrEqual(self, vars, cst):
 851        return _pywrapcp.Solver_SumGreaterOrEqual(self, vars, cst)
 852
 853    def SumEquality(self, *args):
 854        return _pywrapcp.Solver_SumEquality(self, *args)
 855
 856    def ScalProdEquality(self, *args):
 857        return _pywrapcp.Solver_ScalProdEquality(self, *args)
 858
 859    def ScalProdGreaterOrEqual(self, *args):
 860        return _pywrapcp.Solver_ScalProdGreaterOrEqual(self, *args)
 861
 862    def ScalProdLessOrEqual(self, *args):
 863        return _pywrapcp.Solver_ScalProdLessOrEqual(self, *args)
 864
 865    def MinEquality(self, vars, min_var):
 866        return _pywrapcp.Solver_MinEquality(self, vars, min_var)
 867
 868    def MaxEquality(self, vars, max_var):
 869        return _pywrapcp.Solver_MaxEquality(self, vars, max_var)
 870
 871    def ElementEquality(self, *args):
 872        return _pywrapcp.Solver_ElementEquality(self, *args)
 873
 874    def AbsEquality(self, var, abs_var):
 875        r""" Creates the constraint abs(var) == abs_var."""
 876        return _pywrapcp.Solver_AbsEquality(self, var, abs_var)
 877
 878    def IndexOfConstraint(self, vars, index, target):
 879        r"""
 880        This constraint is a special case of the element constraint with
 881        an array of integer variables, where the variables are all
 882        different and the index variable is constrained such that
 883        vars[index] == target.
 884        """
 885        return _pywrapcp.Solver_IndexOfConstraint(self, vars, index, target)
 886
 887    def ConstraintInitialPropagateCallback(self, ct):
 888        r"""
 889        This method is a specialized case of the MakeConstraintDemon
 890        method to call the InitiatePropagate of the constraint 'ct'.
 891        """
 892        return _pywrapcp.Solver_ConstraintInitialPropagateCallback(self, ct)
 893
 894    def DelayedConstraintInitialPropagateCallback(self, ct):
 895        r"""
 896        This method is a specialized case of the MakeConstraintDemon
 897        method to call the InitiatePropagate of the constraint 'ct' with
 898        low priority.
 899        """
 900        return _pywrapcp.Solver_DelayedConstraintInitialPropagateCallback(self, ct)
 901
 902    def ClosureDemon(self, closure):
 903        r""" Creates a demon from a closure."""
 904        return _pywrapcp.Solver_ClosureDemon(self, closure)
 905
 906    def BetweenCt(self, expr, l, u):
 907        r""" (l <= expr <= u)"""
 908        return _pywrapcp.Solver_BetweenCt(self, expr, l, u)
 909
 910    def IsBetweenCt(self, expr, l, u, b):
 911        r""" b == (l <= expr <= u)"""
 912        return _pywrapcp.Solver_IsBetweenCt(self, expr, l, u, b)
 913
 914    def IsBetweenVar(self, v, l, u):
 915        return _pywrapcp.Solver_IsBetweenVar(self, v, l, u)
 916
 917    def MemberCt(self, *args):
 918        return _pywrapcp.Solver_MemberCt(self, *args)
 919
 920    def NotMemberCt(self, *args):
 921        r"""
 922        *Overload 1:*
 923        expr not in set.
 924
 925        |
 926
 927        *Overload 2:*
 928        expr should not be in the list of forbidden intervals [start[i]..end[i]].
 929
 930        |
 931
 932        *Overload 3:*
 933        expr should not be in the list of forbidden intervals [start[i]..end[i]].
 934        """
 935        return _pywrapcp.Solver_NotMemberCt(self, *args)
 936
 937    def IsMemberCt(self, *args):
 938        return _pywrapcp.Solver_IsMemberCt(self, *args)
 939
 940    def IsMemberVar(self, *args):
 941        return _pywrapcp.Solver_IsMemberVar(self, *args)
 942
 943    def Count(self, *args):
 944        r"""
 945        *Overload 1:*
 946        |{i | vars[i] == value}| == max_count
 947
 948        |
 949
 950        *Overload 2:*
 951        |{i | vars[i] == value}| == max_count
 952        """
 953        return _pywrapcp.Solver_Count(self, *args)
 954
 955    def Distribute(self, *args):
 956        r"""
 957        *Overload 1:*
 958        Aggregated version of count:  |{i | v[i] == values[j]}| == cards[j]
 959
 960        |
 961
 962        *Overload 2:*
 963        Aggregated version of count:  |{i | v[i] == values[j]}| == cards[j]
 964
 965        |
 966
 967        *Overload 3:*
 968        Aggregated version of count:  |{i | v[i] == j}| == cards[j]
 969
 970        |
 971
 972        *Overload 4:*
 973        Aggregated version of count with bounded cardinalities:
 974        forall j in 0 .. card_size - 1: card_min <= |{i | v[i] == j}| <= card_max
 975
 976        |
 977
 978        *Overload 5:*
 979        Aggregated version of count with bounded cardinalities:
 980        forall j in 0 .. card_size - 1:
 981           card_min[j] <= |{i | v[i] == j}| <= card_max[j]
 982
 983        |
 984
 985        *Overload 6:*
 986        Aggregated version of count with bounded cardinalities:
 987        forall j in 0 .. card_size - 1:
 988           card_min[j] <= |{i | v[i] == j}| <= card_max[j]
 989
 990        |
 991
 992        *Overload 7:*
 993        Aggregated version of count with bounded cardinalities:
 994        forall j in 0 .. card_size - 1:
 995           card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]
 996
 997        |
 998
 999        *Overload 8:*
1000        Aggregated version of count with bounded cardinalities:
1001        forall j in 0 .. card_size - 1:
1002           card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]
1003        """
1004        return _pywrapcp.Solver_Distribute(self, *args)
1005
1006    def Deviation(self, vars, deviation_var, total_sum):
1007        r"""
1008        Deviation constraint:
1009        sum_i |n * vars[i] - total_sum| <= deviation_var and
1010        sum_i vars[i] == total_sum
1011        n = #vars
1012        """
1013        return _pywrapcp.Solver_Deviation(self, vars, deviation_var, total_sum)
1014
1015    def AllDifferent(self, *args):
1016        r"""
1017        *Overload 1:*
1018        All variables are pairwise different. This corresponds to the
1019        stronger version of the propagation algorithm.
1020
1021        |
1022
1023        *Overload 2:*
1024        All variables are pairwise different.  If 'stronger_propagation'
1025        is true, stronger, and potentially slower propagation will
1026        occur. This API will be deprecated in the future.
1027        """
1028        return _pywrapcp.Solver_AllDifferent(self, *args)
1029
1030    def AllDifferentExcept(self, vars, escape_value):
1031        r"""
1032        All variables are pairwise different, unless they are assigned to
1033        the escape value.
1034        """
1035        return _pywrapcp.Solver_AllDifferentExcept(self, vars, escape_value)
1036
1037    def SortingConstraint(self, vars, sorted):
1038        r"""
1039        Creates a constraint binding the arrays of variables "vars" and
1040        "sorted_vars": sorted_vars[0] must be equal to the minimum of all
1041        variables in vars, and so on: the value of sorted_vars[i] must be
1042        equal to the i-th value of variables invars.
1043
1044        This constraint propagates in both directions: from "vars" to
1045        "sorted_vars" and vice-versa.
1046
1047        Behind the scenes, this constraint maintains that:
1048          - sorted is always increasing.
1049          - whatever the values of vars, there exists a permutation that
1050            injects its values into the sorted variables.
1051
1052        For more info, please have a look at:
1053          https://mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Thiel.pdf
1054        """
1055        return _pywrapcp.Solver_SortingConstraint(self, vars, sorted)
1056
1057    def LexicalLess(self, left, right):
1058        r"""
1059        Creates a constraint that enforces that left is lexicographically less
1060        than right.
1061        """
1062        return _pywrapcp.Solver_LexicalLess(self, left, right)
1063
1064    def LexicalLessOrEqual(self, left, right):
1065        r"""
1066        Creates a constraint that enforces that left is lexicographically less
1067        than or equal to right.
1068        """
1069        return _pywrapcp.Solver_LexicalLessOrEqual(self, left, right)
1070
1071    def InversePermutationConstraint(self, left, right):
1072        r"""
1073        Creates a constraint that enforces that 'left' and 'right' both
1074        represent permutations of [0..left.size()-1], and that 'right' is
1075        the inverse permutation of 'left', i.e. for all i in
1076        [0..left.size()-1], right[left[i]] = i.
1077        """
1078        return _pywrapcp.Solver_InversePermutationConstraint(self, left, right)
1079
1080    def NullIntersect(self, first_vars, second_vars):
1081        r"""
1082        Creates a constraint that states that all variables in the first
1083        vector are different from all variables in the second
1084        group. Thus the set of values in the first vector does not
1085        intersect with the set of values in the second vector.
1086        """
1087        return _pywrapcp.Solver_NullIntersect(self, first_vars, second_vars)
1088
1089    def NullIntersectExcept(self, first_vars, second_vars, escape_value):
1090        r"""
1091        Creates a constraint that states that all variables in the first
1092        vector are different from all variables from the second group,
1093        unless they are assigned to the escape value. Thus the set of
1094        values in the first vector minus the escape value does not
1095        intersect with the set of values in the second vector.
1096        """
1097        return _pywrapcp.Solver_NullIntersectExcept(self, first_vars, second_vars, escape_value)
1098
1099    def Circuit(self, nexts):
1100        r""" Force the "nexts" variable to create a complete Hamiltonian path."""
1101        return _pywrapcp.Solver_Circuit(self, nexts)
1102
1103    def SubCircuit(self, nexts):
1104        r"""
1105        Force the "nexts" variable to create a complete Hamiltonian path
1106        for those that do not loop upon themselves.
1107        """
1108        return _pywrapcp.Solver_SubCircuit(self, nexts)
1109
1110    def DelayedPathCumul(self, nexts, active, cumuls, transits):
1111        r"""
1112        Delayed version of the same constraint: propagation on the nexts variables
1113        is delayed until all constraints have propagated.
1114        """
1115        return _pywrapcp.Solver_DelayedPathCumul(self, nexts, active, cumuls, transits)
1116
1117    def PathCumul(self, *args):
1118        r"""
1119        *Overload 1:*
1120        Creates a constraint which accumulates values along a path such that:
1121        cumuls[next[i]] = cumuls[i] + transits[i].
1122        Active variables indicate if the corresponding next variable is active;
1123        this could be useful to model unperformed nodes in a routing problem.
1124
1125        |
1126
1127        *Overload 2:*
1128        Creates a constraint which accumulates values along a path such that:
1129        cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]).
1130        Active variables indicate if the corresponding next variable is active;
1131        this could be useful to model unperformed nodes in a routing problem.
1132        Ownership of transit_evaluator is taken and it must be a repeatable
1133        callback.
1134
1135        |
1136
1137        *Overload 3:*
1138        Creates a constraint which accumulates values along a path such that:
1139        cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]) + slacks[i].
1140        Active variables indicate if the corresponding next variable is active;
1141        this could be useful to model unperformed nodes in a routing problem.
1142        Ownership of transit_evaluator is taken and it must be a repeatable
1143        callback.
1144        """
1145        return _pywrapcp.Solver_PathCumul(self, *args)
1146
1147    def AllowedAssignments(self, *args):
1148        r"""
1149        *Overload 1:*
1150        This method creates a constraint where the graph of the relation
1151        between the variables is given in extension. There are 'arity'
1152        variables involved in the relation and the graph is given by a
1153        integer tuple set.
1154
1155        |
1156
1157        *Overload 2:*
1158        Compatibility layer for Python API.
1159        """
1160        return _pywrapcp.Solver_AllowedAssignments(self, *args)
1161
1162    def TransitionConstraint(self, *args):
1163        return _pywrapcp.Solver_TransitionConstraint(self, *args)
1164
1165    def NonOverlappingBoxesConstraint(self, *args):
1166        return _pywrapcp.Solver_NonOverlappingBoxesConstraint(self, *args)
1167
1168    def Pack(self, vars, number_of_bins):
1169        r"""
1170        This constraint packs all variables onto 'number_of_bins'
1171        variables.  For any given variable, a value of 'number_of_bins'
1172        indicates that the variable is not assigned to any bin.
1173        Dimensions, i.e., cumulative constraints on this packing, can be
1174        added directly from the pack class.
1175        """
1176        return _pywrapcp.Solver_Pack(self, vars, number_of_bins)
1177
1178    def FixedDurationIntervalVar(self, *args):
1179        r"""
1180        *Overload 1:*
1181        Creates an interval var with a fixed duration. The duration must
1182        be greater than 0. If optional is true, then the interval can be
1183        performed or unperformed. If optional is false, then the interval
1184        is always performed.
1185
1186        |
1187
1188        *Overload 2:*
1189        Creates a performed interval var with a fixed duration. The duration must
1190        be greater than 0.
1191
1192        |
1193
1194        *Overload 3:*
1195        Creates an interval var with a fixed duration, and performed_variable.
1196        The duration must be greater than 0.
1197        """
1198        return _pywrapcp.Solver_FixedDurationIntervalVar(self, *args)
1199
1200    def FixedInterval(self, start, duration, name):
1201        r""" Creates a fixed and performed interval."""
1202        return _pywrapcp.Solver_FixedInterval(self, start, duration, name)
1203
1204    def IntervalVar(self, start_min, start_max, duration_min, duration_max, end_min, end_max, optional, name):
1205        r"""
1206        Creates an interval var by specifying the bounds on start,
1207        duration, and end.
1208        """
1209        return _pywrapcp.Solver_IntervalVar(self, start_min, start_max, duration_min, duration_max, end_min, end_max, optional, name)
1210
1211    def MirrorInterval(self, interval_var):
1212        r"""
1213        Creates an interval var that is the mirror image of the given one, that
1214        is, the interval var obtained by reversing the axis.
1215        """
1216        return _pywrapcp.Solver_MirrorInterval(self, interval_var)
1217
1218    def FixedDurationStartSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1219        r"""
1220        Creates an interval var with a fixed duration whose start is
1221        synchronized with the start of another interval, with a given
1222        offset. The performed status is also in sync with the performed
1223        status of the given interval variable.
1224        """
1225        return _pywrapcp.Solver_FixedDurationStartSyncedOnStartIntervalVar(self, interval_var, duration, offset)
1226
1227    def FixedDurationStartSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1228        r"""
1229        Creates an interval var with a fixed duration whose start is
1230        synchronized with the end of another interval, with a given
1231        offset. The performed status is also in sync with the performed
1232        status of the given interval variable.
1233        """
1234        return _pywrapcp.Solver_FixedDurationStartSyncedOnEndIntervalVar(self, interval_var, duration, offset)
1235
1236    def FixedDurationEndSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1237        r"""
1238        Creates an interval var with a fixed duration whose end is
1239        synchronized with the start of another interval, with a given
1240        offset. The performed status is also in sync with the performed
1241        status of the given interval variable.
1242        """
1243        return _pywrapcp.Solver_FixedDurationEndSyncedOnStartIntervalVar(self, interval_var, duration, offset)
1244
1245    def FixedDurationEndSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1246        r"""
1247        Creates an interval var with a fixed duration whose end is
1248        synchronized with the end of another interval, with a given
1249        offset. The performed status is also in sync with the performed
1250        status of the given interval variable.
1251        """
1252        return _pywrapcp.Solver_FixedDurationEndSyncedOnEndIntervalVar(self, interval_var, duration, offset)
1253
1254    def IntervalRelaxedMin(self, interval_var):
1255        r"""
1256         Creates and returns an interval variable that wraps around the given one,
1257         relaxing the min start and end. Relaxing means making unbounded when
1258         optional. If the variable is non-optional, this method returns
1259         interval_var.
1260
1261         More precisely, such an interval variable behaves as follows:
1262        When the underlying must be performed, the returned interval variable
1263             behaves exactly as the underlying;
1264        When the underlying may or may not be performed, the returned interval
1265             variable behaves like the underlying, except that it is unbounded on
1266             the min side;
1267        When the underlying cannot be performed, the returned interval variable
1268             is of duration 0 and must be performed in an interval unbounded on
1269             both sides.
1270
1271         This is very useful to implement propagators that may only modify
1272         the start max or end max.
1273        """
1274        return _pywrapcp.Solver_IntervalRelaxedMin(self, interval_var)
1275
1276    def IntervalRelaxedMax(self, interval_var):
1277        r"""
1278         Creates and returns an interval variable that wraps around the given one,
1279         relaxing the max start and end. Relaxing means making unbounded when
1280         optional. If the variable is non optional, this method returns
1281         interval_var.
1282
1283         More precisely, such an interval variable behaves as follows:
1284        When the underlying must be performed, the returned interval variable
1285             behaves exactly as the underlying;
1286        When the underlying may or may not be performed, the returned interval
1287             variable behaves like the underlying, except that it is unbounded on
1288             the max side;
1289        When the underlying cannot be performed, the returned interval variable
1290             is of duration 0 and must be performed in an interval unbounded on
1291             both sides.
1292
1293         This is very useful for implementing propagators that may only modify
1294         the start min or end min.
1295        """
1296        return _pywrapcp.Solver_IntervalRelaxedMax(self, interval_var)
1297
1298    def TemporalDisjunction(self, *args):
1299        r"""
1300        *Overload 1:*
1301        This constraint implements a temporal disjunction between two
1302        interval vars t1 and t2. 'alt' indicates which alternative was
1303        chosen (alt == 0 is equivalent to t1 before t2).
1304
1305        |
1306
1307        *Overload 2:*
1308        This constraint implements a temporal disjunction between two
1309        interval vars.
1310        """
1311        return _pywrapcp.Solver_TemporalDisjunction(self, *args)
1312
1313    def DisjunctiveConstraint(self, intervals, name):
1314        r"""
1315        This constraint forces all interval vars into an non-overlapping
1316        sequence. Intervals with zero duration can be scheduled anywhere.
1317        """
1318        return _pywrapcp.Solver_DisjunctiveConstraint(self, intervals, name)
1319
1320    def Cumulative(self, *args):
1321        r"""
1322        *Overload 1:*
1323        This constraint forces that, for any integer t, the sum of the demands
1324        corresponding to an interval containing t does not exceed the given
1325        capacity.
1326
1327        Intervals and demands should be vectors of equal size.
1328
1329        Demands should only contain non-negative values. Zero values are
1330        supported, and the corresponding intervals are filtered out, as they
1331        neither impact nor are impacted by this constraint.
1332
1333        |
1334
1335        *Overload 2:*
1336        This constraint forces that, for any integer t, the sum of the demands
1337        corresponding to an interval containing t does not exceed the given
1338        capacity.
1339
1340        Intervals and demands should be vectors of equal size.
1341
1342        Demands should only contain non-negative values. Zero values are
1343        supported, and the corresponding intervals are filtered out, as they
1344        neither impact nor are impacted by this constraint.
1345
1346        |
1347
1348        *Overload 3:*
1349        This constraint forces that, for any integer t, the sum of the demands
1350        corresponding to an interval containing t does not exceed the given
1351        capacity.
1352
1353        Intervals and demands should be vectors of equal size.
1354
1355        Demands should only contain non-negative values. Zero values are
1356        supported, and the corresponding intervals are filtered out, as they
1357        neither impact nor are impacted by this constraint.
1358
1359        |
1360
1361        *Overload 4:*
1362        This constraint enforces that, for any integer t, the sum of the demands
1363        corresponding to an interval containing t does not exceed the given
1364        capacity.
1365
1366        Intervals and demands should be vectors of equal size.
1367
1368        Demands should only contain non-negative values. Zero values are
1369        supported, and the corresponding intervals are filtered out, as they
1370        neither impact nor are impacted by this constraint.
1371
1372        |
1373
1374        *Overload 5:*
1375        This constraint enforces that, for any integer t, the sum of demands
1376        corresponding to an interval containing t does not exceed the given
1377        capacity.
1378
1379        Intervals and demands should be vectors of equal size.
1380
1381        Demands should be positive.
1382
1383        |
1384
1385        *Overload 6:*
1386        This constraint enforces that, for any integer t, the sum of demands
1387        corresponding to an interval containing t does not exceed the given
1388        capacity.
1389
1390        Intervals and demands should be vectors of equal size.
1391
1392        Demands should be positive.
1393        """
1394        return _pywrapcp.Solver_Cumulative(self, *args)
1395
1396    def Cover(self, vars, target_var):
1397        r"""
1398        This constraint states that the target_var is the convex hull of
1399        the intervals. If none of the interval variables is performed,
1400        then the target var is unperformed too. Also, if the target
1401        variable is unperformed, then all the intervals variables are
1402        unperformed too.
1403        """
1404        return _pywrapcp.Solver_Cover(self, vars, target_var)
1405
1406    def Assignment(self, *args):
1407        r"""
1408        *Overload 1:*
1409        This method creates an empty assignment.
1410
1411        |
1412
1413        *Overload 2:*
1414        This method creates an assignment which is a copy of 'a'.
1415        """
1416        return _pywrapcp.Solver_Assignment(self, *args)
1417
1418    def FirstSolutionCollector(self, *args):
1419        r"""
1420        *Overload 1:*
1421        Collect the first solution of the search.
1422
1423        |
1424
1425        *Overload 2:*
1426        Collect the first solution of the search. The variables will need to
1427        be added later.
1428        """
1429        return _pywrapcp.Solver_FirstSolutionCollector(self, *args)
1430
1431    def LastSolutionCollector(self, *args):
1432        r"""
1433        *Overload 1:*
1434        Collect the last solution of the search.
1435
1436        |
1437
1438        *Overload 2:*
1439        Collect the last solution of the search. The variables will need to
1440        be added later.
1441        """
1442        return _pywrapcp.Solver_LastSolutionCollector(self, *args)
1443
1444    def BestValueSolutionCollector(self, *args):
1445        r"""
1446        *Overload 1:*
1447        Collect the solution corresponding to the optimal value of the objective
1448        of 'assignment'; if 'assignment' does not have an objective no solution is
1449        collected. This collector only collects one solution corresponding to the
1450        best objective value (the first one found).
1451
1452        |
1453
1454        *Overload 2:*
1455        Collect the solution corresponding to the optimal value of the
1456        objective of the internal assignment; if this assignment does not have an
1457        objective no solution is collected. This collector only collects one
1458        solution corresponding to the best objective value (the first one found).
1459        The variables and objective(s) will need to be added later.
1460        """
1461        return _pywrapcp.Solver_BestValueSolutionCollector(self, *args)
1462
1463    def AllSolutionCollector(self, *args):
1464        r"""
1465        *Overload 1:*
1466        Collect all solutions of the search.
1467
1468        |
1469
1470        *Overload 2:*
1471        Collect all solutions of the search. The variables will need to
1472        be added later.
1473        """
1474        return _pywrapcp.Solver_AllSolutionCollector(self, *args)
1475
1476    def Minimize(self, v, step):
1477        r""" Creates a minimization objective."""
1478        return _pywrapcp.Solver_Minimize(self, v, step)
1479
1480    def Maximize(self, v, step):
1481        r""" Creates a maximization objective."""
1482        return _pywrapcp.Solver_Maximize(self, v, step)
1483
1484    def Optimize(self, maximize, v, step):
1485        r""" Creates a objective with a given sense (true = maximization)."""
1486        return _pywrapcp.Solver_Optimize(self, maximize, v, step)
1487
1488    def WeightedMinimize(self, *args):
1489        r"""
1490        *Overload 1:*
1491        Creates a minimization weighted objective. The actual objective is
1492        scalar_prod(sub_objectives, weights).
1493
1494        |
1495
1496        *Overload 2:*
1497        Creates a minimization weighted objective. The actual objective is
1498        scalar_prod(sub_objectives, weights).
1499        """
1500        return _pywrapcp.Solver_WeightedMinimize(self, *args)
1501
1502    def WeightedMaximize(self, *args):
1503        r"""
1504        *Overload 1:*
1505        Creates a maximization weigthed objective.
1506
1507        |
1508
1509        *Overload 2:*
1510        Creates a maximization weigthed objective.
1511        """
1512        return _pywrapcp.Solver_WeightedMaximize(self, *args)
1513
1514    def WeightedOptimize(self, *args):
1515        r"""
1516        *Overload 1:*
1517        Creates a weighted objective with a given sense (true = maximization).
1518
1519        |
1520
1521        *Overload 2:*
1522        Creates a weighted objective with a given sense (true = maximization).
1523        """
1524        return _pywrapcp.Solver_WeightedOptimize(self, *args)
1525
1526    def TabuSearch(self, maximize, objective, step, vars, keep_tenure, forbid_tenure, tabu_factor):
1527        r"""
1528        MetaHeuristics which try to get the search out of local optima.
1529        Creates a Tabu Search monitor.
1530        In the context of local search the behavior is similar to MakeOptimize(),
1531        creating an objective in a given sense. The behavior differs once a local
1532        optimum is reached: thereafter solutions which degrade the value of the
1533        objective are allowed if they are not "tabu". A solution is "tabu" if it
1534        doesn't respect the following rules:
1535        - improving the best solution found so far
1536        - variables in the "keep" list must keep their value, variables in the
1537        "forbid" list must not take the value they have in the list.
1538        Variables with new values enter the tabu lists after each new solution
1539        found and leave the lists after a given number of iterations (called
1540        tenure). Only the variables passed to the method can enter the lists.
1541        The tabu criterion is softened by the tabu factor which gives the number
1542        of "tabu" violations which is tolerated; a factor of 1 means no violations
1543        allowed; a factor of 0 means all violations are allowed.
1544        """
1545        return _pywrapcp.Solver_TabuSearch(self, maximize, objective, step, vars, keep_tenure, forbid_tenure, tabu_factor)
1546
1547    def SimulatedAnnealing(self, maximize, v, step, initial_temperature):
1548        r""" Creates a Simulated Annealing monitor."""
1549        return _pywrapcp.Solver_SimulatedAnnealing(self, maximize, v, step, initial_temperature)
1550
1551    def LubyRestart(self, scale_factor):
1552        r"""
1553        This search monitor will restart the search periodically.
1554        At the iteration n, it will restart after scale_factor * Luby(n) failures
1555        where Luby is the Luby Strategy (i.e. 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8...).
1556        """
1557        return _pywrapcp.Solver_LubyRestart(self, scale_factor)
1558
1559    def ConstantRestart(self, frequency):
1560        r"""
1561        This search monitor will restart the search periodically after 'frequency'
1562        failures.
1563        """
1564        return _pywrapcp.Solver_ConstantRestart(self, frequency)
1565
1566    def TimeLimit(self, *args):
1567        return _pywrapcp.Solver_TimeLimit(self, *args)
1568
1569    def BranchesLimit(self, branches):
1570        r"""
1571        Creates a search limit that constrains the number of branches
1572        explored in the search tree.
1573        """
1574        return _pywrapcp.Solver_BranchesLimit(self, branches)
1575
1576    def FailuresLimit(self, failures):
1577        r"""
1578        Creates a search limit that constrains the number of failures
1579        that can happen when exploring the search tree.
1580        """
1581        return _pywrapcp.Solver_FailuresLimit(self, failures)
1582
1583    def SolutionsLimit(self, solutions):
1584        r"""
1585        Creates a search limit that constrains the number of solutions found
1586        during the search.
1587        """
1588        return _pywrapcp.Solver_SolutionsLimit(self, solutions)
1589
1590    def Limit(self, *args):
1591        r"""
1592        *Overload 1:*
1593        Limits the search with the 'time', 'branches', 'failures' and
1594        'solutions' limits. 'smart_time_check' reduces the calls to the wall
1595
1596        |
1597
1598        *Overload 2:*
1599        Creates a search limit from its protobuf description
1600
1601        |
1602
1603        *Overload 3:*
1604        Creates a search limit that is reached when either of the underlying limit
1605        is reached. That is, the returned limit is more stringent than both
1606        argument limits.
1607        """
1608        return _pywrapcp.Solver_Limit(self, *args)
1609
1610    def CustomLimit(self, limiter):
1611        r"""
1612        Callback-based search limit. Search stops when limiter returns true; if
1613        this happens at a leaf the corresponding solution will be rejected.
1614        """
1615        return _pywrapcp.Solver_CustomLimit(self, limiter)
1616
1617    def SearchLog(self, *args):
1618        return _pywrapcp.Solver_SearchLog(self, *args)
1619
1620    def SearchTrace(self, prefix):
1621        r"""
1622        Creates a search monitor that will trace precisely the behavior of the
1623        search. Use this only for low level debugging.
1624        """
1625        return _pywrapcp.Solver_SearchTrace(self, prefix)
1626
1627    def PrintModelVisitor(self):
1628        r""" Prints the model."""
1629        return _pywrapcp.Solver_PrintModelVisitor(self)
1630
1631    def StatisticsModelVisitor(self):
1632        r""" Displays some nice statistics on the model."""
1633        return _pywrapcp.Solver_StatisticsModelVisitor(self)
1634
1635    def AssignVariableValue(self, var, val):
1636        r""" Decisions."""
1637        return _pywrapcp.Solver_AssignVariableValue(self, var, val)
1638
1639    def VariableLessOrEqualValue(self, var, value):
1640        return _pywrapcp.Solver_VariableLessOrEqualValue(self, var, value)
1641
1642    def VariableGreaterOrEqualValue(self, var, value):
1643        return _pywrapcp.Solver_VariableGreaterOrEqualValue(self, var, value)
1644
1645    def SplitVariableDomain(self, var, val, start_with_lower_half):
1646        return _pywrapcp.Solver_SplitVariableDomain(self, var, val, start_with_lower_half)
1647
1648    def AssignVariableValueOrFail(self, var, value):
1649        return _pywrapcp.Solver_AssignVariableValueOrFail(self, var, value)
1650
1651    def AssignVariablesValues(self, vars, values):
1652        return _pywrapcp.Solver_AssignVariablesValues(self, vars, values)
1653
1654    def FailDecision(self):
1655        return _pywrapcp.Solver_FailDecision(self)
1656
1657    def Decision(self, apply, refute):
1658        return _pywrapcp.Solver_Decision(self, apply, refute)
1659
1660    def Compose(self, dbs):
1661        return _pywrapcp.Solver_Compose(self, dbs)
1662
1663    def Try(self, dbs):
1664        return _pywrapcp.Solver_Try(self, dbs)
1665
1666    def DefaultPhase(self, *args):
1667        return _pywrapcp.Solver_DefaultPhase(self, *args)
1668
1669    def ScheduleOrPostpone(self, var, est, marker):
1670        r"""
1671        Returns a decision that tries to schedule a task at a given time.
1672        On the Apply branch, it will set that interval var as performed and set
1673        its start to 'est'. On the Refute branch, it will just update the
1674        'marker' to 'est' + 1. This decision is used in the
1675        INTERVAL_SET_TIMES_FORWARD strategy.
1676        """
1677        return _pywrapcp.Solver_ScheduleOrPostpone(self, var, est, marker)
1678
1679    def ScheduleOrExpedite(self, var, est, marker):
1680        r"""
1681        Returns a decision that tries to schedule a task at a given time.
1682        On the Apply branch, it will set that interval var as performed and set
1683        its end to 'est'. On the Refute branch, it will just update the
1684        'marker' to 'est' - 1. This decision is used in the
1685        INTERVAL_SET_TIMES_BACKWARD strategy.
1686        """
1687        return _pywrapcp.Solver_ScheduleOrExpedite(self, var, est, marker)
1688
1689    def RankFirstInterval(self, sequence, index):
1690        r"""
1691        Returns a decision that tries to rank first the ith interval var
1692        in the sequence variable.
1693        """
1694        return _pywrapcp.Solver_RankFirstInterval(self, sequence, index)
1695
1696    def RankLastInterval(self, sequence, index):
1697        r"""
1698        Returns a decision that tries to rank last the ith interval var
1699        in the sequence variable.
1700        """
1701        return _pywrapcp.Solver_RankLastInterval(self, sequence, index)
1702
1703    def Phase(self, *args):
1704        return _pywrapcp.Solver_Phase(self, *args)
1705
1706    def DecisionBuilderFromAssignment(self, assignment, db, vars):
1707        r"""
1708        Returns a decision builder for which the left-most leaf corresponds
1709        to assignment, the rest of the tree being explored using 'db'.
1710        """
1711        return _pywrapcp.Solver_DecisionBuilderFromAssignment(self, assignment, db, vars)
1712
1713    def ConstraintAdder(self, ct):
1714        r"""
1715        Returns a decision builder that will add the given constraint to
1716        the model.
1717        """
1718        return _pywrapcp.Solver_ConstraintAdder(self, ct)
1719
1720    def SolveOnce(self, db, monitors):
1721        return _pywrapcp.Solver_SolveOnce(self, db, monitors)
1722
1723    def NestedOptimize(self, *args):
1724        return _pywrapcp.Solver_NestedOptimize(self, *args)
1725
1726    def RestoreAssignment(self, assignment):
1727        r"""
1728        Returns a DecisionBuilder which restores an Assignment
1729        (calls void Assignment::Restore())
1730        """
1731        return _pywrapcp.Solver_RestoreAssignment(self, assignment)
1732
1733    def StoreAssignment(self, assignment):
1734        r"""
1735        Returns a DecisionBuilder which stores an Assignment
1736        (calls void Assignment::Store())
1737        """
1738        return _pywrapcp.Solver_StoreAssignment(self, assignment)
1739
1740    def Operator(self, *args):
1741        return _pywrapcp.Solver_Operator(self, *args)
1742
1743    def RandomLnsOperator(self, *args):
1744        return _pywrapcp.Solver_RandomLnsOperator(self, *args)
1745
1746    def MoveTowardTargetOperator(self, *args):
1747        r"""
1748        *Overload 1:*
1749        Creates a local search operator that tries to move the assignment of some
1750        variables toward a target. The target is given as an Assignment. This
1751        operator generates neighbors in which the only difference compared to the
1752        current state is that one variable that belongs to the target assignment
1753        is set to its target value.
1754
1755        |
1756
1757        *Overload 2:*
1758        Creates a local search operator that tries to move the assignment of some
1759        variables toward a target. The target is given either as two vectors: a
1760        vector of variables and a vector of associated target values. The two
1761        vectors should be of the same length. This operator generates neighbors in
1762        which the only difference compared to the current state is that one
1763        variable that belongs to the given vector is set to its target value.
1764        """
1765        return _pywrapcp.Solver_MoveTowardTargetOperator(self, *args)
1766
1767    def ConcatenateOperators(self, *args):
1768        return _pywrapcp.Solver_ConcatenateOperators(self, *args)
1769
1770    def RandomConcatenateOperators(self, *args):
1771        r"""
1772        *Overload 1:*
1773        Randomized version of local search concatenator; calls a random operator
1774        at each call to MakeNextNeighbor().
1775
1776        |
1777
1778        *Overload 2:*
1779        Randomized version of local search concatenator; calls a random operator
1780        at each call to MakeNextNeighbor(). The provided seed is used to
1781        initialize the random number generator.
1782        """
1783        return _pywrapcp.Solver_RandomConcatenateOperators(self, *args)
1784
1785    def NeighborhoodLimit(self, op, limit):
1786        r"""
1787        Creates a local search operator that wraps another local search
1788        operator and limits the number of neighbors explored (i.e., calls
1789        to MakeNextNeighbor from the current solution (between two calls
1790        to Start()). When this limit is reached, MakeNextNeighbor()
1791        returns false. The counter is cleared when Start() is called.
1792        """
1793        return _pywrapcp.Solver_NeighborhoodLimit(self, op, limit)
1794
1795    def LocalSearchPhase(self, *args):
1796        return _pywrapcp.Solver_LocalSearchPhase(self, *args)
1797
1798    def LocalSearchPhaseParameters(self, *args):
1799        return _pywrapcp.Solver_LocalSearchPhaseParameters(self, *args)
1800
1801    def TopProgressPercent(self):
1802        r"""
1803        Returns a percentage representing the propress of the search before
1804        reaching the limits of the top-level search (can be called from a nested
1805        solve).
1806        """
1807        return _pywrapcp.Solver_TopProgressPercent(self)
1808
1809    def SearchDepth(self):
1810        r"""
1811        Gets the search depth of the current active search. Returns -1 if
1812        there is no active search opened.
1813        """
1814        return _pywrapcp.Solver_SearchDepth(self)
1815
1816    def SearchLeftDepth(self):
1817        r"""
1818        Gets the search left depth of the current active search. Returns -1 if
1819        there is no active search opened.
1820        """
1821        return _pywrapcp.Solver_SearchLeftDepth(self)
1822
1823    def SolveDepth(self):
1824        r"""
1825        Gets the number of nested searches. It returns 0 outside search,
1826        1 during the top level search, 2 or more in case of nested searches.
1827        """
1828        return _pywrapcp.Solver_SolveDepth(self)
1829
1830    def Rand64(self, size):
1831        r""" Returns a random value between 0 and 'size' - 1;"""
1832        return _pywrapcp.Solver_Rand64(self, size)
1833
1834    def Rand32(self, size):
1835        r""" Returns a random value between 0 and 'size' - 1;"""
1836        return _pywrapcp.Solver_Rand32(self, size)
1837
1838    def ReSeed(self, seed):
1839        r""" Reseed the solver random generator."""
1840        return _pywrapcp.Solver_ReSeed(self, seed)
1841
1842    def LocalSearchProfile(self):
1843        r""" Returns local search profiling information in a human readable format."""
1844        return _pywrapcp.Solver_LocalSearchProfile(self)
1845
1846    def Constraints(self):
1847        r"""
1848        Counts the number of constraints that have been added
1849        to the solver before the search.
1850        """
1851        return _pywrapcp.Solver_Constraints(self)
1852
1853    def Accept(self, visitor):
1854        r""" Accepts the given model visitor."""
1855        return _pywrapcp.Solver_Accept(self, visitor)
1856
1857    def FinishCurrentSearch(self):
1858        r""" Tells the solver to kill or restart the current search."""
1859        return _pywrapcp.Solver_FinishCurrentSearch(self)
1860
1861    def RestartCurrentSearch(self):
1862        return _pywrapcp.Solver_RestartCurrentSearch(self)
1863
1864    def ShouldFail(self):
1865        r"""
1866        These methods are only useful for the SWIG wrappers, which need a way
1867        to externally cause the Solver to fail.
1868        """
1869        return _pywrapcp.Solver_ShouldFail(self)
1870
1871    def __str__(self):
1872        return _pywrapcp.Solver___str__(self)
1873
1874    def Add(self, ct):
1875      if isinstance(ct, PyConstraint):
1876        self.__python_constraints.append(ct)
1877      self.AddConstraint(ct)
1878
1879
1880    def TreeNoCycle(self, nexts, active, callback=0):
1881        return _pywrapcp.Solver_TreeNoCycle(self, nexts, active, callback)
1882
1883    def SearchLogWithCallback(self, period, callback):
1884        return _pywrapcp.Solver_SearchLogWithCallback(self, period, callback)
1885
1886    def ElementFunction(self, values, index):
1887        return _pywrapcp.Solver_ElementFunction(self, values, index)
1888
1889    def VarEvalValStrPhase(self, vars, var_evaluator, val_str):
1890        return _pywrapcp.Solver_VarEvalValStrPhase(self, vars, var_evaluator, val_str)
1891
1892    def VarStrValEvalPhase(self, vars, var_str, val_eval):
1893        return _pywrapcp.Solver_VarStrValEvalPhase(self, vars, var_str, val_eval)
1894
1895    def VarEvalValEvalPhase(self, vars, var_eval, val_eval):
1896        return _pywrapcp.Solver_VarEvalValEvalPhase(self, vars, var_eval, val_eval)
1897
1898    def VarStrValEvalTieBreakPhase(self, vars, var_str, val_eval, tie_breaker):
1899        return _pywrapcp.Solver_VarStrValEvalTieBreakPhase(self, vars, var_str, val_eval, tie_breaker)
1900
1901    def VarEvalValEvalTieBreakPhase(self, vars, var_eval, val_eval, tie_breaker):
1902        return _pywrapcp.Solver_VarEvalValEvalTieBreakPhase(self, vars, var_eval, val_eval, tie_breaker)
1903
1904    def EvalEvalStrPhase(self, vars, evaluator, str):
1905        return _pywrapcp.Solver_EvalEvalStrPhase(self, vars, evaluator, str)
1906
1907    def EvalEvalStrTieBreakPhase(self, vars, evaluator, tie_breaker, str):
1908        return _pywrapcp.Solver_EvalEvalStrTieBreakPhase(self, vars, evaluator, tie_breaker, str)
1909
1910    def GuidedLocalSearch(self, *args):
1911        return _pywrapcp.Solver_GuidedLocalSearch(self, *args)
1912
1913    def SumObjectiveFilter(self, vars, values, filter_enum):
1914        return _pywrapcp.Solver_SumObjectiveFilter(self, vars, values, filter_enum)

Solver Class

A solver represents the main computation engine. It implements the entire range of Constraint Programming protocols:

  • Reversibility
  • Propagation
  • Search

Usually, Constraint Programming code consists of

  • the creation of the Solver,
  • the creation of the decision variables of the model,
  • the creation of the constraints of the model and their addition to the solver() through the AddConstraint() method,
  • the creation of the main DecisionBuilder class,
  • the launch of the solve() method with the decision builder.

For the time being, Solver is neither MT_SAFE nor MT_HOT.

Solver(*args)
436    def __init__(self, *args):
437        _pywrapcp.Solver_swiginit(self, _pywrapcp.new_Solver(*args))
438
439        self.__python_constraints = []
thisown
139    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

INT_VAR_DEFAULT = 0

The default behavior is CHOOSE_FIRST_UNBOUND.

INT_VAR_SIMPLE = 1

The simple selection is CHOOSE_FIRST_UNBOUND.

CHOOSE_FIRST_UNBOUND = 2

Select the first unbound variable. Variables are considered in the order of the vector of IntVars used to create the selector.

CHOOSE_RANDOM = 3

Randomly select one of the remaining unbound variables.

CHOOSE_MIN_SIZE_LOWEST_MIN = 4

Among unbound variables, select the variable with the smallest size, i.e., the smallest number of possible values. In case of a tie, the selected variables is the one with the lowest min value. In case of a tie, the first one is selected, first being defined by the order in the vector of IntVars used to create the selector.

CHOOSE_MIN_SIZE_HIGHEST_MIN = 5

Among unbound variables, select the variable with the smallest size, i.e., the smallest number of possible values. In case of a tie, the selected variable is the one with the highest min value. In case of a tie, the first one is selected, first being defined by the order in the vector of IntVars used to create the selector.

CHOOSE_MIN_SIZE_LOWEST_MAX = 6

Among unbound variables, select the variable with the smallest size, i.e., the smallest number of possible values. In case of a tie, the selected variables is the one with the lowest max value. In case of a tie, the first one is selected, first being defined by the order in the vector of IntVars used to create the selector.

CHOOSE_MIN_SIZE_HIGHEST_MAX = 7

Among unbound variables, select the variable with the smallest size, i.e., the smallest number of possible values. In case of a tie, the selected variable is the one with the highest max value. In case of a tie, the first one is selected, first being defined by the order in the vector of IntVars used to create the selector.

CHOOSE_LOWEST_MIN = 8

Among unbound variables, select the variable with the smallest minimal value. In case of a tie, the first one is selected, "first" defined by the order in the vector of IntVars used to create the selector.

CHOOSE_HIGHEST_MAX = 9

Among unbound variables, select the variable with the highest maximal value. In case of a tie, the first one is selected, first being defined by the order in the vector of IntVars used to create the selector.

CHOOSE_MIN_SIZE = 10

Among unbound variables, select the variable with the smallest size. In case of a tie, the first one is selected, first being defined by the order in the vector of IntVars used to create the selector.

CHOOSE_MAX_SIZE = 11

Among unbound variables, select the variable with the highest size. In case of a tie, the first one is selected, first being defined by the order in the vector of IntVars used to create the selector.

CHOOSE_MAX_REGRET_ON_MIN = 12

Among unbound variables, select the variable with the largest gap between the first and the second values of the domain.

CHOOSE_PATH = 13

Selects the next unbound variable on a path, the path being defined by the variables: var[i] corresponds to the index of the next of i.

INT_VALUE_DEFAULT = 0

The default behavior is ASSIGN_MIN_VALUE.

INT_VALUE_SIMPLE = 1

The simple selection is ASSIGN_MIN_VALUE.

ASSIGN_MIN_VALUE = 2

Selects the min value of the selected variable.

ASSIGN_MAX_VALUE = 3

Selects the max value of the selected variable.

ASSIGN_RANDOM_VALUE = 4

Selects randomly one of the possible values of the selected variable.

ASSIGN_CENTER_VALUE = 5

Selects the first possible value which is the closest to the center of the domain of the selected variable. The center is defined as (min + max) / 2.

SPLIT_LOWER_HALF = 6

Split the domain in two around the center, and choose the lower part first.

SPLIT_UPPER_HALF = 7

Split the domain in two around the center, and choose the lower part first.

SEQUENCE_DEFAULT = 0
SEQUENCE_SIMPLE = 1
CHOOSE_MIN_SLACK_RANK_FORWARD = 2
CHOOSE_RANDOM_RANK_FORWARD = 3
INTERVAL_DEFAULT = 0

The default is INTERVAL_SET_TIMES_FORWARD.

INTERVAL_SIMPLE = 1

The simple is INTERVAL_SET_TIMES_FORWARD.

INTERVAL_SET_TIMES_FORWARD = 2

Selects the variable with the lowest starting time of all variables, and fixes its starting time to this lowest value.

INTERVAL_SET_TIMES_BACKWARD = 3

Selects the variable with the highest ending time of all variables, and fixes the ending time to this highest values.

TWOOPT = 0

Operator which reverses a sub-chain of a path. It is called TwoOpt because it breaks two arcs on the path; resulting paths are called two-optimal. Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5 (where (1, 5) are first and last nodes of the path and can therefore not be moved): 1 -> [3 -> 2] -> 4 -> 5 1 -> [4 -> 3 -> 2] -> 5 1 -> 2 -> [4 -> 3] -> 5

OROPT = 1

Relocate: OROPT and RELOCATE. Operator which moves a sub-chain of a path to another position; the specified chain length is the fixed length of the chains being moved. When this length is 1, the operator simply moves a node to another position. Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5, for a chain length of 2 (where (1, 5) are first and last nodes of the path and can therefore not be moved): 1 -> 4 -> [2 -> 3] -> 5 1 -> [3 -> 4] -> 2 -> 5

Using Relocate with chain lengths of 1, 2 and 3 together is equivalent to the OrOpt operator on a path. The OrOpt operator is a limited version of 3Opt (breaks 3 arcs on a path).

RELOCATE = 2

Relocate neighborhood with length of 1 (see OROPT comment).

EXCHANGE = 3

Operator which exchanges the positions of two nodes. Possible neighbors for the path 1 -> 2 -> 3 -> 4 -> 5 (where (1, 5) are first and last nodes of the path and can therefore not be moved): 1 -> [3] -> [2] -> 4 -> 5 1 -> [4] -> 3 -> [2] -> 5 1 -> 2 -> [4] -> [3] -> 5

CROSS = 4

Operator which cross exchanges the starting chains of 2 paths, including exchanging the whole paths. First and last nodes are not moved. Possible neighbors for the paths 1 -> 2 -> 3 -> 4 -> 5 and 6 -> 7 -> 8 (where (1, 5) and (6, 8) are first and last nodes of the paths and can therefore not be moved): 1 -> [7] -> 3 -> 4 -> 5 6 -> [2] -> 8 1 -> [7] -> 4 -> 5 6 -> [2 -> 3] -> 8 1 -> [7] -> 5 6 -> [2 -> 3 -> 4] -> 8

MAKEACTIVE = 5

Operator which inserts an inactive node into a path. Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive (where 1 and 4 are first and last nodes of the path) are: 1 -> [5] -> 2 -> 3 -> 4 1 -> 2 -> [5] -> 3 -> 4 1 -> 2 -> 3 -> [5] -> 4

MAKEINACTIVE = 6

Operator which makes path nodes inactive. Possible neighbors for the path 1 -> 2 -> 3 -> 4 (where 1 and 4 are first and last nodes of the path) are: 1 -> 3 -> 4 with 2 inactive 1 -> 2 -> 4 with 3 inactive

MAKECHAININACTIVE = 7

Operator which makes a "chain" of path nodes inactive. Possible neighbors for the path 1 -> 2 -> 3 -> 4 (where 1 and 4 are first and last nodes of the path) are: 1 -> 3 -> 4 with 2 inactive 1 -> 2 -> 4 with 3 inactive 1 -> 4 with 2 and 3 inactive

SWAPACTIVE = 8

Operator which replaces an active node by an inactive one. Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive (where 1 and 4 are first and last nodes of the path) are: 1 -> [5] -> 3 -> 4 with 2 inactive 1 -> 2 -> [5] -> 4 with 3 inactive

EXTENDEDSWAPACTIVE = 9

Operator which makes an inactive node active and an active one inactive. It is similar to SwapActiveOperator except that it tries to insert the inactive node in all possible positions instead of just the position of the node made inactive. Possible neighbors for the path 1 -> 2 -> 3 -> 4 with 5 inactive (where 1 and 4 are first and last nodes of the path) are: 1 -> [5] -> 3 -> 4 with 2 inactive 1 -> 3 -> [5] -> 4 with 2 inactive 1 -> [5] -> 2 -> 4 with 3 inactive 1 -> 2 -> [5] -> 4 with 3 inactive

PATHLNS = 10

Operator which relaxes two sub-chains of three consecutive arcs each. Each sub-chain is defined by a start node and the next three arcs. Those six arcs are relaxed to build a new neighbor. PATHLNS explores all possible pairs of starting nodes and so defines n^2 neighbors, n being the number of nodes. Note that the two sub-chains can be part of the same path; they even may overlap.

FULLPATHLNS = 11

Operator which relaxes one entire path and all inactive nodes, thus defining num_paths neighbors.

UNACTIVELNS = 12

Operator which relaxes all inactive nodes and one sub-chain of six consecutive arcs. That way the path can be improved by inserting inactive nodes or swapping arcs.

INCREMENT = 13

Operator which defines one neighbor per variable. Each neighbor tries to increment by one the value of the corresponding variable. When a new solution is found the neighborhood is rebuilt from scratch, i.e., tries to increment values in the variable order. Consider for instance variables x and y. x is incremented one by one to its max, and when it is not possible to increment x anymore, y is incremented once. If this is a solution, then next neighbor tries to increment x.

DECREMENT = 14

Operator which defines a neighborhood to decrement values. The behavior is the same as INCREMENT, except values are decremented instead of incremented.

SIMPLELNS = 15

Operator which defines one neighbor per variable. Each neighbor relaxes one variable. When a new solution is found the neighborhood is rebuilt from scratch. Consider for instance variables x and y. First x is relaxed and the solver is looking for the best possible solution (with only x relaxed). Then y is relaxed, and the solver is looking for a new solution. If a new solution is found, then the next variable to be relaxed is x.

GE = 0

Move is accepted when the current objective value >= objective.Min.

LE = 1

Move is accepted when the current objective value <= objective.Max.

EQ = 2

Move is accepted when the current objective value is in the interval objective.Min .. objective.Max.

DELAYED_PRIORITY = 0

DELAYED_PRIORITY is the lowest priority: Demons will be processed after VAR_PRIORITY and NORMAL_PRIORITY demons.

VAR_PRIORITY = 1

VAR_PRIORITY is between DELAYED_PRIORITY and NORMAL_PRIORITY.

NORMAL_PRIORITY = 2

NORMAL_PRIORITY is the highest priority: Demons will be processed first.

def Parameters(self):
445    def Parameters(self):
446        r""" Stored Parameters."""
447        return _pywrapcp.Solver_Parameters(self)

Stored Parameters.

@staticmethod
def DefaultSolverParameters():
449    @staticmethod
450    def DefaultSolverParameters():
451        r""" Create a ConstraintSolverParameters proto with all the default values."""
452        return _pywrapcp.Solver_DefaultSolverParameters()

Create a ConstraintSolverParameters proto with all the default values.

def AddConstraint(self, c):
454    def AddConstraint(self, c):
455        r"""
456        Adds the constraint 'c' to the model.
457
458        After calling this method, and until there is a backtrack that undoes the
459        addition, any assignment of variables to values must satisfy the given
460        constraint in order to be considered feasible. There are two fairly
461        different use cases:
462
463        - the most common use case is modeling: the given constraint is really
464        part of the problem that the user is trying to solve. In this use case,
465        AddConstraint is called outside of search (i.e., with state() ==
466        OUTSIDE_SEARCH). Most users should only use AddConstraint in this
467        way. In this case, the constraint will belong to the model forever: it
468        cannot be removed by backtracking.
469
470        - a rarer use case is that 'c' is not a real constraint of the model. It
471        may be a constraint generated by a branching decision (a constraint whose
472        goal is to restrict the search space), a symmetry breaking constraint (a
473        constraint that does restrict the search space, but in a way that cannot
474        have an impact on the quality of the solutions in the subtree), or an
475        inferred constraint that, while having no semantic value to the model (it
476        does not restrict the set of solutions), is worth having because we
477        believe it may strengthen the propagation. In these cases, it happens
478        that the constraint is added during the search (i.e., with state() ==
479        IN_SEARCH or state() == IN_ROOT_NODE). When a constraint is
480        added during a search, it applies only to the subtree of the search tree
481        rooted at the current node, and will be automatically removed by
482        backtracking.
483
484        This method does not take ownership of the constraint. If the constraint
485        has been created by any factory method (Solver::MakeXXX), it will
486        automatically be deleted. However, power users who implement their own
487        constraints should do: solver.AddConstraint(solver.RevAlloc(new
488        MyConstraint(...));
489        """
490        return _pywrapcp.Solver_AddConstraint(self, c)

Adds the constraint 'c' to the model.

After calling this method, and until there is a backtrack that undoes the addition, any assignment of variables to values must satisfy the given constraint in order to be considered feasible. There are two fairly different use cases:

  • the most common use case is modeling: the given constraint is really part of the problem that the user is trying to solve. In this use case, AddConstraint is called outside of search (i.e., with state() == OUTSIDE_SEARCH). Most users should only use AddConstraint in this way. In this case, the constraint will belong to the model forever: it cannot be removed by backtracking.

  • a rarer use case is that 'c' is not a real constraint of the model. It may be a constraint generated by a branching decision (a constraint whose goal is to restrict the search space), a symmetry breaking constraint (a constraint that does restrict the search space, but in a way that cannot have an impact on the quality of the solutions in the subtree), or an inferred constraint that, while having no semantic value to the model (it does not restrict the set of solutions), is worth having because we believe it may strengthen the propagation. In these cases, it happens that the constraint is added during the search (i.e., with state() == IN_SEARCH or state() == IN_ROOT_NODE). When a constraint is added during a search, it applies only to the subtree of the search tree rooted at the current node, and will be automatically removed by backtracking.

This method does not take ownership of the constraint. If the constraint has been created by any factory method (Solver::MakeXXX), it will automatically be deleted. However, power users who implement their own constraints should do: solver.AddConstraint(solver.RevAlloc(new MyConstraint(...));

def Solve(self, *args):
492    def Solve(self, *args):
493        return _pywrapcp.Solver_Solve(self, *args)
def NewSearch(self, *args):
495    def NewSearch(self, *args):
496        return _pywrapcp.Solver_NewSearch(self, *args)
def NextSolution(self):
498    def NextSolution(self):
499        return _pywrapcp.Solver_NextSolution(self)
def RestartSearch(self):
501    def RestartSearch(self):
502        return _pywrapcp.Solver_RestartSearch(self)
def EndSearch(self):
504    def EndSearch(self):
505        return _pywrapcp.Solver_EndSearch(self)
def SolveAndCommit(self, *args):
507    def SolveAndCommit(self, *args):
508        return _pywrapcp.Solver_SolveAndCommit(self, *args)
def CheckAssignment(self, solution):
510    def CheckAssignment(self, solution):
511        r""" Checks whether the given assignment satisfies all relevant constraints."""
512        return _pywrapcp.Solver_CheckAssignment(self, solution)

Checks whether the given assignment satisfies all relevant constraints.

def CheckConstraint(self, ct):
514    def CheckConstraint(self, ct):
515        r"""
516        Checks whether adding this constraint will lead to an immediate
517        failure. It will return false if the model is already inconsistent, or if
518        adding the constraint makes it inconsistent.
519        """
520        return _pywrapcp.Solver_CheckConstraint(self, ct)

Checks whether adding this constraint will lead to an immediate failure. It will return false if the model is already inconsistent, or if adding the constraint makes it inconsistent.

def Fail(self):
522    def Fail(self):
523        r""" Abandon the current branch in the search tree. A backtrack will follow."""
524        return _pywrapcp.Solver_Fail(self)

Abandon the current branch in the search tree. A backtrack will follow.

@staticmethod
def MemoryUsage():
526    @staticmethod
527    def MemoryUsage():
528        r""" Current memory usage in bytes"""
529        return _pywrapcp.Solver_MemoryUsage()

Current memory usage in bytes

def WallTime(self):
531    def WallTime(self):
532        r"""
533        DEPRECATED: Use Now() instead.
534        Time elapsed, in ms since the creation of the solver.
535        """
536        return _pywrapcp.Solver_WallTime(self)

DEPRECATED: Use Now() instead. Time elapsed, in ms since the creation of the solver.

def Branches(self):
538    def Branches(self):
539        r""" The number of branches explored since the creation of the solver."""
540        return _pywrapcp.Solver_Branches(self)

The number of branches explored since the creation of the solver.

def Solutions(self):
542    def Solutions(self):
543        r""" The number of solutions found since the start of the search."""
544        return _pywrapcp.Solver_Solutions(self)

The number of solutions found since the start of the search.

def Failures(self):
546    def Failures(self):
547        r""" The number of failures encountered since the creation of the solver."""
548        return _pywrapcp.Solver_Failures(self)

The number of failures encountered since the creation of the solver.

def AcceptedNeighbors(self):
550    def AcceptedNeighbors(self):
551        r""" The number of accepted neighbors."""
552        return _pywrapcp.Solver_AcceptedNeighbors(self)

The number of accepted neighbors.

def Stamp(self):
554    def Stamp(self):
555        r"""
556        The stamp indicates how many moves in the search tree we have performed.
557        It is useful to detect if we need to update same lazy structures.
558        """
559        return _pywrapcp.Solver_Stamp(self)

The stamp indicates how many moves in the search tree we have performed. It is useful to detect if we need to update same lazy structures.

def FailStamp(self):
561    def FailStamp(self):
562        r""" The fail_stamp() is incremented after each backtrack."""
563        return _pywrapcp.Solver_FailStamp(self)

The fail_stamp() is incremented after each backtrack.

def IntVar(self, *args):
565    def IntVar(self, *args):
566        r"""
567        *Overload 1:*
568        MakeIntVar will create the best range based int var for the bounds given.
569
570        |
571
572        *Overload 2:*
573        MakeIntVar will create a variable with the given sparse domain.
574
575        |
576
577        *Overload 3:*
578        MakeIntVar will create a variable with the given sparse domain.
579
580        |
581
582        *Overload 4:*
583        MakeIntVar will create the best range based int var for the bounds given.
584
585        |
586
587        *Overload 5:*
588        MakeIntVar will create a variable with the given sparse domain.
589
590        |
591
592        *Overload 6:*
593        MakeIntVar will create a variable with the given sparse domain.
594        """
595        return _pywrapcp.Solver_IntVar(self, *args)

Overload 1: MakeIntVar will create the best range based int var for the bounds given.

|

Overload 2: MakeIntVar will create a variable with the given sparse domain.

|

Overload 3: MakeIntVar will create a variable with the given sparse domain.

|

Overload 4: MakeIntVar will create the best range based int var for the bounds given.

|

Overload 5: MakeIntVar will create a variable with the given sparse domain.

|

Overload 6: MakeIntVar will create a variable with the given sparse domain.

def BoolVar(self, *args):
597    def BoolVar(self, *args):
598        r"""
599        *Overload 1:*
600        MakeBoolVar will create a variable with a {0, 1} domain.
601
602        |
603
604        *Overload 2:*
605        MakeBoolVar will create a variable with a {0, 1} domain.
606        """
607        return _pywrapcp.Solver_BoolVar(self, *args)

Overload 1: MakeBoolVar will create a variable with a {0, 1} domain.

|

Overload 2: MakeBoolVar will create a variable with a {0, 1} domain.

def IntConst(self, *args):
609    def IntConst(self, *args):
610        r"""
611        *Overload 1:*
612        IntConst will create a constant expression.
613
614        |
615
616        *Overload 2:*
617        IntConst will create a constant expression.
618        """
619        return _pywrapcp.Solver_IntConst(self, *args)

Overload 1: IntConst will create a constant expression.

|

Overload 2: IntConst will create a constant expression.

def Sum(self, vars):
621    def Sum(self, vars):
622        r""" sum of all vars."""
623        return _pywrapcp.Solver_Sum(self, vars)

sum of all vars.

def ScalProd(self, *args):
625    def ScalProd(self, *args):
626        r"""
627        *Overload 1:*
628        scalar product
629
630        |
631
632        *Overload 2:*
633        scalar product
634        """
635        return _pywrapcp.Solver_ScalProd(self, *args)

Overload 1: scalar product

|

Overload 2: scalar product

def MonotonicElement(self, values, increasing, index):
637    def MonotonicElement(self, values, increasing, index):
638        r"""
639        Function based element. The constraint takes ownership of the
640        callback.  The callback must be monotonic. It must be able to
641        cope with any possible value in the domain of 'index'
642        (potentially negative ones too). Furtermore, monotonicity is not
643        checked. Thus giving a non-monotonic function, or specifying an
644        incorrect increasing parameter will result in undefined behavior.
645        """
646        return _pywrapcp.Solver_MonotonicElement(self, values, increasing, index)

Function based element. The constraint takes ownership of the callback. The callback must be monotonic. It must be able to cope with any possible value in the domain of 'index' (potentially negative ones too). Furtermore, monotonicity is not checked. Thus giving a non-monotonic function, or specifying an incorrect increasing parameter will result in undefined behavior.

def Element(self, *args):
648    def Element(self, *args):
649        r"""
650        *Overload 1:*
651        values[index]
652
653        |
654
655        *Overload 2:*
656        values[index]
657
658        |
659
660        *Overload 3:*
661        Function-based element. The constraint takes ownership of the
662        callback. The callback must be able to cope with any possible
663        value in the domain of 'index' (potentially negative ones too).
664
665        |
666
667        *Overload 4:*
668        2D version of function-based element expression, values(expr1, expr2).
669
670        |
671
672        *Overload 5:*
673        vars[expr]
674        """
675        return _pywrapcp.Solver_Element(self, *args)

Overload 1: values[index]

|

Overload 2: values[index]

|

Overload 3: Function-based element. The constraint takes ownership of the callback. The callback must be able to cope with any possible value in the domain of 'index' (potentially negative ones too).

|

Overload 4: 2D version of function-based element expression, values(expr1, expr2).

|

Overload 5: vars[expr]

def IndexExpression(self, vars, value):
677    def IndexExpression(self, vars, value):
678        r"""
679        Returns the expression expr such that vars[expr] == value.
680        It assumes that vars are all different.
681        """
682        return _pywrapcp.Solver_IndexExpression(self, vars, value)

Returns the expression expr such that vars[expr] == value. It assumes that vars are all different.

def Min(self, *args):
684    def Min(self, *args):
685        r"""
686        *Overload 1:*
687        std::min(vars)
688
689        |
690
691        *Overload 2:*
692        std::min (left, right)
693
694        |
695
696        *Overload 3:*
697        std::min(expr, value)
698
699        |
700
701        *Overload 4:*
702        std::min(expr, value)
703        """
704        return _pywrapcp.Solver_Min(self, *args)

Overload 1: std::min(vars)

|

Overload 2: std::min (left, right)

|

Overload 3: std::min(expr, value)

|

Overload 4: std::min(expr, value)

def Max(self, *args):
706    def Max(self, *args):
707        r"""
708        *Overload 1:*
709        std::max(vars)
710
711        |
712
713        *Overload 2:*
714        std::max(left, right)
715
716        |
717
718        *Overload 3:*
719        std::max(expr, value)
720
721        |
722
723        *Overload 4:*
724        std::max(expr, value)
725        """
726        return _pywrapcp.Solver_Max(self, *args)

Overload 1: std::max(vars)

|

Overload 2: std::max(left, right)

|

Overload 3: std::max(expr, value)

|

Overload 4: std::max(expr, value)

def ConvexPiecewiseExpr(self, expr, early_cost, early_date, late_date, late_cost):
728    def ConvexPiecewiseExpr(self, expr, early_cost, early_date, late_date, late_cost):
729        r""" Convex piecewise function."""
730        return _pywrapcp.Solver_ConvexPiecewiseExpr(self, expr, early_cost, early_date, late_date, late_cost)

Convex piecewise function.

def SemiContinuousExpr(self, expr, fixed_charge, step):
732    def SemiContinuousExpr(self, expr, fixed_charge, step):
733        r"""
734        Semi continuous Expression (x <= 0 -> f(x) = 0; x > 0 -> f(x) = ax + b)
735        a >= 0 and b >= 0
736        """
737        return _pywrapcp.Solver_SemiContinuousExpr(self, expr, fixed_charge, step)

Semi continuous Expression (x <= 0 -> f(x) = 0; x > 0 -> f(x) = ax + b) a >= 0 and b >= 0

def ConditionalExpression(self, condition, expr, unperformed_value):
739    def ConditionalExpression(self, condition, expr, unperformed_value):
740        r""" Conditional Expr condition ? expr : unperformed_value"""
741        return _pywrapcp.Solver_ConditionalExpression(self, condition, expr, unperformed_value)

Conditional Expr condition ? expr : unperformed_value

def TrueConstraint(self):
743    def TrueConstraint(self):
744        r""" This constraint always succeeds."""
745        return _pywrapcp.Solver_TrueConstraint(self)

This constraint always succeeds.

def FalseConstraint(self, *args):
747    def FalseConstraint(self, *args):
748        return _pywrapcp.Solver_FalseConstraint(self, *args)
def IsEqualCstCt(self, var, value, boolvar):
750    def IsEqualCstCt(self, var, value, boolvar):
751        r""" boolvar == (var == value)"""
752        return _pywrapcp.Solver_IsEqualCstCt(self, var, value, boolvar)

boolvar == (var == value)

def IsEqualCstVar(self, var, value):
754    def IsEqualCstVar(self, var, value):
755        r""" status var of (var == value)"""
756        return _pywrapcp.Solver_IsEqualCstVar(self, var, value)

status var of (var == value)

def IsEqualCt(self, v1, v2, b):
758    def IsEqualCt(self, v1, v2, b):
759        r""" b == (v1 == v2)"""
760        return _pywrapcp.Solver_IsEqualCt(self, v1, v2, b)

b == (v1 == v2)

def IsEqualVar(self, v1, v2):
762    def IsEqualVar(self, v1, v2):
763        r""" status var of (v1 == v2)"""
764        return _pywrapcp.Solver_IsEqualVar(self, v1, v2)

status var of (v1 == v2)

def IsDifferentCstCt(self, var, value, boolvar):
766    def IsDifferentCstCt(self, var, value, boolvar):
767        r""" boolvar == (var != value)"""
768        return _pywrapcp.Solver_IsDifferentCstCt(self, var, value, boolvar)

boolvar == (var != value)

def IsDifferentCstVar(self, var, value):
770    def IsDifferentCstVar(self, var, value):
771        r""" status var of (var != value)"""
772        return _pywrapcp.Solver_IsDifferentCstVar(self, var, value)

status var of (var != value)

def IsDifferentVar(self, v1, v2):
774    def IsDifferentVar(self, v1, v2):
775        r""" status var of (v1 != v2)"""
776        return _pywrapcp.Solver_IsDifferentVar(self, v1, v2)

status var of (v1 != v2)

def IsDifferentCt(self, v1, v2, b):
778    def IsDifferentCt(self, v1, v2, b):
779        r""" b == (v1 != v2)"""
780        return _pywrapcp.Solver_IsDifferentCt(self, v1, v2, b)

b == (v1 != v2)

def IsLessOrEqualCstCt(self, var, value, boolvar):
782    def IsLessOrEqualCstCt(self, var, value, boolvar):
783        r""" boolvar == (var <= value)"""
784        return _pywrapcp.Solver_IsLessOrEqualCstCt(self, var, value, boolvar)

boolvar == (var <= value)

def IsLessOrEqualCstVar(self, var, value):
786    def IsLessOrEqualCstVar(self, var, value):
787        r""" status var of (var <= value)"""
788        return _pywrapcp.Solver_IsLessOrEqualCstVar(self, var, value)

status var of (var <= value)

def IsLessOrEqualVar(self, left, right):
790    def IsLessOrEqualVar(self, left, right):
791        r""" status var of (left <= right)"""
792        return _pywrapcp.Solver_IsLessOrEqualVar(self, left, right)

status var of (left <= right)

def IsLessOrEqualCt(self, left, right, b):
794    def IsLessOrEqualCt(self, left, right, b):
795        r""" b == (left <= right)"""
796        return _pywrapcp.Solver_IsLessOrEqualCt(self, left, right, b)

b == (left <= right)

def IsGreaterOrEqualCstCt(self, var, value, boolvar):
798    def IsGreaterOrEqualCstCt(self, var, value, boolvar):
799        r""" boolvar == (var >= value)"""
800        return _pywrapcp.Solver_IsGreaterOrEqualCstCt(self, var, value, boolvar)

boolvar == (var >= value)

def IsGreaterOrEqualCstVar(self, var, value):
802    def IsGreaterOrEqualCstVar(self, var, value):
803        r""" status var of (var >= value)"""
804        return _pywrapcp.Solver_IsGreaterOrEqualCstVar(self, var, value)

status var of (var >= value)

def IsGreaterOrEqualVar(self, left, right):
806    def IsGreaterOrEqualVar(self, left, right):
807        r""" status var of (left >= right)"""
808        return _pywrapcp.Solver_IsGreaterOrEqualVar(self, left, right)

status var of (left >= right)

def IsGreaterOrEqualCt(self, left, right, b):
810    def IsGreaterOrEqualCt(self, left, right, b):
811        r""" b == (left >= right)"""
812        return _pywrapcp.Solver_IsGreaterOrEqualCt(self, left, right, b)

b == (left >= right)

def IsGreaterCstCt(self, v, c, b):
814    def IsGreaterCstCt(self, v, c, b):
815        r""" b == (v > c)"""
816        return _pywrapcp.Solver_IsGreaterCstCt(self, v, c, b)

b == (v > c)

def IsGreaterCstVar(self, var, value):
818    def IsGreaterCstVar(self, var, value):
819        r""" status var of (var > value)"""
820        return _pywrapcp.Solver_IsGreaterCstVar(self, var, value)

status var of (var > value)

def IsGreaterVar(self, left, right):
822    def IsGreaterVar(self, left, right):
823        r""" status var of (left > right)"""
824        return _pywrapcp.Solver_IsGreaterVar(self, left, right)

status var of (left > right)

def IsGreaterCt(self, left, right, b):
826    def IsGreaterCt(self, left, right, b):
827        r""" b == (left > right)"""
828        return _pywrapcp.Solver_IsGreaterCt(self, left, right, b)

b == (left > right)

def IsLessCstCt(self, v, c, b):
830    def IsLessCstCt(self, v, c, b):
831        r""" b == (v < c)"""
832        return _pywrapcp.Solver_IsLessCstCt(self, v, c, b)

b == (v < c)

def IsLessCstVar(self, var, value):
834    def IsLessCstVar(self, var, value):
835        r""" status var of (var < value)"""
836        return _pywrapcp.Solver_IsLessCstVar(self, var, value)

status var of (var < value)

def IsLessVar(self, left, right):
838    def IsLessVar(self, left, right):
839        r""" status var of (left < right)"""
840        return _pywrapcp.Solver_IsLessVar(self, left, right)

status var of (left < right)

def IsLessCt(self, left, right, b):
842    def IsLessCt(self, left, right, b):
843        r""" b == (left < right)"""
844        return _pywrapcp.Solver_IsLessCt(self, left, right, b)

b == (left < right)

def SumLessOrEqual(self, vars, cst):
846    def SumLessOrEqual(self, vars, cst):
847        r""" Variation on arrays."""
848        return _pywrapcp.Solver_SumLessOrEqual(self, vars, cst)

Variation on arrays.

def SumGreaterOrEqual(self, vars, cst):
850    def SumGreaterOrEqual(self, vars, cst):
851        return _pywrapcp.Solver_SumGreaterOrEqual(self, vars, cst)
def SumEquality(self, *args):
853    def SumEquality(self, *args):
854        return _pywrapcp.Solver_SumEquality(self, *args)
def ScalProdEquality(self, *args):
856    def ScalProdEquality(self, *args):
857        return _pywrapcp.Solver_ScalProdEquality(self, *args)
def ScalProdGreaterOrEqual(self, *args):
859    def ScalProdGreaterOrEqual(self, *args):
860        return _pywrapcp.Solver_ScalProdGreaterOrEqual(self, *args)
def ScalProdLessOrEqual(self, *args):
862    def ScalProdLessOrEqual(self, *args):
863        return _pywrapcp.Solver_ScalProdLessOrEqual(self, *args)
def MinEquality(self, vars, min_var):
865    def MinEquality(self, vars, min_var):
866        return _pywrapcp.Solver_MinEquality(self, vars, min_var)
def MaxEquality(self, vars, max_var):
868    def MaxEquality(self, vars, max_var):
869        return _pywrapcp.Solver_MaxEquality(self, vars, max_var)
def ElementEquality(self, *args):
871    def ElementEquality(self, *args):
872        return _pywrapcp.Solver_ElementEquality(self, *args)
def AbsEquality(self, var, abs_var):
874    def AbsEquality(self, var, abs_var):
875        r""" Creates the constraint abs(var) == abs_var."""
876        return _pywrapcp.Solver_AbsEquality(self, var, abs_var)

Creates the constraint abs(var) == abs_var.

def IndexOfConstraint(self, vars, index, target):
878    def IndexOfConstraint(self, vars, index, target):
879        r"""
880        This constraint is a special case of the element constraint with
881        an array of integer variables, where the variables are all
882        different and the index variable is constrained such that
883        vars[index] == target.
884        """
885        return _pywrapcp.Solver_IndexOfConstraint(self, vars, index, target)

This constraint is a special case of the element constraint with an array of integer variables, where the variables are all different and the index variable is constrained such that vars[index] == target.

def ConstraintInitialPropagateCallback(self, ct):
887    def ConstraintInitialPropagateCallback(self, ct):
888        r"""
889        This method is a specialized case of the MakeConstraintDemon
890        method to call the InitiatePropagate of the constraint 'ct'.
891        """
892        return _pywrapcp.Solver_ConstraintInitialPropagateCallback(self, ct)

This method is a specialized case of the MakeConstraintDemon method to call the InitiatePropagate of the constraint 'ct'.

def DelayedConstraintInitialPropagateCallback(self, ct):
894    def DelayedConstraintInitialPropagateCallback(self, ct):
895        r"""
896        This method is a specialized case of the MakeConstraintDemon
897        method to call the InitiatePropagate of the constraint 'ct' with
898        low priority.
899        """
900        return _pywrapcp.Solver_DelayedConstraintInitialPropagateCallback(self, ct)

This method is a specialized case of the MakeConstraintDemon method to call the InitiatePropagate of the constraint 'ct' with low priority.

def ClosureDemon(self, closure):
902    def ClosureDemon(self, closure):
903        r""" Creates a demon from a closure."""
904        return _pywrapcp.Solver_ClosureDemon(self, closure)

Creates a demon from a closure.

def BetweenCt(self, expr, l, u):
906    def BetweenCt(self, expr, l, u):
907        r""" (l <= expr <= u)"""
908        return _pywrapcp.Solver_BetweenCt(self, expr, l, u)

(l <= expr <= u)

def IsBetweenCt(self, expr, l, u, b):
910    def IsBetweenCt(self, expr, l, u, b):
911        r""" b == (l <= expr <= u)"""
912        return _pywrapcp.Solver_IsBetweenCt(self, expr, l, u, b)

b == (l <= expr <= u)

def IsBetweenVar(self, v, l, u):
914    def IsBetweenVar(self, v, l, u):
915        return _pywrapcp.Solver_IsBetweenVar(self, v, l, u)
def MemberCt(self, *args):
917    def MemberCt(self, *args):
918        return _pywrapcp.Solver_MemberCt(self, *args)
def NotMemberCt(self, *args):
920    def NotMemberCt(self, *args):
921        r"""
922        *Overload 1:*
923        expr not in set.
924
925        |
926
927        *Overload 2:*
928        expr should not be in the list of forbidden intervals [start[i]..end[i]].
929
930        |
931
932        *Overload 3:*
933        expr should not be in the list of forbidden intervals [start[i]..end[i]].
934        """
935        return _pywrapcp.Solver_NotMemberCt(self, *args)

Overload 1: expr not in set.

|

Overload 2: expr should not be in the list of forbidden intervals [start[i]..end[i]].

|

Overload 3: expr should not be in the list of forbidden intervals [start[i]..end[i]].

def IsMemberCt(self, *args):
937    def IsMemberCt(self, *args):
938        return _pywrapcp.Solver_IsMemberCt(self, *args)
def IsMemberVar(self, *args):
940    def IsMemberVar(self, *args):
941        return _pywrapcp.Solver_IsMemberVar(self, *args)
def Count(self, *args):
943    def Count(self, *args):
944        r"""
945        *Overload 1:*
946        |{i | vars[i] == value}| == max_count
947
948        |
949
950        *Overload 2:*
951        |{i | vars[i] == value}| == max_count
952        """
953        return _pywrapcp.Solver_Count(self, *args)

Overload 1: |{i | vars[i] == value}| == max_count

|

Overload 2: |{i | vars[i] == value}| == max_count

def Distribute(self, *args):
 955    def Distribute(self, *args):
 956        r"""
 957        *Overload 1:*
 958        Aggregated version of count:  |{i | v[i] == values[j]}| == cards[j]
 959
 960        |
 961
 962        *Overload 2:*
 963        Aggregated version of count:  |{i | v[i] == values[j]}| == cards[j]
 964
 965        |
 966
 967        *Overload 3:*
 968        Aggregated version of count:  |{i | v[i] == j}| == cards[j]
 969
 970        |
 971
 972        *Overload 4:*
 973        Aggregated version of count with bounded cardinalities:
 974        forall j in 0 .. card_size - 1: card_min <= |{i | v[i] == j}| <= card_max
 975
 976        |
 977
 978        *Overload 5:*
 979        Aggregated version of count with bounded cardinalities:
 980        forall j in 0 .. card_size - 1:
 981           card_min[j] <= |{i | v[i] == j}| <= card_max[j]
 982
 983        |
 984
 985        *Overload 6:*
 986        Aggregated version of count with bounded cardinalities:
 987        forall j in 0 .. card_size - 1:
 988           card_min[j] <= |{i | v[i] == j}| <= card_max[j]
 989
 990        |
 991
 992        *Overload 7:*
 993        Aggregated version of count with bounded cardinalities:
 994        forall j in 0 .. card_size - 1:
 995           card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]
 996
 997        |
 998
 999        *Overload 8:*
1000        Aggregated version of count with bounded cardinalities:
1001        forall j in 0 .. card_size - 1:
1002           card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]
1003        """
1004        return _pywrapcp.Solver_Distribute(self, *args)

Overload 1: Aggregated version of count: |{i | v[i] == values[j]}| == cards[j]

|

Overload 2: Aggregated version of count: |{i | v[i] == values[j]}| == cards[j]

|

Overload 3: Aggregated version of count: |{i | v[i] == j}| == cards[j]

|

Overload 4: Aggregated version of count with bounded cardinalities: forall j in 0 .. card_size - 1: card_min <= |{i | v[i] == j}| <= card_max

|

Overload 5: Aggregated version of count with bounded cardinalities: forall j in 0 .. card_size - 1: card_min[j] <= |{i | v[i] == j}| <= card_max[j]

|

Overload 6: Aggregated version of count with bounded cardinalities: forall j in 0 .. card_size - 1: card_min[j] <= |{i | v[i] == j}| <= card_max[j]

|

Overload 7: Aggregated version of count with bounded cardinalities: forall j in 0 .. card_size - 1: card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]

|

Overload 8: Aggregated version of count with bounded cardinalities: forall j in 0 .. card_size - 1: card_min[j] <= |{i | v[i] == values[j]}| <= card_max[j]

def Deviation(self, vars, deviation_var, total_sum):
1006    def Deviation(self, vars, deviation_var, total_sum):
1007        r"""
1008        Deviation constraint:
1009        sum_i |n * vars[i] - total_sum| <= deviation_var and
1010        sum_i vars[i] == total_sum
1011        n = #vars
1012        """
1013        return _pywrapcp.Solver_Deviation(self, vars, deviation_var, total_sum)

Deviation constraint: sum_i |n * vars[i] - total_sum| <= deviation_var and sum_i vars[i] == total_sum n = #vars

def AllDifferent(self, *args):
1015    def AllDifferent(self, *args):
1016        r"""
1017        *Overload 1:*
1018        All variables are pairwise different. This corresponds to the
1019        stronger version of the propagation algorithm.
1020
1021        |
1022
1023        *Overload 2:*
1024        All variables are pairwise different.  If 'stronger_propagation'
1025        is true, stronger, and potentially slower propagation will
1026        occur. This API will be deprecated in the future.
1027        """
1028        return _pywrapcp.Solver_AllDifferent(self, *args)

Overload 1: All variables are pairwise different. This corresponds to the stronger version of the propagation algorithm.

|

Overload 2: All variables are pairwise different. If 'stronger_propagation' is true, stronger, and potentially slower propagation will occur. This API will be deprecated in the future.

def AllDifferentExcept(self, vars, escape_value):
1030    def AllDifferentExcept(self, vars, escape_value):
1031        r"""
1032        All variables are pairwise different, unless they are assigned to
1033        the escape value.
1034        """
1035        return _pywrapcp.Solver_AllDifferentExcept(self, vars, escape_value)

All variables are pairwise different, unless they are assigned to the escape value.

def SortingConstraint(self, vars, sorted):
1037    def SortingConstraint(self, vars, sorted):
1038        r"""
1039        Creates a constraint binding the arrays of variables "vars" and
1040        "sorted_vars": sorted_vars[0] must be equal to the minimum of all
1041        variables in vars, and so on: the value of sorted_vars[i] must be
1042        equal to the i-th value of variables invars.
1043
1044        This constraint propagates in both directions: from "vars" to
1045        "sorted_vars" and vice-versa.
1046
1047        Behind the scenes, this constraint maintains that:
1048          - sorted is always increasing.
1049          - whatever the values of vars, there exists a permutation that
1050            injects its values into the sorted variables.
1051
1052        For more info, please have a look at:
1053          https://mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Thiel.pdf
1054        """
1055        return _pywrapcp.Solver_SortingConstraint(self, vars, sorted)

Creates a constraint binding the arrays of variables "vars" and "sorted_vars": sorted_vars[0] must be equal to the minimum of all variables in vars, and so on: the value of sorted_vars[i] must be equal to the i-th value of variables invars.

This constraint propagates in both directions: from "vars" to "sorted_vars" and vice-versa.

Behind the scenes, this constraint maintains that:

  • sorted is always increasing.
  • whatever the values of vars, there exists a permutation that injects its values into the sorted variables.

For more info, please have a look at: https://mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Thiel.pdf

def LexicalLess(self, left, right):
1057    def LexicalLess(self, left, right):
1058        r"""
1059        Creates a constraint that enforces that left is lexicographically less
1060        than right.
1061        """
1062        return _pywrapcp.Solver_LexicalLess(self, left, right)

Creates a constraint that enforces that left is lexicographically less than right.

def LexicalLessOrEqual(self, left, right):
1064    def LexicalLessOrEqual(self, left, right):
1065        r"""
1066        Creates a constraint that enforces that left is lexicographically less
1067        than or equal to right.
1068        """
1069        return _pywrapcp.Solver_LexicalLessOrEqual(self, left, right)

Creates a constraint that enforces that left is lexicographically less than or equal to right.

def InversePermutationConstraint(self, left, right):
1071    def InversePermutationConstraint(self, left, right):
1072        r"""
1073        Creates a constraint that enforces that 'left' and 'right' both
1074        represent permutations of [0..left.size()-1], and that 'right' is
1075        the inverse permutation of 'left', i.e. for all i in
1076        [0..left.size()-1], right[left[i]] = i.
1077        """
1078        return _pywrapcp.Solver_InversePermutationConstraint(self, left, right)

Creates a constraint that enforces that 'left' and 'right' both represent permutations of [0..left.size()-1], and that 'right' is the inverse permutation of 'left', i.e. for all i in [0..left.size()-1], right[left[i]] = i.

def NullIntersect(self, first_vars, second_vars):
1080    def NullIntersect(self, first_vars, second_vars):
1081        r"""
1082        Creates a constraint that states that all variables in the first
1083        vector are different from all variables in the second
1084        group. Thus the set of values in the first vector does not
1085        intersect with the set of values in the second vector.
1086        """
1087        return _pywrapcp.Solver_NullIntersect(self, first_vars, second_vars)

Creates a constraint that states that all variables in the first vector are different from all variables in the second group. Thus the set of values in the first vector does not intersect with the set of values in the second vector.

def NullIntersectExcept(self, first_vars, second_vars, escape_value):
1089    def NullIntersectExcept(self, first_vars, second_vars, escape_value):
1090        r"""
1091        Creates a constraint that states that all variables in the first
1092        vector are different from all variables from the second group,
1093        unless they are assigned to the escape value. Thus the set of
1094        values in the first vector minus the escape value does not
1095        intersect with the set of values in the second vector.
1096        """
1097        return _pywrapcp.Solver_NullIntersectExcept(self, first_vars, second_vars, escape_value)

Creates a constraint that states that all variables in the first vector are different from all variables from the second group, unless they are assigned to the escape value. Thus the set of values in the first vector minus the escape value does not intersect with the set of values in the second vector.

def Circuit(self, nexts):
1099    def Circuit(self, nexts):
1100        r""" Force the "nexts" variable to create a complete Hamiltonian path."""
1101        return _pywrapcp.Solver_Circuit(self, nexts)

Force the "nexts" variable to create a complete Hamiltonian path.

def SubCircuit(self, nexts):
1103    def SubCircuit(self, nexts):
1104        r"""
1105        Force the "nexts" variable to create a complete Hamiltonian path
1106        for those that do not loop upon themselves.
1107        """
1108        return _pywrapcp.Solver_SubCircuit(self, nexts)

Force the "nexts" variable to create a complete Hamiltonian path for those that do not loop upon themselves.

def DelayedPathCumul(self, nexts, active, cumuls, transits):
1110    def DelayedPathCumul(self, nexts, active, cumuls, transits):
1111        r"""
1112        Delayed version of the same constraint: propagation on the nexts variables
1113        is delayed until all constraints have propagated.
1114        """
1115        return _pywrapcp.Solver_DelayedPathCumul(self, nexts, active, cumuls, transits)

Delayed version of the same constraint: propagation on the nexts variables is delayed until all constraints have propagated.

def PathCumul(self, *args):
1117    def PathCumul(self, *args):
1118        r"""
1119        *Overload 1:*
1120        Creates a constraint which accumulates values along a path such that:
1121        cumuls[next[i]] = cumuls[i] + transits[i].
1122        Active variables indicate if the corresponding next variable is active;
1123        this could be useful to model unperformed nodes in a routing problem.
1124
1125        |
1126
1127        *Overload 2:*
1128        Creates a constraint which accumulates values along a path such that:
1129        cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]).
1130        Active variables indicate if the corresponding next variable is active;
1131        this could be useful to model unperformed nodes in a routing problem.
1132        Ownership of transit_evaluator is taken and it must be a repeatable
1133        callback.
1134
1135        |
1136
1137        *Overload 3:*
1138        Creates a constraint which accumulates values along a path such that:
1139        cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]) + slacks[i].
1140        Active variables indicate if the corresponding next variable is active;
1141        this could be useful to model unperformed nodes in a routing problem.
1142        Ownership of transit_evaluator is taken and it must be a repeatable
1143        callback.
1144        """
1145        return _pywrapcp.Solver_PathCumul(self, *args)

Overload 1: Creates a constraint which accumulates values along a path such that: cumuls[next[i]] = cumuls[i] + transits[i]. Active variables indicate if the corresponding next variable is active; this could be useful to model unperformed nodes in a routing problem.

|

Overload 2: Creates a constraint which accumulates values along a path such that: cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]). Active variables indicate if the corresponding next variable is active; this could be useful to model unperformed nodes in a routing problem. Ownership of transit_evaluator is taken and it must be a repeatable callback.

|

Overload 3: Creates a constraint which accumulates values along a path such that: cumuls[next[i]] = cumuls[i] + transit_evaluator(i, next[i]) + slacks[i]. Active variables indicate if the corresponding next variable is active; this could be useful to model unperformed nodes in a routing problem. Ownership of transit_evaluator is taken and it must be a repeatable callback.

def AllowedAssignments(self, *args):
1147    def AllowedAssignments(self, *args):
1148        r"""
1149        *Overload 1:*
1150        This method creates a constraint where the graph of the relation
1151        between the variables is given in extension. There are 'arity'
1152        variables involved in the relation and the graph is given by a
1153        integer tuple set.
1154
1155        |
1156
1157        *Overload 2:*
1158        Compatibility layer for Python API.
1159        """
1160        return _pywrapcp.Solver_AllowedAssignments(self, *args)

Overload 1: This method creates a constraint where the graph of the relation between the variables is given in extension. There are 'arity' variables involved in the relation and the graph is given by a integer tuple set.

|

Overload 2: Compatibility layer for Python API.

def TransitionConstraint(self, *args):
1162    def TransitionConstraint(self, *args):
1163        return _pywrapcp.Solver_TransitionConstraint(self, *args)
def NonOverlappingBoxesConstraint(self, *args):
1165    def NonOverlappingBoxesConstraint(self, *args):
1166        return _pywrapcp.Solver_NonOverlappingBoxesConstraint(self, *args)
def Pack(self, vars, number_of_bins):
1168    def Pack(self, vars, number_of_bins):
1169        r"""
1170        This constraint packs all variables onto 'number_of_bins'
1171        variables.  For any given variable, a value of 'number_of_bins'
1172        indicates that the variable is not assigned to any bin.
1173        Dimensions, i.e., cumulative constraints on this packing, can be
1174        added directly from the pack class.
1175        """
1176        return _pywrapcp.Solver_Pack(self, vars, number_of_bins)

This constraint packs all variables onto 'number_of_bins' variables. For any given variable, a value of 'number_of_bins' indicates that the variable is not assigned to any bin. Dimensions, i.e., cumulative constraints on this packing, can be added directly from the pack class.

def FixedDurationIntervalVar(self, *args):
1178    def FixedDurationIntervalVar(self, *args):
1179        r"""
1180        *Overload 1:*
1181        Creates an interval var with a fixed duration. The duration must
1182        be greater than 0. If optional is true, then the interval can be
1183        performed or unperformed. If optional is false, then the interval
1184        is always performed.
1185
1186        |
1187
1188        *Overload 2:*
1189        Creates a performed interval var with a fixed duration. The duration must
1190        be greater than 0.
1191
1192        |
1193
1194        *Overload 3:*
1195        Creates an interval var with a fixed duration, and performed_variable.
1196        The duration must be greater than 0.
1197        """
1198        return _pywrapcp.Solver_FixedDurationIntervalVar(self, *args)

Overload 1: Creates an interval var with a fixed duration. The duration must be greater than 0. If optional is true, then the interval can be performed or unperformed. If optional is false, then the interval is always performed.

|

Overload 2: Creates a performed interval var with a fixed duration. The duration must be greater than 0.

|

Overload 3: Creates an interval var with a fixed duration, and performed_variable. The duration must be greater than 0.

def FixedInterval(self, start, duration, name):
1200    def FixedInterval(self, start, duration, name):
1201        r""" Creates a fixed and performed interval."""
1202        return _pywrapcp.Solver_FixedInterval(self, start, duration, name)

Creates a fixed and performed interval.

def IntervalVar( self, start_min, start_max, duration_min, duration_max, end_min, end_max, optional, name):
1204    def IntervalVar(self, start_min, start_max, duration_min, duration_max, end_min, end_max, optional, name):
1205        r"""
1206        Creates an interval var by specifying the bounds on start,
1207        duration, and end.
1208        """
1209        return _pywrapcp.Solver_IntervalVar(self, start_min, start_max, duration_min, duration_max, end_min, end_max, optional, name)

Creates an interval var by specifying the bounds on start, duration, and end.

def MirrorInterval(self, interval_var):
1211    def MirrorInterval(self, interval_var):
1212        r"""
1213        Creates an interval var that is the mirror image of the given one, that
1214        is, the interval var obtained by reversing the axis.
1215        """
1216        return _pywrapcp.Solver_MirrorInterval(self, interval_var)

Creates an interval var that is the mirror image of the given one, that is, the interval var obtained by reversing the axis.

def FixedDurationStartSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1218    def FixedDurationStartSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1219        r"""
1220        Creates an interval var with a fixed duration whose start is
1221        synchronized with the start of another interval, with a given
1222        offset. The performed status is also in sync with the performed
1223        status of the given interval variable.
1224        """
1225        return _pywrapcp.Solver_FixedDurationStartSyncedOnStartIntervalVar(self, interval_var, duration, offset)

Creates an interval var with a fixed duration whose start is synchronized with the start of another interval, with a given offset. The performed status is also in sync with the performed status of the given interval variable.

def FixedDurationStartSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1227    def FixedDurationStartSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1228        r"""
1229        Creates an interval var with a fixed duration whose start is
1230        synchronized with the end of another interval, with a given
1231        offset. The performed status is also in sync with the performed
1232        status of the given interval variable.
1233        """
1234        return _pywrapcp.Solver_FixedDurationStartSyncedOnEndIntervalVar(self, interval_var, duration, offset)

Creates an interval var with a fixed duration whose start is synchronized with the end of another interval, with a given offset. The performed status is also in sync with the performed status of the given interval variable.

def FixedDurationEndSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1236    def FixedDurationEndSyncedOnStartIntervalVar(self, interval_var, duration, offset):
1237        r"""
1238        Creates an interval var with a fixed duration whose end is
1239        synchronized with the start of another interval, with a given
1240        offset. The performed status is also in sync with the performed
1241        status of the given interval variable.
1242        """
1243        return _pywrapcp.Solver_FixedDurationEndSyncedOnStartIntervalVar(self, interval_var, duration, offset)

Creates an interval var with a fixed duration whose end is synchronized with the start of another interval, with a given offset. The performed status is also in sync with the performed status of the given interval variable.

def FixedDurationEndSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1245    def FixedDurationEndSyncedOnEndIntervalVar(self, interval_var, duration, offset):
1246        r"""
1247        Creates an interval var with a fixed duration whose end is
1248        synchronized with the end of another interval, with a given
1249        offset. The performed status is also in sync with the performed
1250        status of the given interval variable.
1251        """
1252        return _pywrapcp.Solver_FixedDurationEndSyncedOnEndIntervalVar(self, interval_var, duration, offset)

Creates an interval var with a fixed duration whose end is synchronized with the end of another interval, with a given offset. The performed status is also in sync with the performed status of the given interval variable.

def IntervalRelaxedMin(self, interval_var):
1254    def IntervalRelaxedMin(self, interval_var):
1255        r"""
1256         Creates and returns an interval variable that wraps around the given one,
1257         relaxing the min start and end. Relaxing means making unbounded when
1258         optional. If the variable is non-optional, this method returns
1259         interval_var.
1260
1261         More precisely, such an interval variable behaves as follows:
1262        When the underlying must be performed, the returned interval variable
1263             behaves exactly as the underlying;
1264        When the underlying may or may not be performed, the returned interval
1265             variable behaves like the underlying, except that it is unbounded on
1266             the min side;
1267        When the underlying cannot be performed, the returned interval variable
1268             is of duration 0 and must be performed in an interval unbounded on
1269             both sides.
1270
1271         This is very useful to implement propagators that may only modify
1272         the start max or end max.
1273        """
1274        return _pywrapcp.Solver_IntervalRelaxedMin(self, interval_var)

Creates and returns an interval variable that wraps around the given one, relaxing the min start and end. Relaxing means making unbounded when optional. If the variable is non-optional, this method returns interval_var.

More precisely, such an interval variable behaves as follows: When the underlying must be performed, the returned interval variable behaves exactly as the underlying; When the underlying may or may not be performed, the returned interval variable behaves like the underlying, except that it is unbounded on the min side; When the underlying cannot be performed, the returned interval variable is of duration 0 and must be performed in an interval unbounded on both sides.

This is very useful to implement propagators that may only modify the start max or end max.

def IntervalRelaxedMax(self, interval_var):
1276    def IntervalRelaxedMax(self, interval_var):
1277        r"""
1278         Creates and returns an interval variable that wraps around the given one,
1279         relaxing the max start and end. Relaxing means making unbounded when
1280         optional. If the variable is non optional, this method returns
1281         interval_var.
1282
1283         More precisely, such an interval variable behaves as follows:
1284        When the underlying must be performed, the returned interval variable
1285             behaves exactly as the underlying;
1286        When the underlying may or may not be performed, the returned interval
1287             variable behaves like the underlying, except that it is unbounded on
1288             the max side;
1289        When the underlying cannot be performed, the returned interval variable
1290             is of duration 0 and must be performed in an interval unbounded on
1291             both sides.
1292
1293         This is very useful for implementing propagators that may only modify
1294         the start min or end min.
1295        """
1296        return _pywrapcp.Solver_IntervalRelaxedMax(self, interval_var)

Creates and returns an interval variable that wraps around the given one, relaxing the max start and end. Relaxing means making unbounded when optional. If the variable is non optional, this method returns interval_var.

More precisely, such an interval variable behaves as follows: When the underlying must be performed, the returned interval variable behaves exactly as the underlying; When the underlying may or may not be performed, the returned interval variable behaves like the underlying, except that it is unbounded on the max side; When the underlying cannot be performed, the returned interval variable is of duration 0 and must be performed in an interval unbounded on both sides.

This is very useful for implementing propagators that may only modify the start min or end min.

def TemporalDisjunction(self, *args):
1298    def TemporalDisjunction(self, *args):
1299        r"""
1300        *Overload 1:*
1301        This constraint implements a temporal disjunction between two
1302        interval vars t1 and t2. 'alt' indicates which alternative was
1303        chosen (alt == 0 is equivalent to t1 before t2).
1304
1305        |
1306
1307        *Overload 2:*
1308        This constraint implements a temporal disjunction between two
1309        interval vars.
1310        """
1311        return _pywrapcp.Solver_TemporalDisjunction(self, *args)

Overload 1: This constraint implements a temporal disjunction between two interval vars t1 and t2. 'alt' indicates which alternative was chosen (alt == 0 is equivalent to t1 before t2).

|

Overload 2: This constraint implements a temporal disjunction between two interval vars.

def DisjunctiveConstraint(self, intervals, name):
1313    def DisjunctiveConstraint(self, intervals, name):
1314        r"""
1315        This constraint forces all interval vars into an non-overlapping
1316        sequence. Intervals with zero duration can be scheduled anywhere.
1317        """
1318        return _pywrapcp.Solver_DisjunctiveConstraint(self, intervals, name)

This constraint forces all interval vars into an non-overlapping sequence. Intervals with zero duration can be scheduled anywhere.

def Cumulative(self, *args):
1320    def Cumulative(self, *args):
1321        r"""
1322        *Overload 1:*
1323        This constraint forces that, for any integer t, the sum of the demands
1324        corresponding to an interval containing t does not exceed the given
1325        capacity.
1326
1327        Intervals and demands should be vectors of equal size.
1328
1329        Demands should only contain non-negative values. Zero values are
1330        supported, and the corresponding intervals are filtered out, as they
1331        neither impact nor are impacted by this constraint.
1332
1333        |
1334
1335        *Overload 2:*
1336        This constraint forces that, for any integer t, the sum of the demands
1337        corresponding to an interval containing t does not exceed the given
1338        capacity.
1339
1340        Intervals and demands should be vectors of equal size.
1341
1342        Demands should only contain non-negative values. Zero values are
1343        supported, and the corresponding intervals are filtered out, as they
1344        neither impact nor are impacted by this constraint.
1345
1346        |
1347
1348        *Overload 3:*
1349        This constraint forces that, for any integer t, the sum of the demands
1350        corresponding to an interval containing t does not exceed the given
1351        capacity.
1352
1353        Intervals and demands should be vectors of equal size.
1354
1355        Demands should only contain non-negative values. Zero values are
1356        supported, and the corresponding intervals are filtered out, as they
1357        neither impact nor are impacted by this constraint.
1358
1359        |
1360
1361        *Overload 4:*
1362        This constraint enforces that, for any integer t, the sum of the demands
1363        corresponding to an interval containing t does not exceed the given
1364        capacity.
1365
1366        Intervals and demands should be vectors of equal size.
1367
1368        Demands should only contain non-negative values. Zero values are
1369        supported, and the corresponding intervals are filtered out, as they
1370        neither impact nor are impacted by this constraint.
1371
1372        |
1373
1374        *Overload 5:*
1375        This constraint enforces that, for any integer t, the sum of demands
1376        corresponding to an interval containing t does not exceed the given
1377        capacity.
1378
1379        Intervals and demands should be vectors of equal size.
1380
1381        Demands should be positive.
1382
1383        |
1384
1385        *Overload 6:*
1386        This constraint enforces that, for any integer t, the sum of demands
1387        corresponding to an interval containing t does not exceed the given
1388        capacity.
1389
1390        Intervals and demands should be vectors of equal size.
1391
1392        Demands should be positive.
1393        """
1394        return _pywrapcp.Solver_Cumulative(self, *args)

Overload 1: This constraint forces that, for any integer t, the sum of the demands corresponding to an interval containing t does not exceed the given capacity.

Intervals and demands should be vectors of equal size.

Demands should only contain non-negative values. Zero values are supported, and the corresponding intervals are filtered out, as they neither impact nor are impacted by this constraint.

|

Overload 2: This constraint forces that, for any integer t, the sum of the demands corresponding to an interval containing t does not exceed the given capacity.

Intervals and demands should be vectors of equal size.

Demands should only contain non-negative values. Zero values are supported, and the corresponding intervals are filtered out, as they neither impact nor are impacted by this constraint.

|

Overload 3: This constraint forces that, for any integer t, the sum of the demands corresponding to an interval containing t does not exceed the given capacity.

Intervals and demands should be vectors of equal size.

Demands should only contain non-negative values. Zero values are supported, and the corresponding intervals are filtered out, as they neither impact nor are impacted by this constraint.

|

Overload 4: This constraint enforces that, for any integer t, the sum of the demands corresponding to an interval containing t does not exceed the given capacity.

Intervals and demands should be vectors of equal size.

Demands should only contain non-negative values. Zero values are supported, and the corresponding intervals are filtered out, as they neither impact nor are impacted by this constraint.

|

Overload 5: This constraint enforces that, for any integer t, the sum of demands corresponding to an interval containing t does not exceed the given capacity.

Intervals and demands should be vectors of equal size.

Demands should be positive.

|

Overload 6: This constraint enforces that, for any integer t, the sum of demands corresponding to an interval containing t does not exceed the given capacity.

Intervals and demands should be vectors of equal size.

Demands should be positive.

def Cover(self, vars, target_var):
1396    def Cover(self, vars, target_var):
1397        r"""
1398        This constraint states that the target_var is the convex hull of
1399        the intervals. If none of the interval variables is performed,
1400        then the target var is unperformed too. Also, if the target
1401        variable is unperformed, then all the intervals variables are
1402        unperformed too.
1403        """
1404        return _pywrapcp.Solver_Cover(self, vars, target_var)

This constraint states that the target_var is the convex hull of the intervals. If none of the interval variables is performed, then the target var is unperformed too. Also, if the target variable is unperformed, then all the intervals variables are unperformed too.

def Assignment(self, *args):
1406    def Assignment(self, *args):
1407        r"""
1408        *Overload 1:*
1409        This method creates an empty assignment.
1410
1411        |
1412
1413        *Overload 2:*
1414        This method creates an assignment which is a copy of 'a'.
1415        """
1416        return _pywrapcp.Solver_Assignment(self, *args)

Overload 1: This method creates an empty assignment.

|

Overload 2: This method creates an assignment which is a copy of 'a'.

def FirstSolutionCollector(self, *args):
1418    def FirstSolutionCollector(self, *args):
1419        r"""
1420        *Overload 1:*
1421        Collect the first solution of the search.
1422
1423        |
1424
1425        *Overload 2:*
1426        Collect the first solution of the search. The variables will need to
1427        be added later.
1428        """
1429        return _pywrapcp.Solver_FirstSolutionCollector(self, *args)

Overload 1: Collect the first solution of the search.

|

Overload 2: Collect the first solution of the search. The variables will need to be added later.

def LastSolutionCollector(self, *args):
1431    def LastSolutionCollector(self, *args):
1432        r"""
1433        *Overload 1:*
1434        Collect the last solution of the search.
1435
1436        |
1437
1438        *Overload 2:*
1439        Collect the last solution of the search. The variables will need to
1440        be added later.
1441        """
1442        return _pywrapcp.Solver_LastSolutionCollector(self, *args)

Overload 1: Collect the last solution of the search.

|

Overload 2: Collect the last solution of the search. The variables will need to be added later.

def BestValueSolutionCollector(self, *args):
1444    def BestValueSolutionCollector(self, *args):
1445        r"""
1446        *Overload 1:*
1447        Collect the solution corresponding to the optimal value of the objective
1448        of 'assignment'; if 'assignment' does not have an objective no solution is
1449        collected. This collector only collects one solution corresponding to the
1450        best objective value (the first one found).
1451
1452        |
1453
1454        *Overload 2:*
1455        Collect the solution corresponding to the optimal value of the
1456        objective of the internal assignment; if this assignment does not have an
1457        objective no solution is collected. This collector only collects one
1458        solution corresponding to the best objective value (the first one found).
1459        The variables and objective(s) will need to be added later.
1460        """
1461        return _pywrapcp.Solver_BestValueSolutionCollector(self, *args)

Overload 1: Collect the solution corresponding to the optimal value of the objective of 'assignment'; if 'assignment' does not have an objective no solution is collected. This collector only collects one solution corresponding to the best objective value (the first one found).

|

Overload 2: Collect the solution corresponding to the optimal value of the objective of the internal assignment; if this assignment does not have an objective no solution is collected. This collector only collects one solution corresponding to the best objective value (the first one found). The variables and objective(s) will need to be added later.

def AllSolutionCollector(self, *args):
1463    def AllSolutionCollector(self, *args):
1464        r"""
1465        *Overload 1:*
1466        Collect all solutions of the search.
1467
1468        |
1469
1470        *Overload 2:*
1471        Collect all solutions of the search. The variables will need to
1472        be added later.
1473        """
1474        return _pywrapcp.Solver_AllSolutionCollector(self, *args)

Overload 1: Collect all solutions of the search.

|

Overload 2: Collect all solutions of the search. The variables will need to be added later.

def Minimize(self, v, step):
1476    def Minimize(self, v, step):
1477        r""" Creates a minimization objective."""
1478        return _pywrapcp.Solver_Minimize(self, v, step)

Creates a minimization objective.

def Maximize(self, v, step):
1480    def Maximize(self, v, step):
1481        r""" Creates a maximization objective."""
1482        return _pywrapcp.Solver_Maximize(self, v, step)

Creates a maximization objective.

def Optimize(self, maximize, v, step):
1484    def Optimize(self, maximize, v, step):
1485        r""" Creates a objective with a given sense (true = maximization)."""
1486        return _pywrapcp.Solver_Optimize(self, maximize, v, step)

Creates a objective with a given sense (true = maximization).

def WeightedMinimize(self, *args):
1488    def WeightedMinimize(self, *args):
1489        r"""
1490        *Overload 1:*
1491        Creates a minimization weighted objective. The actual objective is
1492        scalar_prod(sub_objectives, weights).
1493
1494        |
1495
1496        *Overload 2:*
1497        Creates a minimization weighted objective. The actual objective is
1498        scalar_prod(sub_objectives, weights).
1499        """
1500        return _pywrapcp.Solver_WeightedMinimize(self, *args)

Overload 1: Creates a minimization weighted objective. The actual objective is scalar_prod(sub_objectives, weights).

|

Overload 2: Creates a minimization weighted objective. The actual objective is scalar_prod(sub_objectives, weights).

def WeightedMaximize(self, *args):
1502    def WeightedMaximize(self, *args):
1503        r"""
1504        *Overload 1:*
1505        Creates a maximization weigthed objective.
1506
1507        |
1508
1509        *Overload 2:*
1510        Creates a maximization weigthed objective.
1511        """
1512        return _pywrapcp.Solver_WeightedMaximize(self, *args)

Overload 1: Creates a maximization weigthed objective.

|

Overload 2: Creates a maximization weigthed objective.

def WeightedOptimize(self, *args):
1514    def WeightedOptimize(self, *args):
1515        r"""
1516        *Overload 1:*
1517        Creates a weighted objective with a given sense (true = maximization).
1518
1519        |
1520
1521        *Overload 2:*
1522        Creates a weighted objective with a given sense (true = maximization).
1523        """
1524        return _pywrapcp.Solver_WeightedOptimize(self, *args)

Overload 1: Creates a weighted objective with a given sense (true = maximization).

|

Overload 2: Creates a weighted objective with a given sense (true = maximization).

def TabuSearch( self, maximize, objective, step, vars, keep_tenure, forbid_tenure, tabu_factor):
1526    def TabuSearch(self, maximize, objective, step, vars, keep_tenure, forbid_tenure, tabu_factor):
1527        r"""
1528        MetaHeuristics which try to get the search out of local optima.
1529        Creates a Tabu Search monitor.
1530        In the context of local search the behavior is similar to MakeOptimize(),
1531        creating an objective in a given sense. The behavior differs once a local
1532        optimum is reached: thereafter solutions which degrade the value of the
1533        objective are allowed if they are not "tabu". A solution is "tabu" if it
1534        doesn't respect the following rules:
1535        - improving the best solution found so far
1536        - variables in the "keep" list must keep their value, variables in the
1537        "forbid" list must not take the value they have in the list.
1538        Variables with new values enter the tabu lists after each new solution
1539        found and leave the lists after a given number of iterations (called
1540        tenure). Only the variables passed to the method can enter the lists.
1541        The tabu criterion is softened by the tabu factor which gives the number
1542        of "tabu" violations which is tolerated; a factor of 1 means no violations
1543        allowed; a factor of 0 means all violations are allowed.
1544        """
1545        return _pywrapcp.Solver_TabuSearch(self, maximize, objective, step, vars, keep_tenure, forbid_tenure, tabu_factor)

MetaHeuristics which try to get the search out of local optima. Creates a Tabu Search monitor. In the context of local search the behavior is similar to MakeOptimize(), creating an objective in a given sense. The behavior differs once a local optimum is reached: thereafter solutions which degrade the value of the objective are allowed if they are not "tabu". A solution is "tabu" if it doesn't respect the following rules:

  • improving the best solution found so far
  • variables in the "keep" list must keep their value, variables in the "forbid" list must not take the value they have in the list. Variables with new values enter the tabu lists after each new solution found and leave the lists after a given number of iterations (called tenure). Only the variables passed to the method can enter the lists. The tabu criterion is softened by the tabu factor which gives the number of "tabu" violations which is tolerated; a factor of 1 means no violations allowed; a factor of 0 means all violations are allowed.
def SimulatedAnnealing(self, maximize, v, step, initial_temperature):
1547    def SimulatedAnnealing(self, maximize, v, step, initial_temperature):
1548        r""" Creates a Simulated Annealing monitor."""
1549        return _pywrapcp.Solver_SimulatedAnnealing(self, maximize, v, step, initial_temperature)

Creates a Simulated Annealing monitor.

def LubyRestart(self, scale_factor):
1551    def LubyRestart(self, scale_factor):
1552        r"""
1553        This search monitor will restart the search periodically.
1554        At the iteration n, it will restart after scale_factor * Luby(n) failures
1555        where Luby is the Luby Strategy (i.e. 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8...).
1556        """
1557        return _pywrapcp.Solver_LubyRestart(self, scale_factor)

This search monitor will restart the search periodically. At the iteration n, it will restart after scale_factor * Luby(n) failures where Luby is the Luby Strategy (i.e. 1 1 2 1 1 2 4 1 1 2 1 1 2 4 8...).

def ConstantRestart(self, frequency):
1559    def ConstantRestart(self, frequency):
1560        r"""
1561        This search monitor will restart the search periodically after 'frequency'
1562        failures.
1563        """
1564        return _pywrapcp.Solver_ConstantRestart(self, frequency)

This search monitor will restart the search periodically after 'frequency' failures.

def TimeLimit(self, *args):
1566    def TimeLimit(self, *args):
1567        return _pywrapcp.Solver_TimeLimit(self, *args)
def BranchesLimit(self, branches):
1569    def BranchesLimit(self, branches):
1570        r"""
1571        Creates a search limit that constrains the number of branches
1572        explored in the search tree.
1573        """
1574        return _pywrapcp.Solver_BranchesLimit(self, branches)

Creates a search limit that constrains the number of branches explored in the search tree.

def FailuresLimit(self, failures):
1576    def FailuresLimit(self, failures):
1577        r"""
1578        Creates a search limit that constrains the number of failures
1579        that can happen when exploring the search tree.
1580        """
1581        return _pywrapcp.Solver_FailuresLimit(self, failures)

Creates a search limit that constrains the number of failures that can happen when exploring the search tree.

def SolutionsLimit(self, solutions):
1583    def SolutionsLimit(self, solutions):
1584        r"""
1585        Creates a search limit that constrains the number of solutions found
1586        during the search.
1587        """
1588        return _pywrapcp.Solver_SolutionsLimit(self, solutions)

Creates a search limit that constrains the number of solutions found during the search.

def Limit(self, *args):
1590    def Limit(self, *args):
1591        r"""
1592        *Overload 1:*
1593        Limits the search with the 'time', 'branches', 'failures' and
1594        'solutions' limits. 'smart_time_check' reduces the calls to the wall
1595
1596        |
1597
1598        *Overload 2:*
1599        Creates a search limit from its protobuf description
1600
1601        |
1602
1603        *Overload 3:*
1604        Creates a search limit that is reached when either of the underlying limit
1605        is reached. That is, the returned limit is more stringent than both
1606        argument limits.
1607        """
1608        return _pywrapcp.Solver_Limit(self, *args)

Overload 1: Limits the search with the 'time', 'branches', 'failures' and 'solutions' limits. 'smart_time_check' reduces the calls to the wall

|

Overload 2: Creates a search limit from its protobuf description

|

Overload 3: Creates a search limit that is reached when either of the underlying limit is reached. That is, the returned limit is more stringent than both argument limits.

def CustomLimit(self, limiter):
1610    def CustomLimit(self, limiter):
1611        r"""
1612        Callback-based search limit. Search stops when limiter returns true; if
1613        this happens at a leaf the corresponding solution will be rejected.
1614        """
1615        return _pywrapcp.Solver_CustomLimit(self, limiter)

Callback-based search limit. Search stops when limiter returns true; if this happens at a leaf the corresponding solution will be rejected.

def SearchLog(self, *args):
1617    def SearchLog(self, *args):
1618        return _pywrapcp.Solver_SearchLog(self, *args)
def SearchTrace(self, prefix):
1620    def SearchTrace(self, prefix):
1621        r"""
1622        Creates a search monitor that will trace precisely the behavior of the
1623        search. Use this only for low level debugging.
1624        """
1625        return _pywrapcp.Solver_SearchTrace(self, prefix)

Creates a search monitor that will trace precisely the behavior of the search. Use this only for low level debugging.

def PrintModelVisitor(self):
1627    def PrintModelVisitor(self):
1628        r""" Prints the model."""
1629        return _pywrapcp.Solver_PrintModelVisitor(self)

Prints the model.

def StatisticsModelVisitor(self):
1631    def StatisticsModelVisitor(self):
1632        r""" Displays some nice statistics on the model."""
1633        return _pywrapcp.Solver_StatisticsModelVisitor(self)

Displays some nice statistics on the model.

def AssignVariableValue(self, var, val):
1635    def AssignVariableValue(self, var, val):
1636        r""" Decisions."""
1637        return _pywrapcp.Solver_AssignVariableValue(self, var, val)

Decisions.

def VariableLessOrEqualValue(self, var, value):
1639    def VariableLessOrEqualValue(self, var, value):
1640        return _pywrapcp.Solver_VariableLessOrEqualValue(self, var, value)
def VariableGreaterOrEqualValue(self, var, value):
1642    def VariableGreaterOrEqualValue(self, var, value):
1643        return _pywrapcp.Solver_VariableGreaterOrEqualValue(self, var, value)
def SplitVariableDomain(self, var, val, start_with_lower_half):
1645    def SplitVariableDomain(self, var, val, start_with_lower_half):
1646        return _pywrapcp.Solver_SplitVariableDomain(self, var, val, start_with_lower_half)
def AssignVariableValueOrFail(self, var, value):
1648    def AssignVariableValueOrFail(self, var, value):
1649        return _pywrapcp.Solver_AssignVariableValueOrFail(self, var, value)
def AssignVariablesValues(self, vars, values):
1651    def AssignVariablesValues(self, vars, values):
1652        return _pywrapcp.Solver_AssignVariablesValues(self, vars, values)
def FailDecision(self):
1654    def FailDecision(self):
1655        return _pywrapcp.Solver_FailDecision(self)
def Decision(self, apply, refute):
1657    def Decision(self, apply, refute):
1658        return _pywrapcp.Solver_Decision(self, apply, refute)
def Compose(self, dbs):
1660    def Compose(self, dbs):
1661        return _pywrapcp.Solver_Compose(self, dbs)
def Try(self, dbs):
1663    def Try(self, dbs):
1664        return _pywrapcp.Solver_Try(self, dbs)
def DefaultPhase(self, *args):
1666    def DefaultPhase(self, *args):
1667        return _pywrapcp.Solver_DefaultPhase(self, *args)
def ScheduleOrPostpone(self, var, est, marker):
1669    def ScheduleOrPostpone(self, var, est, marker):
1670        r"""
1671        Returns a decision that tries to schedule a task at a given time.
1672        On the Apply branch, it will set that interval var as performed and set
1673        its start to 'est'. On the Refute branch, it will just update the
1674        'marker' to 'est' + 1. This decision is used in the
1675        INTERVAL_SET_TIMES_FORWARD strategy.
1676        """
1677        return _pywrapcp.Solver_ScheduleOrPostpone(self, var, est, marker)

Returns a decision that tries to schedule a task at a given time. On the Apply branch, it will set that interval var as performed and set its start to 'est'. On the Refute branch, it will just update the 'marker' to 'est' + 1. This decision is used in the INTERVAL_SET_TIMES_FORWARD strategy.

def ScheduleOrExpedite(self, var, est, marker):
1679    def ScheduleOrExpedite(self, var, est, marker):
1680        r"""
1681        Returns a decision that tries to schedule a task at a given time.
1682        On the Apply branch, it will set that interval var as performed and set
1683        its end to 'est'. On the Refute branch, it will just update the
1684        'marker' to 'est' - 1. This decision is used in the
1685        INTERVAL_SET_TIMES_BACKWARD strategy.
1686        """
1687        return _pywrapcp.Solver_ScheduleOrExpedite(self, var, est, marker)

Returns a decision that tries to schedule a task at a given time. On the Apply branch, it will set that interval var as performed and set its end to 'est'. On the Refute branch, it will just update the 'marker' to 'est' - 1. This decision is used in the INTERVAL_SET_TIMES_BACKWARD strategy.

def RankFirstInterval(self, sequence, index):
1689    def RankFirstInterval(self, sequence, index):
1690        r"""
1691        Returns a decision that tries to rank first the ith interval var
1692        in the sequence variable.
1693        """
1694        return _pywrapcp.Solver_RankFirstInterval(self, sequence, index)

Returns a decision that tries to rank first the ith interval var in the sequence variable.

def RankLastInterval(self, sequence, index):
1696    def RankLastInterval(self, sequence, index):
1697        r"""
1698        Returns a decision that tries to rank last the ith interval var
1699        in the sequence variable.
1700        """
1701        return _pywrapcp.Solver_RankLastInterval(self, sequence, index)

Returns a decision that tries to rank last the ith interval var in the sequence variable.

def Phase(self, *args):
1703    def Phase(self, *args):
1704        return _pywrapcp.Solver_Phase(self, *args)
def DecisionBuilderFromAssignment(self, assignment, db, vars):
1706    def DecisionBuilderFromAssignment(self, assignment, db, vars):
1707        r"""
1708        Returns a decision builder for which the left-most leaf corresponds
1709        to assignment, the rest of the tree being explored using 'db'.
1710        """
1711        return _pywrapcp.Solver_DecisionBuilderFromAssignment(self, assignment, db, vars)

Returns a decision builder for which the left-most leaf corresponds to assignment, the rest of the tree being explored using 'db'.

def ConstraintAdder(self, ct):
1713    def ConstraintAdder(self, ct):
1714        r"""
1715        Returns a decision builder that will add the given constraint to
1716        the model.
1717        """
1718        return _pywrapcp.Solver_ConstraintAdder(self, ct)

Returns a decision builder that will add the given constraint to the model.

def SolveOnce(self, db, monitors):
1720    def SolveOnce(self, db, monitors):
1721        return _pywrapcp.Solver_SolveOnce(self, db, monitors)
def NestedOptimize(self, *args):
1723    def NestedOptimize(self, *args):
1724        return _pywrapcp.Solver_NestedOptimize(self, *args)
def RestoreAssignment(self, assignment):
1726    def RestoreAssignment(self, assignment):
1727        r"""
1728        Returns a DecisionBuilder which restores an Assignment
1729        (calls void Assignment::Restore())
1730        """
1731        return _pywrapcp.Solver_RestoreAssignment(self, assignment)

Returns a DecisionBuilder which restores an Assignment (calls void Assignment::Restore())

def StoreAssignment(self, assignment):
1733    def StoreAssignment(self, assignment):
1734        r"""
1735        Returns a DecisionBuilder which stores an Assignment
1736        (calls void Assignment::Store())
1737        """
1738        return _pywrapcp.Solver_StoreAssignment(self, assignment)

Returns a DecisionBuilder which stores an Assignment (calls void Assignment::Store())

def Operator(self, *args):
1740    def Operator(self, *args):
1741        return _pywrapcp.Solver_Operator(self, *args)
def RandomLnsOperator(self, *args):
1743    def RandomLnsOperator(self, *args):
1744        return _pywrapcp.Solver_RandomLnsOperator(self, *args)
def MoveTowardTargetOperator(self, *args):
1746    def MoveTowardTargetOperator(self, *args):
1747        r"""
1748        *Overload 1:*
1749        Creates a local search operator that tries to move the assignment of some
1750        variables toward a target. The target is given as an Assignment. This
1751        operator generates neighbors in which the only difference compared to the
1752        current state is that one variable that belongs to the target assignment
1753        is set to its target value.
1754
1755        |
1756
1757        *Overload 2:*
1758        Creates a local search operator that tries to move the assignment of some
1759        variables toward a target. The target is given either as two vectors: a
1760        vector of variables and a vector of associated target values. The two
1761        vectors should be of the same length. This operator generates neighbors in
1762        which the only difference compared to the current state is that one
1763        variable that belongs to the given vector is set to its target value.
1764        """
1765        return _pywrapcp.Solver_MoveTowardTargetOperator(self, *args)

Overload 1: Creates a local search operator that tries to move the assignment of some variables toward a target. The target is given as an Assignment. This operator generates neighbors in which the only difference compared to the current state is that one variable that belongs to the target assignment is set to its target value.

|

Overload 2: Creates a local search operator that tries to move the assignment of some variables toward a target. The target is given either as two vectors: a vector of variables and a vector of associated target values. The two vectors should be of the same length. This operator generates neighbors in which the only difference compared to the current state is that one variable that belongs to the given vector is set to its target value.

def ConcatenateOperators(self, *args):
1767    def ConcatenateOperators(self, *args):
1768        return _pywrapcp.Solver_ConcatenateOperators(self, *args)
def RandomConcatenateOperators(self, *args):
1770    def RandomConcatenateOperators(self, *args):
1771        r"""
1772        *Overload 1:*
1773        Randomized version of local search concatenator; calls a random operator
1774        at each call to MakeNextNeighbor().
1775
1776        |
1777
1778        *Overload 2:*
1779        Randomized version of local search concatenator; calls a random operator
1780        at each call to MakeNextNeighbor(). The provided seed is used to
1781        initialize the random number generator.
1782        """
1783        return _pywrapcp.Solver_RandomConcatenateOperators(self, *args)

Overload 1: Randomized version of local search concatenator; calls a random operator at each call to MakeNextNeighbor().

|

Overload 2: Randomized version of local search concatenator; calls a random operator at each call to MakeNextNeighbor(). The provided seed is used to initialize the random number generator.

def NeighborhoodLimit(self, op, limit):
1785    def NeighborhoodLimit(self, op, limit):
1786        r"""
1787        Creates a local search operator that wraps another local search
1788        operator and limits the number of neighbors explored (i.e., calls
1789        to MakeNextNeighbor from the current solution (between two calls
1790        to Start()). When this limit is reached, MakeNextNeighbor()
1791        returns false. The counter is cleared when Start() is called.
1792        """
1793        return _pywrapcp.Solver_NeighborhoodLimit(self, op, limit)

Creates a local search operator that wraps another local search operator and limits the number of neighbors explored (i.e., calls to MakeNextNeighbor from the current solution (between two calls to Start()). When this limit is reached, MakeNextNeighbor() returns false. The counter is cleared when Start() is called.

def LocalSearchPhase(self, *args):
1795    def LocalSearchPhase(self, *args):
1796        return _pywrapcp.Solver_LocalSearchPhase(self, *args)
def LocalSearchPhaseParameters(self, *args):
1798    def LocalSearchPhaseParameters(self, *args):
1799        return _pywrapcp.Solver_LocalSearchPhaseParameters(self, *args)
def TopProgressPercent(self):
1801    def TopProgressPercent(self):
1802        r"""
1803        Returns a percentage representing the propress of the search before
1804        reaching the limits of the top-level search (can be called from a nested
1805        solve).
1806        """
1807        return _pywrapcp.Solver_TopProgressPercent(self)

Returns a percentage representing the propress of the search before reaching the limits of the top-level search (can be called from a nested solve).

def SearchDepth(self):
1809    def SearchDepth(self):
1810        r"""
1811        Gets the search depth of the current active search. Returns -1 if
1812        there is no active search opened.
1813        """
1814        return _pywrapcp.Solver_SearchDepth(self)

Gets the search depth of the current active search. Returns -1 if there is no active search opened.

def SearchLeftDepth(self):
1816    def SearchLeftDepth(self):
1817        r"""
1818        Gets the search left depth of the current active search. Returns -1 if
1819        there is no active search opened.
1820        """
1821        return _pywrapcp.Solver_SearchLeftDepth(self)

Gets the search left depth of the current active search. Returns -1 if there is no active search opened.

def SolveDepth(self):
1823    def SolveDepth(self):
1824        r"""
1825        Gets the number of nested searches. It returns 0 outside search,
1826        1 during the top level search, 2 or more in case of nested searches.
1827        """
1828        return _pywrapcp.Solver_SolveDepth(self)

Gets the number of nested searches. It returns 0 outside search, 1 during the top level search, 2 or more in case of nested searches.

def Rand64(self, size):
1830    def Rand64(self, size):
1831        r""" Returns a random value between 0 and 'size' - 1;"""
1832        return _pywrapcp.Solver_Rand64(self, size)

Returns a random value between 0 and 'size' - 1;

def Rand32(self, size):
1834    def Rand32(self, size):
1835        r""" Returns a random value between 0 and 'size' - 1;"""
1836        return _pywrapcp.Solver_Rand32(self, size)

Returns a random value between 0 and 'size' - 1;

def ReSeed(self, seed):
1838    def ReSeed(self, seed):
1839        r""" Reseed the solver random generator."""
1840        return _pywrapcp.Solver_ReSeed(self, seed)

Reseed the solver random generator.

def LocalSearchProfile(self):
1842    def LocalSearchProfile(self):
1843        r""" Returns local search profiling information in a human readable format."""
1844        return _pywrapcp.Solver_LocalSearchProfile(self)

Returns local search profiling information in a human readable format.

def Constraints(self):
1846    def Constraints(self):
1847        r"""
1848        Counts the number of constraints that have been added
1849        to the solver before the search.
1850        """
1851        return _pywrapcp.Solver_Constraints(self)

Counts the number of constraints that have been added to the solver before the search.

def Accept(self, visitor):
1853    def Accept(self, visitor):
1854        r""" Accepts the given model visitor."""
1855        return _pywrapcp.Solver_Accept(self, visitor)

Accepts the given model visitor.

def FinishCurrentSearch(self):
1857    def FinishCurrentSearch(self):
1858        r""" Tells the solver to kill or restart the current search."""
1859        return _pywrapcp.Solver_FinishCurrentSearch(self)

Tells the solver to kill or restart the current search.

def RestartCurrentSearch(self):
1861    def RestartCurrentSearch(self):
1862        return _pywrapcp.Solver_RestartCurrentSearch(self)
def ShouldFail(self):
1864    def ShouldFail(self):
1865        r"""
1866        These methods are only useful for the SWIG wrappers, which need a way
1867        to externally cause the Solver to fail.
1868        """
1869        return _pywrapcp.Solver_ShouldFail(self)

These methods are only useful for the SWIG wrappers, which need a way to externally cause the Solver to fail.

def Add(self, ct):
1874    def Add(self, ct):
1875      if isinstance(ct, PyConstraint):
1876        self.__python_constraints.append(ct)
1877      self.AddConstraint(ct)
def TreeNoCycle(self, nexts, active, callback=0):
1880    def TreeNoCycle(self, nexts, active, callback=0):
1881        return _pywrapcp.Solver_TreeNoCycle(self, nexts, active, callback)
def SearchLogWithCallback(self, period, callback):
1883    def SearchLogWithCallback(self, period, callback):
1884        return _pywrapcp.Solver_SearchLogWithCallback(self, period, callback)
def ElementFunction(self, values, index):
1886    def ElementFunction(self, values, index):
1887        return _pywrapcp.Solver_ElementFunction(self, values, index)
def VarEvalValStrPhase(self, vars, var_evaluator, val_str):
1889    def VarEvalValStrPhase(self, vars, var_evaluator, val_str):
1890        return _pywrapcp.Solver_VarEvalValStrPhase(self, vars, var_evaluator, val_str)
def VarStrValEvalPhase(self, vars, var_str, val_eval):
1892    def VarStrValEvalPhase(self, vars, var_str, val_eval):
1893        return _pywrapcp.Solver_VarStrValEvalPhase(self, vars, var_str, val_eval)
def VarEvalValEvalPhase(self, vars, var_eval, val_eval):
1895    def VarEvalValEvalPhase(self, vars, var_eval, val_eval):
1896        return _pywrapcp.Solver_VarEvalValEvalPhase(self, vars, var_eval, val_eval)
def VarStrValEvalTieBreakPhase(self, vars, var_str, val_eval, tie_breaker):
1898    def VarStrValEvalTieBreakPhase(self, vars, var_str, val_eval, tie_breaker):
1899        return _pywrapcp.Solver_VarStrValEvalTieBreakPhase(self, vars, var_str, val_eval, tie_breaker)
def VarEvalValEvalTieBreakPhase(self, vars, var_eval, val_eval, tie_breaker):
1901    def VarEvalValEvalTieBreakPhase(self, vars, var_eval, val_eval, tie_breaker):
1902        return _pywrapcp.Solver_VarEvalValEvalTieBreakPhase(self, vars, var_eval, val_eval, tie_breaker)
def EvalEvalStrPhase(self, vars, evaluator, str):
1904    def EvalEvalStrPhase(self, vars, evaluator, str):
1905        return _pywrapcp.Solver_EvalEvalStrPhase(self, vars, evaluator, str)
def EvalEvalStrTieBreakPhase(self, vars, evaluator, tie_breaker, str):
1907    def EvalEvalStrTieBreakPhase(self, vars, evaluator, tie_breaker, str):
1908        return _pywrapcp.Solver_EvalEvalStrTieBreakPhase(self, vars, evaluator, tie_breaker, str)
def GuidedLocalSearch(self, *args):
1910    def GuidedLocalSearch(self, *args):
1911        return _pywrapcp.Solver_GuidedLocalSearch(self, *args)
def SumObjectiveFilter(self, vars, values, filter_enum):
1913    def SumObjectiveFilter(self, vars, values, filter_enum):
1914        return _pywrapcp.Solver_SumObjectiveFilter(self, vars, values, filter_enum)
class BaseObject:
1918class BaseObject(object):
1919    r"""
1920    A BaseObject is the root of all reversibly allocated objects.
1921    A DebugString method and the associated << operator are implemented
1922    as a convenience.
1923    """
1924
1925    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
1926
1927    def __init__(self):
1928        if self.__class__ == BaseObject:
1929            _self = None
1930        else:
1931            _self = self
1932        _pywrapcp.BaseObject_swiginit(self, _pywrapcp.new_BaseObject(_self, ))
1933    __swig_destroy__ = _pywrapcp.delete_BaseObject
1934
1935    def DebugString(self):
1936        return _pywrapcp.BaseObject_DebugString(self)
1937
1938    def __str__(self):
1939        return _pywrapcp.BaseObject___str__(self)
1940
1941    def __repr__(self):
1942        return _pywrapcp.BaseObject___repr__(self)
1943    def __disown__(self):
1944        self.this.disown()
1945        _pywrapcp.disown_BaseObject(self)
1946        return weakref.proxy(self)

A BaseObject is the root of all reversibly allocated objects. A DebugString method and the associated << operator are implemented as a convenience.

thisown
1925    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def DebugString(self):
1935    def DebugString(self):
1936        return _pywrapcp.BaseObject_DebugString(self)
class PropagationBaseObject(BaseObject):
1950class PropagationBaseObject(BaseObject):
1951    r"""
1952    NOLINT
1953    The PropagationBaseObject is a subclass of BaseObject that is also
1954    friend to the Solver class. It allows accessing methods useful when
1955    writing new constraints or new expressions.
1956    """
1957
1958    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
1959    __repr__ = _swig_repr
1960
1961    def __init__(self, s):
1962        if self.__class__ == PropagationBaseObject:
1963            _self = None
1964        else:
1965            _self = self
1966        _pywrapcp.PropagationBaseObject_swiginit(self, _pywrapcp.new_PropagationBaseObject(_self, s))
1967    __swig_destroy__ = _pywrapcp.delete_PropagationBaseObject
1968
1969    def DebugString(self):
1970        return _pywrapcp.PropagationBaseObject_DebugString(self)
1971
1972    def solver(self):
1973        return _pywrapcp.PropagationBaseObject_solver(self)
1974
1975    def Name(self):
1976        r""" Object naming."""
1977        return _pywrapcp.PropagationBaseObject_Name(self)
1978    def __disown__(self):
1979        self.this.disown()
1980        _pywrapcp.disown_PropagationBaseObject(self)
1981        return weakref.proxy(self)

NOLINT The PropagationBaseObject is a subclass of BaseObject that is also friend to the Solver class. It allows accessing methods useful when writing new constraints or new expressions.

PropagationBaseObject(s)
1961    def __init__(self, s):
1962        if self.__class__ == PropagationBaseObject:
1963            _self = None
1964        else:
1965            _self = self
1966        _pywrapcp.PropagationBaseObject_swiginit(self, _pywrapcp.new_PropagationBaseObject(_self, s))
thisown
1958    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def DebugString(self):
1969    def DebugString(self):
1970        return _pywrapcp.PropagationBaseObject_DebugString(self)
def solver(self):
1972    def solver(self):
1973        return _pywrapcp.PropagationBaseObject_solver(self)
def Name(self):
1975    def Name(self):
1976        r""" Object naming."""
1977        return _pywrapcp.PropagationBaseObject_Name(self)

Object naming.

class Decision(BaseObject):
1985class Decision(BaseObject):
1986    r"""
1987    A Decision represents a choice point in the search tree. The two main
1988    methods are Apply() to go left, or Refute() to go right.
1989    """
1990
1991    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
1992
1993    def __init__(self):
1994        if self.__class__ == Decision:
1995            _self = None
1996        else:
1997            _self = self
1998        _pywrapcp.Decision_swiginit(self, _pywrapcp.new_Decision(_self, ))
1999    __swig_destroy__ = _pywrapcp.delete_Decision
2000
2001    def ApplyWrapper(self, s):
2002        r""" Apply will be called first when the decision is executed."""
2003        return _pywrapcp.Decision_ApplyWrapper(self, s)
2004
2005    def RefuteWrapper(self, s):
2006        r""" Refute will be called after a backtrack."""
2007        return _pywrapcp.Decision_RefuteWrapper(self, s)
2008
2009    def DebugString(self):
2010        return _pywrapcp.Decision_DebugString(self)
2011
2012    def __repr__(self):
2013        return _pywrapcp.Decision___repr__(self)
2014
2015    def __str__(self):
2016        return _pywrapcp.Decision___str__(self)
2017    def __disown__(self):
2018        self.this.disown()
2019        _pywrapcp.disown_Decision(self)
2020        return weakref.proxy(self)

A Decision represents a choice point in the search tree. The two main methods are Apply() to go left, or Refute() to go right.

thisown
1991    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def ApplyWrapper(self, s):
2001    def ApplyWrapper(self, s):
2002        r""" Apply will be called first when the decision is executed."""
2003        return _pywrapcp.Decision_ApplyWrapper(self, s)

Apply will be called first when the decision is executed.

def RefuteWrapper(self, s):
2005    def RefuteWrapper(self, s):
2006        r""" Refute will be called after a backtrack."""
2007        return _pywrapcp.Decision_RefuteWrapper(self, s)

Refute will be called after a backtrack.

def DebugString(self):
2009    def DebugString(self):
2010        return _pywrapcp.Decision_DebugString(self)
class DecisionBuilder(BaseObject):
2024class DecisionBuilder(BaseObject):
2025    r"""
2026    A DecisionBuilder is responsible for creating the search tree. The
2027    important method is Next(), which returns the next decision to execute.
2028    """
2029
2030    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2031
2032    def __init__(self):
2033        if self.__class__ == DecisionBuilder:
2034            _self = None
2035        else:
2036            _self = self
2037        _pywrapcp.DecisionBuilder_swiginit(self, _pywrapcp.new_DecisionBuilder(_self, ))
2038    __swig_destroy__ = _pywrapcp.delete_DecisionBuilder
2039
2040    def NextWrapper(self, s):
2041        r"""
2042        This is the main method of the decision builder class. It must
2043        return a decision (an instance of the class Decision). If it
2044        returns nullptr, this means that the decision builder has finished
2045        its work.
2046        """
2047        return _pywrapcp.DecisionBuilder_NextWrapper(self, s)
2048
2049    def DebugString(self):
2050        return _pywrapcp.DecisionBuilder_DebugString(self)
2051
2052    def __repr__(self):
2053        return _pywrapcp.DecisionBuilder___repr__(self)
2054
2055    def __str__(self):
2056        return _pywrapcp.DecisionBuilder___str__(self)
2057    def __disown__(self):
2058        self.this.disown()
2059        _pywrapcp.disown_DecisionBuilder(self)
2060        return weakref.proxy(self)

A DecisionBuilder is responsible for creating the search tree. The important method is Next(), which returns the next decision to execute.

thisown
2030    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def NextWrapper(self, s):
2040    def NextWrapper(self, s):
2041        r"""
2042        This is the main method of the decision builder class. It must
2043        return a decision (an instance of the class Decision). If it
2044        returns nullptr, this means that the decision builder has finished
2045        its work.
2046        """
2047        return _pywrapcp.DecisionBuilder_NextWrapper(self, s)

This is the main method of the decision builder class. It must return a decision (an instance of the class Decision). If it returns nullptr, this means that the decision builder has finished its work.

def DebugString(self):
2049    def DebugString(self):
2050        return _pywrapcp.DecisionBuilder_DebugString(self)
class Demon(BaseObject):
2064class Demon(BaseObject):
2065    r"""
2066    A Demon is the base element of a propagation queue. It is the main
2067      object responsible for implementing the actual propagation
2068      of the constraint and pruning the inconsistent values in the domains
2069      of the variables. The main concept is that demons are listeners that are
2070      attached to the variables and listen to their modifications.
2071    There are two methods:
2072     - Run() is the actual method called when the demon is processed.
2073     - priority() returns its priority. Standard priorities are slow, normal
2074       or fast. "immediate" is reserved for variables and is treated separately.
2075    """
2076
2077    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2078    __repr__ = _swig_repr
2079
2080    def __init__(self):
2081        r"""
2082        This indicates the priority of a demon. Immediate demons are treated
2083        separately and corresponds to variables.
2084        """
2085        if self.__class__ == Demon:
2086            _self = None
2087        else:
2088            _self = self
2089        _pywrapcp.Demon_swiginit(self, _pywrapcp.new_Demon(_self, ))
2090    __swig_destroy__ = _pywrapcp.delete_Demon
2091
2092    def RunWrapper(self, s):
2093        r""" This is the main callback of the demon."""
2094        return _pywrapcp.Demon_RunWrapper(self, s)
2095
2096    def Priority(self):
2097        r"""
2098        This method returns the priority of the demon. Usually a demon is
2099        fast, slow or normal. Immediate demons are reserved for internal
2100        use to maintain variables.
2101        """
2102        return _pywrapcp.Demon_Priority(self)
2103
2104    def DebugString(self):
2105        return _pywrapcp.Demon_DebugString(self)
2106
2107    def Inhibit(self, s):
2108        r"""
2109        This method inhibits the demon in the search tree below the
2110        current position.
2111        """
2112        return _pywrapcp.Demon_Inhibit(self, s)
2113
2114    def Desinhibit(self, s):
2115        r""" This method un-inhibits the demon that was previously inhibited."""
2116        return _pywrapcp.Demon_Desinhibit(self, s)
2117    def __disown__(self):
2118        self.this.disown()
2119        _pywrapcp.disown_Demon(self)
2120        return weakref.proxy(self)

A Demon is the base element of a propagation queue. It is the main object responsible for implementing the actual propagation of the constraint and pruning the inconsistent values in the domains of the variables. The main concept is that demons are listeners that are attached to the variables and listen to their modifications.

There are two methods:
  • Run() is the actual method called when the demon is processed.
  • priority() returns its priority. Standard priorities are slow, normal or fast. "immediate" is reserved for variables and is treated separately.
Demon()
2080    def __init__(self):
2081        r"""
2082        This indicates the priority of a demon. Immediate demons are treated
2083        separately and corresponds to variables.
2084        """
2085        if self.__class__ == Demon:
2086            _self = None
2087        else:
2088            _self = self
2089        _pywrapcp.Demon_swiginit(self, _pywrapcp.new_Demon(_self, ))

This indicates the priority of a demon. Immediate demons are treated separately and corresponds to variables.

thisown
2077    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def RunWrapper(self, s):
2092    def RunWrapper(self, s):
2093        r""" This is the main callback of the demon."""
2094        return _pywrapcp.Demon_RunWrapper(self, s)

This is the main callback of the demon.

def Priority(self):
2096    def Priority(self):
2097        r"""
2098        This method returns the priority of the demon. Usually a demon is
2099        fast, slow or normal. Immediate demons are reserved for internal
2100        use to maintain variables.
2101        """
2102        return _pywrapcp.Demon_Priority(self)

This method returns the priority of the demon. Usually a demon is fast, slow or normal. Immediate demons are reserved for internal use to maintain variables.

def DebugString(self):
2104    def DebugString(self):
2105        return _pywrapcp.Demon_DebugString(self)
def Inhibit(self, s):
2107    def Inhibit(self, s):
2108        r"""
2109        This method inhibits the demon in the search tree below the
2110        current position.
2111        """
2112        return _pywrapcp.Demon_Inhibit(self, s)

This method inhibits the demon in the search tree below the current position.

def Desinhibit(self, s):
2114    def Desinhibit(self, s):
2115        r""" This method un-inhibits the demon that was previously inhibited."""
2116        return _pywrapcp.Demon_Desinhibit(self, s)

This method un-inhibits the demon that was previously inhibited.

class Constraint(PropagationBaseObject):
2124class Constraint(PropagationBaseObject):
2125    r"""
2126    A constraint is the main modeling object. It provides two methods:
2127      - Post() is responsible for creating the demons and attaching them to
2128        immediate demons().
2129      - InitialPropagate() is called once just after Post and performs
2130        the initial propagation. The subsequent propagations will be performed
2131        by the demons Posted during the post() method.
2132    """
2133
2134    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2135
2136    def __init__(self, solver):
2137        if self.__class__ == Constraint:
2138            _self = None
2139        else:
2140            _self = self
2141        _pywrapcp.Constraint_swiginit(self, _pywrapcp.new_Constraint(_self, solver))
2142    __swig_destroy__ = _pywrapcp.delete_Constraint
2143
2144    def Post(self):
2145        r"""
2146        This method is called when the constraint is processed by the
2147        solver. Its main usage is to attach demons to variables.
2148        """
2149        return _pywrapcp.Constraint_Post(self)
2150
2151    def InitialPropagateWrapper(self):
2152        r"""
2153        This method performs the initial propagation of the
2154        constraint. It is called just after the post.
2155        """
2156        return _pywrapcp.Constraint_InitialPropagateWrapper(self)
2157
2158    def DebugString(self):
2159        return _pywrapcp.Constraint_DebugString(self)
2160
2161    def Var(self):
2162        r"""
2163        Creates a Boolean variable representing the status of the constraint
2164        (false = constraint is violated, true = constraint is satisfied). It
2165        returns nullptr if the constraint does not support this API.
2166        """
2167        return _pywrapcp.Constraint_Var(self)
2168
2169    def __repr__(self):
2170        return _pywrapcp.Constraint___repr__(self)
2171
2172    def __str__(self):
2173        return _pywrapcp.Constraint___str__(self)
2174
2175    def __add__(self, *args):
2176        return _pywrapcp.Constraint___add__(self, *args)
2177
2178    def __radd__(self, v):
2179        return _pywrapcp.Constraint___radd__(self, v)
2180
2181    def __sub__(self, *args):
2182        return _pywrapcp.Constraint___sub__(self, *args)
2183
2184    def __rsub__(self, v):
2185        return _pywrapcp.Constraint___rsub__(self, v)
2186
2187    def __mul__(self, *args):
2188        return _pywrapcp.Constraint___mul__(self, *args)
2189
2190    def __rmul__(self, v):
2191        return _pywrapcp.Constraint___rmul__(self, v)
2192
2193    def __floordiv__(self, v):
2194        return _pywrapcp.Constraint___floordiv__(self, v)
2195
2196    def __neg__(self):
2197        return _pywrapcp.Constraint___neg__(self)
2198
2199    def __abs__(self):
2200        return _pywrapcp.Constraint___abs__(self)
2201
2202    def Square(self):
2203        return _pywrapcp.Constraint_Square(self)
2204
2205    def __eq__(self, *args):
2206        return _pywrapcp.Constraint___eq__(self, *args)
2207
2208    def __ne__(self, *args):
2209        return _pywrapcp.Constraint___ne__(self, *args)
2210
2211    def __ge__(self, *args):
2212        return _pywrapcp.Constraint___ge__(self, *args)
2213
2214    def __gt__(self, *args):
2215        return _pywrapcp.Constraint___gt__(self, *args)
2216
2217    def __le__(self, *args):
2218        return _pywrapcp.Constraint___le__(self, *args)
2219
2220    def __lt__(self, *args):
2221        return _pywrapcp.Constraint___lt__(self, *args)
2222
2223    def MapTo(self, vars):
2224        return _pywrapcp.Constraint_MapTo(self, vars)
2225
2226    def IndexOf(self, *args):
2227        return _pywrapcp.Constraint_IndexOf(self, *args)
2228    def __disown__(self):
2229        self.this.disown()
2230        _pywrapcp.disown_Constraint(self)
2231        return weakref.proxy(self)

A constraint is the main modeling object. It provides two methods:

  • Post() is responsible for creating the demons and attaching them to immediate demons().
  • InitialPropagate() is called once just after Post and performs the initial propagation. The subsequent propagations will be performed by the demons Posted during the post() method.
Constraint(solver)
2136    def __init__(self, solver):
2137        if self.__class__ == Constraint:
2138            _self = None
2139        else:
2140            _self = self
2141        _pywrapcp.Constraint_swiginit(self, _pywrapcp.new_Constraint(_self, solver))
thisown
2134    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Post(self):
2144    def Post(self):
2145        r"""
2146        This method is called when the constraint is processed by the
2147        solver. Its main usage is to attach demons to variables.
2148        """
2149        return _pywrapcp.Constraint_Post(self)

This method is called when the constraint is processed by the solver. Its main usage is to attach demons to variables.

def InitialPropagateWrapper(self):
2151    def InitialPropagateWrapper(self):
2152        r"""
2153        This method performs the initial propagation of the
2154        constraint. It is called just after the post.
2155        """
2156        return _pywrapcp.Constraint_InitialPropagateWrapper(self)

This method performs the initial propagation of the constraint. It is called just after the post.

def DebugString(self):
2158    def DebugString(self):
2159        return _pywrapcp.Constraint_DebugString(self)
def Var(self):
2161    def Var(self):
2162        r"""
2163        Creates a Boolean variable representing the status of the constraint
2164        (false = constraint is violated, true = constraint is satisfied). It
2165        returns nullptr if the constraint does not support this API.
2166        """
2167        return _pywrapcp.Constraint_Var(self)

Creates a Boolean variable representing the status of the constraint (false = constraint is violated, true = constraint is satisfied). It returns nullptr if the constraint does not support this API.

def Square(self):
2202    def Square(self):
2203        return _pywrapcp.Constraint_Square(self)
def MapTo(self, vars):
2223    def MapTo(self, vars):
2224        return _pywrapcp.Constraint_MapTo(self, vars)
def IndexOf(self, *args):
2226    def IndexOf(self, *args):
2227        return _pywrapcp.Constraint_IndexOf(self, *args)
Inherited Members
PropagationBaseObject
solver
Name
class SearchMonitor(BaseObject):
2235class SearchMonitor(BaseObject):
2236    r""" A search monitor is a simple set of callbacks to monitor all search events"""
2237
2238    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2239    kNoProgress = _pywrapcp.SearchMonitor_kNoProgress
2240
2241    def __init__(self, s):
2242        if self.__class__ == SearchMonitor:
2243            _self = None
2244        else:
2245            _self = self
2246        _pywrapcp.SearchMonitor_swiginit(self, _pywrapcp.new_SearchMonitor(_self, s))
2247    __swig_destroy__ = _pywrapcp.delete_SearchMonitor
2248
2249    def EnterSearch(self):
2250        r""" Beginning of the search."""
2251        return _pywrapcp.SearchMonitor_EnterSearch(self)
2252
2253    def RestartSearch(self):
2254        r""" Restart the search."""
2255        return _pywrapcp.SearchMonitor_RestartSearch(self)
2256
2257    def ExitSearch(self):
2258        r""" End of the search."""
2259        return _pywrapcp.SearchMonitor_ExitSearch(self)
2260
2261    def BeginNextDecision(self, b):
2262        r""" Before calling DecisionBuilder::Next."""
2263        return _pywrapcp.SearchMonitor_BeginNextDecision(self, b)
2264
2265    def EndNextDecision(self, b, d):
2266        r""" After calling DecisionBuilder::Next, along with the returned decision."""
2267        return _pywrapcp.SearchMonitor_EndNextDecision(self, b, d)
2268
2269    def ApplyDecision(self, d):
2270        r""" Before applying the decision."""
2271        return _pywrapcp.SearchMonitor_ApplyDecision(self, d)
2272
2273    def RefuteDecision(self, d):
2274        r""" Before refuting the decision."""
2275        return _pywrapcp.SearchMonitor_RefuteDecision(self, d)
2276
2277    def AfterDecision(self, d, apply):
2278        r"""
2279        Just after refuting or applying the decision, apply is true after Apply.
2280        This is called only if the Apply() or Refute() methods have not failed.
2281        """
2282        return _pywrapcp.SearchMonitor_AfterDecision(self, d, apply)
2283
2284    def BeginFail(self):
2285        r""" Just when the failure occurs."""
2286        return _pywrapcp.SearchMonitor_BeginFail(self)
2287
2288    def EndFail(self):
2289        r""" After completing the backtrack."""
2290        return _pywrapcp.SearchMonitor_EndFail(self)
2291
2292    def BeginInitialPropagation(self):
2293        r""" Before the initial propagation."""
2294        return _pywrapcp.SearchMonitor_BeginInitialPropagation(self)
2295
2296    def EndInitialPropagation(self):
2297        r""" After the initial propagation."""
2298        return _pywrapcp.SearchMonitor_EndInitialPropagation(self)
2299
2300    def AcceptSolution(self):
2301        r"""
2302        This method is called when a solution is found. It asserts whether the
2303        solution is valid. A value of false indicates that the solution
2304        should be discarded.
2305        """
2306        return _pywrapcp.SearchMonitor_AcceptSolution(self)
2307
2308    def AtSolution(self):
2309        r"""
2310        This method is called when a valid solution is found. If the
2311        return value is true, then search will resume after. If the result
2312        is false, then search will stop there.
2313        """
2314        return _pywrapcp.SearchMonitor_AtSolution(self)
2315
2316    def NoMoreSolutions(self):
2317        r""" When the search tree is finished."""
2318        return _pywrapcp.SearchMonitor_NoMoreSolutions(self)
2319
2320    def LocalOptimum(self):
2321        r"""
2322        When a local optimum is reached. If 'true' is returned, the last solution
2323        is discarded and the search proceeds with the next one.
2324        """
2325        return _pywrapcp.SearchMonitor_LocalOptimum(self)
2326
2327    def AcceptDelta(self, delta, deltadelta):
2328        
2329        return _pywrapcp.SearchMonitor_AcceptDelta(self, delta, deltadelta)
2330
2331    def AcceptNeighbor(self):
2332        r""" After accepting a neighbor during local search."""
2333        return _pywrapcp.SearchMonitor_AcceptNeighbor(self)
2334
2335    def ProgressPercent(self):
2336        r"""
2337        Returns a percentage representing the propress of the search before
2338        reaching limits.
2339        """
2340        return _pywrapcp.SearchMonitor_ProgressPercent(self)
2341
2342    def solver(self):
2343        return _pywrapcp.SearchMonitor_solver(self)
2344
2345    def __repr__(self):
2346        return _pywrapcp.SearchMonitor___repr__(self)
2347
2348    def __str__(self):
2349        return _pywrapcp.SearchMonitor___str__(self)
2350    def __disown__(self):
2351        self.this.disown()
2352        _pywrapcp.disown_SearchMonitor(self)
2353        return weakref.proxy(self)

A search monitor is a simple set of callbacks to monitor all search events

SearchMonitor(s)
2241    def __init__(self, s):
2242        if self.__class__ == SearchMonitor:
2243            _self = None
2244        else:
2245            _self = self
2246        _pywrapcp.SearchMonitor_swiginit(self, _pywrapcp.new_SearchMonitor(_self, s))
thisown
2238    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

kNoProgress = -1
def EnterSearch(self):
2249    def EnterSearch(self):
2250        r""" Beginning of the search."""
2251        return _pywrapcp.SearchMonitor_EnterSearch(self)

Beginning of the search.

def RestartSearch(self):
2253    def RestartSearch(self):
2254        r""" Restart the search."""
2255        return _pywrapcp.SearchMonitor_RestartSearch(self)

Restart the search.

def ExitSearch(self):
2257    def ExitSearch(self):
2258        r""" End of the search."""
2259        return _pywrapcp.SearchMonitor_ExitSearch(self)

End of the search.

def BeginNextDecision(self, b):
2261    def BeginNextDecision(self, b):
2262        r""" Before calling DecisionBuilder::Next."""
2263        return _pywrapcp.SearchMonitor_BeginNextDecision(self, b)

Before calling DecisionBuilder::Next.

def EndNextDecision(self, b, d):
2265    def EndNextDecision(self, b, d):
2266        r""" After calling DecisionBuilder::Next, along with the returned decision."""
2267        return _pywrapcp.SearchMonitor_EndNextDecision(self, b, d)

After calling DecisionBuilder::Next, along with the returned decision.

def ApplyDecision(self, d):
2269    def ApplyDecision(self, d):
2270        r""" Before applying the decision."""
2271        return _pywrapcp.SearchMonitor_ApplyDecision(self, d)

Before applying the decision.

def RefuteDecision(self, d):
2273    def RefuteDecision(self, d):
2274        r""" Before refuting the decision."""
2275        return _pywrapcp.SearchMonitor_RefuteDecision(self, d)

Before refuting the decision.

def AfterDecision(self, d, apply):
2277    def AfterDecision(self, d, apply):
2278        r"""
2279        Just after refuting or applying the decision, apply is true after Apply.
2280        This is called only if the Apply() or Refute() methods have not failed.
2281        """
2282        return _pywrapcp.SearchMonitor_AfterDecision(self, d, apply)

Just after refuting or applying the decision, apply is true after Apply. This is called only if the Apply() or Refute() methods have not failed.

def BeginFail(self):
2284    def BeginFail(self):
2285        r""" Just when the failure occurs."""
2286        return _pywrapcp.SearchMonitor_BeginFail(self)

Just when the failure occurs.

def EndFail(self):
2288    def EndFail(self):
2289        r""" After completing the backtrack."""
2290        return _pywrapcp.SearchMonitor_EndFail(self)

After completing the backtrack.

def BeginInitialPropagation(self):
2292    def BeginInitialPropagation(self):
2293        r""" Before the initial propagation."""
2294        return _pywrapcp.SearchMonitor_BeginInitialPropagation(self)

Before the initial propagation.

def EndInitialPropagation(self):
2296    def EndInitialPropagation(self):
2297        r""" After the initial propagation."""
2298        return _pywrapcp.SearchMonitor_EndInitialPropagation(self)

After the initial propagation.

def AcceptSolution(self):
2300    def AcceptSolution(self):
2301        r"""
2302        This method is called when a solution is found. It asserts whether the
2303        solution is valid. A value of false indicates that the solution
2304        should be discarded.
2305        """
2306        return _pywrapcp.SearchMonitor_AcceptSolution(self)

This method is called when a solution is found. It asserts whether the solution is valid. A value of false indicates that the solution should be discarded.

def AtSolution(self):
2308    def AtSolution(self):
2309        r"""
2310        This method is called when a valid solution is found. If the
2311        return value is true, then search will resume after. If the result
2312        is false, then search will stop there.
2313        """
2314        return _pywrapcp.SearchMonitor_AtSolution(self)

This method is called when a valid solution is found. If the return value is true, then search will resume after. If the result is false, then search will stop there.

def NoMoreSolutions(self):
2316    def NoMoreSolutions(self):
2317        r""" When the search tree is finished."""
2318        return _pywrapcp.SearchMonitor_NoMoreSolutions(self)

When the search tree is finished.

def LocalOptimum(self):
2320    def LocalOptimum(self):
2321        r"""
2322        When a local optimum is reached. If 'true' is returned, the last solution
2323        is discarded and the search proceeds with the next one.
2324        """
2325        return _pywrapcp.SearchMonitor_LocalOptimum(self)

When a local optimum is reached. If 'true' is returned, the last solution is discarded and the search proceeds with the next one.

def AcceptDelta(self, delta, deltadelta):
2327    def AcceptDelta(self, delta, deltadelta):
2328        
2329        return _pywrapcp.SearchMonitor_AcceptDelta(self, delta, deltadelta)
def AcceptNeighbor(self):
2331    def AcceptNeighbor(self):
2332        r""" After accepting a neighbor during local search."""
2333        return _pywrapcp.SearchMonitor_AcceptNeighbor(self)

After accepting a neighbor during local search.

def ProgressPercent(self):
2335    def ProgressPercent(self):
2336        r"""
2337        Returns a percentage representing the propress of the search before
2338        reaching limits.
2339        """
2340        return _pywrapcp.SearchMonitor_ProgressPercent(self)

Returns a percentage representing the propress of the search before reaching limits.

def solver(self):
2342    def solver(self):
2343        return _pywrapcp.SearchMonitor_solver(self)
Inherited Members
BaseObject
DebugString
class IntExpr(PropagationBaseObject):
2357class IntExpr(PropagationBaseObject):
2358    r"""
2359    The class IntExpr is the base of all integer expressions in
2360    constraint programming.
2361    It contains the basic protocol for an expression:
2362      - setting and modifying its bound
2363      - querying if it is bound
2364      - listening to events modifying its bounds
2365      - casting it into a variable (instance of IntVar)
2366    """
2367
2368    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2369
2370    def __init__(self, *args, **kwargs):
2371        raise AttributeError("No constructor defined - class is abstract")
2372
2373    def Min(self):
2374        return _pywrapcp.IntExpr_Min(self)
2375
2376    def SetMin(self, m):
2377        return _pywrapcp.IntExpr_SetMin(self, m)
2378
2379    def Max(self):
2380        return _pywrapcp.IntExpr_Max(self)
2381
2382    def SetMax(self, m):
2383        return _pywrapcp.IntExpr_SetMax(self, m)
2384
2385    def SetRange(self, l, u):
2386        r""" This method sets both the min and the max of the expression."""
2387        return _pywrapcp.IntExpr_SetRange(self, l, u)
2388
2389    def SetValue(self, v):
2390        r""" This method sets the value of the expression."""
2391        return _pywrapcp.IntExpr_SetValue(self, v)
2392
2393    def Bound(self):
2394        r""" Returns true if the min and the max of the expression are equal."""
2395        return _pywrapcp.IntExpr_Bound(self)
2396
2397    def IsVar(self):
2398        r""" Returns true if the expression is indeed a variable."""
2399        return _pywrapcp.IntExpr_IsVar(self)
2400
2401    def Var(self):
2402        r""" Creates a variable from the expression."""
2403        return _pywrapcp.IntExpr_Var(self)
2404
2405    def VarWithName(self, name):
2406        r"""
2407        Creates a variable from the expression and set the name of the
2408        resulting var. If the expression is already a variable, then it
2409        will set the name of the expression, possibly overwriting it.
2410        This is just a shortcut to Var() followed by set_name().
2411        """
2412        return _pywrapcp.IntExpr_VarWithName(self, name)
2413
2414    def WhenRange(self, *args):
2415        r"""
2416        *Overload 1:*
2417        Attach a demon that will watch the min or the max of the expression.
2418
2419        |
2420
2421        *Overload 2:*
2422        Attach a demon that will watch the min or the max of the expression.
2423        """
2424        return _pywrapcp.IntExpr_WhenRange(self, *args)
2425
2426    def __repr__(self):
2427        return _pywrapcp.IntExpr___repr__(self)
2428
2429    def __str__(self):
2430        return _pywrapcp.IntExpr___str__(self)
2431
2432    def __add__(self, *args):
2433        return _pywrapcp.IntExpr___add__(self, *args)
2434
2435    def __radd__(self, v):
2436        return _pywrapcp.IntExpr___radd__(self, v)
2437
2438    def __sub__(self, *args):
2439        return _pywrapcp.IntExpr___sub__(self, *args)
2440
2441    def __rsub__(self, v):
2442        return _pywrapcp.IntExpr___rsub__(self, v)
2443
2444    def __mul__(self, *args):
2445        return _pywrapcp.IntExpr___mul__(self, *args)
2446
2447    def __rmul__(self, v):
2448        return _pywrapcp.IntExpr___rmul__(self, v)
2449
2450    def __floordiv__(self, *args):
2451        return _pywrapcp.IntExpr___floordiv__(self, *args)
2452
2453    def __mod__(self, *args):
2454        return _pywrapcp.IntExpr___mod__(self, *args)
2455
2456    def __neg__(self):
2457        return _pywrapcp.IntExpr___neg__(self)
2458
2459    def __abs__(self):
2460        return _pywrapcp.IntExpr___abs__(self)
2461
2462    def Square(self):
2463        return _pywrapcp.IntExpr_Square(self)
2464
2465    def __eq__(self, *args):
2466        return _pywrapcp.IntExpr___eq__(self, *args)
2467
2468    def __ne__(self, *args):
2469        return _pywrapcp.IntExpr___ne__(self, *args)
2470
2471    def __ge__(self, *args):
2472        return _pywrapcp.IntExpr___ge__(self, *args)
2473
2474    def __gt__(self, *args):
2475        return _pywrapcp.IntExpr___gt__(self, *args)
2476
2477    def __le__(self, *args):
2478        return _pywrapcp.IntExpr___le__(self, *args)
2479
2480    def __lt__(self, *args):
2481        return _pywrapcp.IntExpr___lt__(self, *args)
2482
2483    def MapTo(self, vars):
2484        return _pywrapcp.IntExpr_MapTo(self, vars)
2485
2486    def IndexOf(self, *args):
2487        return _pywrapcp.IntExpr_IndexOf(self, *args)
2488
2489    def IsMember(self, values):
2490        return _pywrapcp.IntExpr_IsMember(self, values)
2491
2492    def Member(self, values):
2493        return _pywrapcp.IntExpr_Member(self, values)
2494
2495    def NotMember(self, starts, ends):
2496        return _pywrapcp.IntExpr_NotMember(self, starts, ends)

The class IntExpr is the base of all integer expressions in constraint programming.

It contains the basic protocol for an expression:
  • setting and modifying its bound
  • querying if it is bound
  • listening to events modifying its bounds
  • casting it into a variable (instance of IntVar)
IntExpr(*args, **kwargs)
2370    def __init__(self, *args, **kwargs):
2371        raise AttributeError("No constructor defined - class is abstract")
thisown
2368    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Min(self):
2373    def Min(self):
2374        return _pywrapcp.IntExpr_Min(self)
def SetMin(self, m):
2376    def SetMin(self, m):
2377        return _pywrapcp.IntExpr_SetMin(self, m)
def Max(self):
2379    def Max(self):
2380        return _pywrapcp.IntExpr_Max(self)
def SetMax(self, m):
2382    def SetMax(self, m):
2383        return _pywrapcp.IntExpr_SetMax(self, m)
def SetRange(self, l, u):
2385    def SetRange(self, l, u):
2386        r""" This method sets both the min and the max of the expression."""
2387        return _pywrapcp.IntExpr_SetRange(self, l, u)

This method sets both the min and the max of the expression.

def SetValue(self, v):
2389    def SetValue(self, v):
2390        r""" This method sets the value of the expression."""
2391        return _pywrapcp.IntExpr_SetValue(self, v)

This method sets the value of the expression.

def Bound(self):
2393    def Bound(self):
2394        r""" Returns true if the min and the max of the expression are equal."""
2395        return _pywrapcp.IntExpr_Bound(self)

Returns true if the min and the max of the expression are equal.

def IsVar(self):
2397    def IsVar(self):
2398        r""" Returns true if the expression is indeed a variable."""
2399        return _pywrapcp.IntExpr_IsVar(self)

Returns true if the expression is indeed a variable.

def Var(self):
2401    def Var(self):
2402        r""" Creates a variable from the expression."""
2403        return _pywrapcp.IntExpr_Var(self)

Creates a variable from the expression.

def VarWithName(self, name):
2405    def VarWithName(self, name):
2406        r"""
2407        Creates a variable from the expression and set the name of the
2408        resulting var. If the expression is already a variable, then it
2409        will set the name of the expression, possibly overwriting it.
2410        This is just a shortcut to Var() followed by set_name().
2411        """
2412        return _pywrapcp.IntExpr_VarWithName(self, name)

Creates a variable from the expression and set the name of the resulting var. If the expression is already a variable, then it will set the name of the expression, possibly overwriting it. This is just a shortcut to Var() followed by set_name().

def WhenRange(self, *args):
2414    def WhenRange(self, *args):
2415        r"""
2416        *Overload 1:*
2417        Attach a demon that will watch the min or the max of the expression.
2418
2419        |
2420
2421        *Overload 2:*
2422        Attach a demon that will watch the min or the max of the expression.
2423        """
2424        return _pywrapcp.IntExpr_WhenRange(self, *args)

Overload 1: Attach a demon that will watch the min or the max of the expression.

|

Overload 2: Attach a demon that will watch the min or the max of the expression.

def Square(self):
2462    def Square(self):
2463        return _pywrapcp.IntExpr_Square(self)
def MapTo(self, vars):
2483    def MapTo(self, vars):
2484        return _pywrapcp.IntExpr_MapTo(self, vars)
def IndexOf(self, *args):
2486    def IndexOf(self, *args):
2487        return _pywrapcp.IntExpr_IndexOf(self, *args)
def IsMember(self, values):
2489    def IsMember(self, values):
2490        return _pywrapcp.IntExpr_IsMember(self, values)
def Member(self, values):
2492    def Member(self, values):
2493        return _pywrapcp.IntExpr_Member(self, values)
def NotMember(self, starts, ends):
2495    def NotMember(self, starts, ends):
2496        return _pywrapcp.IntExpr_NotMember(self, starts, ends)
class IntVarIterator(BaseObject):
2500class IntVarIterator(BaseObject):
2501    r"""
2502     The class Iterator has two direct subclasses. HoleIterators
2503     iterates over all holes, that is value removed between the
2504     current min and max of the variable since the last time the
2505     variable was processed in the queue. DomainIterators iterates
2506     over all elements of the variable domain. Both iterators are not
2507     robust to domain changes. Hole iterators can also report values outside
2508     the current min and max of the variable.
2509     HoleIterators should only be called from a demon attached to the
2510     variable that has created this iterator.
2511     IntVar* current_var;
2512     std::unique_ptr<IntVarIterator> it(current_var->MakeHoleIterator(false));
2513     for (const int64_t hole : InitAndGetValues(it)) {
2514    use the hole
2515     }
2516    """
2517
2518    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2519
2520    def __init__(self, *args, **kwargs):
2521        raise AttributeError("No constructor defined - class is abstract")
2522    __repr__ = _swig_repr
2523
2524    def Init(self):
2525        r""" This method must be called before each loop."""
2526        return _pywrapcp.IntVarIterator_Init(self)
2527
2528    def Ok(self):
2529        r""" This method indicates if we can call Value() or not."""
2530        return _pywrapcp.IntVarIterator_Ok(self)
2531
2532    def Value(self):
2533        r""" This method returns the current value of the iterator."""
2534        return _pywrapcp.IntVarIterator_Value(self)
2535
2536    def Next(self):
2537        r""" This method moves the iterator to the next value."""
2538        return _pywrapcp.IntVarIterator_Next(self)
2539
2540    def DebugString(self):
2541        r""" Pretty Print."""
2542        return _pywrapcp.IntVarIterator_DebugString(self)
2543
2544    def __iter__(self):
2545      self.Init()
2546      return self
2547
2548    def next(self):
2549      if self.Ok():
2550        result = self.Value()
2551        self.Next()
2552        return result
2553      else:
2554        raise StopIteration()
2555
2556    def __next__(self):
2557      return self.next()

The class Iterator has two direct subclasses. HoleIterators iterates over all holes, that is value removed between the current min and max of the variable since the last time the variable was processed in the queue. DomainIterators iterates over all elements of the variable domain. Both iterators are not robust to domain changes. Hole iterators can also report values outside the current min and max of the variable. HoleIterators should only be called from a demon attached to the variable that has created this iterator. IntVar* current_var; std::unique_ptr it(current_var->MakeHoleIterator(false)); for (const int64_t hole : InitAndGetValues(it)) { use the hole }

IntVarIterator(*args, **kwargs)
2520    def __init__(self, *args, **kwargs):
2521        raise AttributeError("No constructor defined - class is abstract")
thisown
2518    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Init(self):
2524    def Init(self):
2525        r""" This method must be called before each loop."""
2526        return _pywrapcp.IntVarIterator_Init(self)

This method must be called before each loop.

def Ok(self):
2528    def Ok(self):
2529        r""" This method indicates if we can call Value() or not."""
2530        return _pywrapcp.IntVarIterator_Ok(self)

This method indicates if we can call Value() or not.

def Value(self):
2532    def Value(self):
2533        r""" This method returns the current value of the iterator."""
2534        return _pywrapcp.IntVarIterator_Value(self)

This method returns the current value of the iterator.

def Next(self):
2536    def Next(self):
2537        r""" This method moves the iterator to the next value."""
2538        return _pywrapcp.IntVarIterator_Next(self)

This method moves the iterator to the next value.

def DebugString(self):
2540    def DebugString(self):
2541        r""" Pretty Print."""
2542        return _pywrapcp.IntVarIterator_DebugString(self)

Pretty Print.

def next(self):
2548    def next(self):
2549      if self.Ok():
2550        result = self.Value()
2551        self.Next()
2552        return result
2553      else:
2554        raise StopIteration()
class IntVar(IntExpr):
2562class IntVar(IntExpr):
2563    r"""
2564    The class IntVar is a subset of IntExpr. In addition to the
2565    IntExpr protocol, it offers persistence, removing values from the domains,
2566    and a finer model for events.
2567    """
2568
2569    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2570
2571    def __init__(self, *args, **kwargs):
2572        raise AttributeError("No constructor defined - class is abstract")
2573
2574    def IsVar(self):
2575        return _pywrapcp.IntVar_IsVar(self)
2576
2577    def Var(self):
2578        return _pywrapcp.IntVar_Var(self)
2579
2580    def Value(self):
2581        r"""
2582        This method returns the value of the variable. This method checks
2583        before that the variable is bound.
2584        """
2585        return _pywrapcp.IntVar_Value(self)
2586
2587    def RemoveValue(self, v):
2588        r""" This method removes the value 'v' from the domain of the variable."""
2589        return _pywrapcp.IntVar_RemoveValue(self, v)
2590
2591    def RemoveInterval(self, l, u):
2592        r"""
2593        This method removes the interval 'l' .. 'u' from the domain of
2594        the variable. It assumes that 'l' <= 'u'.
2595        """
2596        return _pywrapcp.IntVar_RemoveInterval(self, l, u)
2597
2598    def RemoveValues(self, values):
2599        r""" This method remove the values from the domain of the variable."""
2600        return _pywrapcp.IntVar_RemoveValues(self, values)
2601
2602    def SetValues(self, values):
2603        r""" This method intersects the current domain with the values in the array."""
2604        return _pywrapcp.IntVar_SetValues(self, values)
2605
2606    def WhenBound(self, *args):
2607        r"""
2608        *Overload 1:*
2609        This method attaches a demon that will be awakened when the
2610        variable is bound.
2611
2612        |
2613
2614        *Overload 2:*
2615        This method attaches a closure that will be awakened when the
2616        variable is bound.
2617        """
2618        return _pywrapcp.IntVar_WhenBound(self, *args)
2619
2620    def WhenDomain(self, *args):
2621        r"""
2622        *Overload 1:*
2623        This method attaches a demon that will watch any domain
2624        modification of the domain of the variable.
2625
2626        |
2627
2628        *Overload 2:*
2629        This method attaches a closure that will watch any domain
2630        modification of the domain of the variable.
2631        """
2632        return _pywrapcp.IntVar_WhenDomain(self, *args)
2633
2634    def Size(self):
2635        r""" This method returns the number of values in the domain of the variable."""
2636        return _pywrapcp.IntVar_Size(self)
2637
2638    def Contains(self, v):
2639        r"""
2640        This method returns whether the value 'v' is in the domain of the
2641        variable.
2642        """
2643        return _pywrapcp.IntVar_Contains(self, v)
2644
2645    def HoleIteratorAux(self, reversible):
2646        r"""
2647        Creates a hole iterator. When 'reversible' is false, the returned
2648        object is created on the normal C++ heap and the solver does NOT
2649        take ownership of the object.
2650        """
2651        return _pywrapcp.IntVar_HoleIteratorAux(self, reversible)
2652
2653    def DomainIteratorAux(self, reversible):
2654        r"""
2655        Creates a domain iterator. When 'reversible' is false, the
2656        returned object is created on the normal C++ heap and the solver
2657        does NOT take ownership of the object.
2658        """
2659        return _pywrapcp.IntVar_DomainIteratorAux(self, reversible)
2660
2661    def OldMin(self):
2662        r""" Returns the previous min."""
2663        return _pywrapcp.IntVar_OldMin(self)
2664
2665    def OldMax(self):
2666        r""" Returns the previous max."""
2667        return _pywrapcp.IntVar_OldMax(self)
2668
2669    def __repr__(self):
2670        return _pywrapcp.IntVar___repr__(self)
2671
2672    def __str__(self):
2673        return _pywrapcp.IntVar___str__(self)
2674
2675    def DomainIterator(self):
2676      return iter(self.DomainIteratorAux(False))
2677
2678    def HoleIterator(self):
2679      return iter(self.HoleIteratorAux(False))

The class IntVar is a subset of IntExpr. In addition to the IntExpr protocol, it offers persistence, removing values from the domains, and a finer model for events.

IntVar(*args, **kwargs)
2571    def __init__(self, *args, **kwargs):
2572        raise AttributeError("No constructor defined - class is abstract")
thisown
2569    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def IsVar(self):
2574    def IsVar(self):
2575        return _pywrapcp.IntVar_IsVar(self)

Returns true if the expression is indeed a variable.

def Var(self):
2577    def Var(self):
2578        return _pywrapcp.IntVar_Var(self)

Creates a variable from the expression.

def Value(self):
2580    def Value(self):
2581        r"""
2582        This method returns the value of the variable. This method checks
2583        before that the variable is bound.
2584        """
2585        return _pywrapcp.IntVar_Value(self)

This method returns the value of the variable. This method checks before that the variable is bound.

def RemoveValue(self, v):
2587    def RemoveValue(self, v):
2588        r""" This method removes the value 'v' from the domain of the variable."""
2589        return _pywrapcp.IntVar_RemoveValue(self, v)

This method removes the value 'v' from the domain of the variable.

def RemoveInterval(self, l, u):
2591    def RemoveInterval(self, l, u):
2592        r"""
2593        This method removes the interval 'l' .. 'u' from the domain of
2594        the variable. It assumes that 'l' <= 'u'.
2595        """
2596        return _pywrapcp.IntVar_RemoveInterval(self, l, u)

This method removes the interval 'l' .. 'u' from the domain of the variable. It assumes that 'l' <= 'u'.

def RemoveValues(self, values):
2598    def RemoveValues(self, values):
2599        r""" This method remove the values from the domain of the variable."""
2600        return _pywrapcp.IntVar_RemoveValues(self, values)

This method remove the values from the domain of the variable.

def SetValues(self, values):
2602    def SetValues(self, values):
2603        r""" This method intersects the current domain with the values in the array."""
2604        return _pywrapcp.IntVar_SetValues(self, values)

This method intersects the current domain with the values in the array.

def WhenBound(self, *args):
2606    def WhenBound(self, *args):
2607        r"""
2608        *Overload 1:*
2609        This method attaches a demon that will be awakened when the
2610        variable is bound.
2611
2612        |
2613
2614        *Overload 2:*
2615        This method attaches a closure that will be awakened when the
2616        variable is bound.
2617        """
2618        return _pywrapcp.IntVar_WhenBound(self, *args)

Overload 1: This method attaches a demon that will be awakened when the variable is bound.

|

Overload 2: This method attaches a closure that will be awakened when the variable is bound.

def WhenDomain(self, *args):
2620    def WhenDomain(self, *args):
2621        r"""
2622        *Overload 1:*
2623        This method attaches a demon that will watch any domain
2624        modification of the domain of the variable.
2625
2626        |
2627
2628        *Overload 2:*
2629        This method attaches a closure that will watch any domain
2630        modification of the domain of the variable.
2631        """
2632        return _pywrapcp.IntVar_WhenDomain(self, *args)

Overload 1: This method attaches a demon that will watch any domain modification of the domain of the variable.

|

Overload 2: This method attaches a closure that will watch any domain modification of the domain of the variable.

def Size(self):
2634    def Size(self):
2635        r""" This method returns the number of values in the domain of the variable."""
2636        return _pywrapcp.IntVar_Size(self)

This method returns the number of values in the domain of the variable.

def Contains(self, v):
2638    def Contains(self, v):
2639        r"""
2640        This method returns whether the value 'v' is in the domain of the
2641        variable.
2642        """
2643        return _pywrapcp.IntVar_Contains(self, v)

This method returns whether the value 'v' is in the domain of the variable.

def HoleIteratorAux(self, reversible):
2645    def HoleIteratorAux(self, reversible):
2646        r"""
2647        Creates a hole iterator. When 'reversible' is false, the returned
2648        object is created on the normal C++ heap and the solver does NOT
2649        take ownership of the object.
2650        """
2651        return _pywrapcp.IntVar_HoleIteratorAux(self, reversible)

Creates a hole iterator. When 'reversible' is false, the returned object is created on the normal C++ heap and the solver does NOT take ownership of the object.

def DomainIteratorAux(self, reversible):
2653    def DomainIteratorAux(self, reversible):
2654        r"""
2655        Creates a domain iterator. When 'reversible' is false, the
2656        returned object is created on the normal C++ heap and the solver
2657        does NOT take ownership of the object.
2658        """
2659        return _pywrapcp.IntVar_DomainIteratorAux(self, reversible)

Creates a domain iterator. When 'reversible' is false, the returned object is created on the normal C++ heap and the solver does NOT take ownership of the object.

def OldMin(self):
2661    def OldMin(self):
2662        r""" Returns the previous min."""
2663        return _pywrapcp.IntVar_OldMin(self)

Returns the previous min.

def OldMax(self):
2665    def OldMax(self):
2666        r""" Returns the previous max."""
2667        return _pywrapcp.IntVar_OldMax(self)

Returns the previous max.

def DomainIterator(self):
2675    def DomainIterator(self):
2676      return iter(self.DomainIteratorAux(False))
def HoleIterator(self):
2678    def HoleIterator(self):
2679      return iter(self.HoleIteratorAux(False))
class SolutionCollector(SearchMonitor):
2684class SolutionCollector(SearchMonitor):
2685    r"""
2686    This class is the root class of all solution collectors.
2687    It implements a basic query API to be used independently
2688    of the collector used.
2689    """
2690
2691    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2692
2693    def __init__(self, *args, **kwargs):
2694        raise AttributeError("No constructor defined")
2695    __repr__ = _swig_repr
2696
2697    def DebugString(self):
2698        return _pywrapcp.SolutionCollector_DebugString(self)
2699
2700    def Add(self, *args):
2701        return _pywrapcp.SolutionCollector_Add(self, *args)
2702
2703    def AddObjective(self, objective):
2704        return _pywrapcp.SolutionCollector_AddObjective(self, objective)
2705
2706    def EnterSearch(self):
2707        r""" Beginning of the search."""
2708        return _pywrapcp.SolutionCollector_EnterSearch(self)
2709
2710    def SolutionCount(self):
2711        r""" Returns how many solutions were stored during the search."""
2712        return _pywrapcp.SolutionCollector_SolutionCount(self)
2713
2714    def Solution(self, n):
2715        r""" Returns the nth solution."""
2716        return _pywrapcp.SolutionCollector_Solution(self, n)
2717
2718    def WallTime(self, n):
2719        r""" Returns the wall time in ms for the nth solution."""
2720        return _pywrapcp.SolutionCollector_WallTime(self, n)
2721
2722    def Branches(self, n):
2723        r""" Returns the number of branches when the nth solution was found."""
2724        return _pywrapcp.SolutionCollector_Branches(self, n)
2725
2726    def Failures(self, n):
2727        r"""
2728        Returns the number of failures encountered at the time of the nth
2729        solution.
2730        """
2731        return _pywrapcp.SolutionCollector_Failures(self, n)
2732
2733    def ObjectiveValue(self, n):
2734        r""" Returns the objective value of the nth solution."""
2735        return _pywrapcp.SolutionCollector_ObjectiveValue(self, n)
2736
2737    def Value(self, n, var):
2738        r""" This is a shortcut to get the Value of 'var' in the nth solution."""
2739        return _pywrapcp.SolutionCollector_Value(self, n, var)
2740
2741    def StartValue(self, n, var):
2742        r""" This is a shortcut to get the StartValue of 'var' in the nth solution."""
2743        return _pywrapcp.SolutionCollector_StartValue(self, n, var)
2744
2745    def EndValue(self, n, var):
2746        r""" This is a shortcut to get the EndValue of 'var' in the nth solution."""
2747        return _pywrapcp.SolutionCollector_EndValue(self, n, var)
2748
2749    def DurationValue(self, n, var):
2750        r""" This is a shortcut to get the DurationValue of 'var' in the nth solution."""
2751        return _pywrapcp.SolutionCollector_DurationValue(self, n, var)
2752
2753    def PerformedValue(self, n, var):
2754        r""" This is a shortcut to get the PerformedValue of 'var' in the nth solution."""
2755        return _pywrapcp.SolutionCollector_PerformedValue(self, n, var)
2756
2757    def ForwardSequence(self, n, var):
2758        r"""
2759        This is a shortcut to get the ForwardSequence of 'var' in the
2760        nth solution. The forward sequence is the list of ranked interval
2761        variables starting from the start of the sequence.
2762        """
2763        return _pywrapcp.SolutionCollector_ForwardSequence(self, n, var)
2764
2765    def BackwardSequence(self, n, var):
2766        r"""
2767        This is a shortcut to get the BackwardSequence of 'var' in the
2768        nth solution. The backward sequence is the list of ranked interval
2769        variables starting from the end of the sequence.
2770        """
2771        return _pywrapcp.SolutionCollector_BackwardSequence(self, n, var)
2772
2773    def Unperformed(self, n, var):
2774        r"""
2775        This is a shortcut to get the list of unperformed of 'var' in the
2776        nth solution.
2777        """
2778        return _pywrapcp.SolutionCollector_Unperformed(self, n, var)

This class is the root class of all solution collectors. It implements a basic query API to be used independently of the collector used.

SolutionCollector(*args, **kwargs)
2693    def __init__(self, *args, **kwargs):
2694        raise AttributeError("No constructor defined")
thisown
2691    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def DebugString(self):
2697    def DebugString(self):
2698        return _pywrapcp.SolutionCollector_DebugString(self)
def Add(self, *args):
2700    def Add(self, *args):
2701        return _pywrapcp.SolutionCollector_Add(self, *args)
def AddObjective(self, objective):
2703    def AddObjective(self, objective):
2704        return _pywrapcp.SolutionCollector_AddObjective(self, objective)
def EnterSearch(self):
2706    def EnterSearch(self):
2707        r""" Beginning of the search."""
2708        return _pywrapcp.SolutionCollector_EnterSearch(self)

Beginning of the search.

def SolutionCount(self):
2710    def SolutionCount(self):
2711        r""" Returns how many solutions were stored during the search."""
2712        return _pywrapcp.SolutionCollector_SolutionCount(self)

Returns how many solutions were stored during the search.

def Solution(self, n):
2714    def Solution(self, n):
2715        r""" Returns the nth solution."""
2716        return _pywrapcp.SolutionCollector_Solution(self, n)

Returns the nth solution.

def WallTime(self, n):
2718    def WallTime(self, n):
2719        r""" Returns the wall time in ms for the nth solution."""
2720        return _pywrapcp.SolutionCollector_WallTime(self, n)

Returns the wall time in ms for the nth solution.

def Branches(self, n):
2722    def Branches(self, n):
2723        r""" Returns the number of branches when the nth solution was found."""
2724        return _pywrapcp.SolutionCollector_Branches(self, n)

Returns the number of branches when the nth solution was found.

def Failures(self, n):
2726    def Failures(self, n):
2727        r"""
2728        Returns the number of failures encountered at the time of the nth
2729        solution.
2730        """
2731        return _pywrapcp.SolutionCollector_Failures(self, n)

Returns the number of failures encountered at the time of the nth solution.

def ObjectiveValue(self, n):
2733    def ObjectiveValue(self, n):
2734        r""" Returns the objective value of the nth solution."""
2735        return _pywrapcp.SolutionCollector_ObjectiveValue(self, n)

Returns the objective value of the nth solution.

def Value(self, n, var):
2737    def Value(self, n, var):
2738        r""" This is a shortcut to get the Value of 'var' in the nth solution."""
2739        return _pywrapcp.SolutionCollector_Value(self, n, var)

This is a shortcut to get the Value of 'var' in the nth solution.

def StartValue(self, n, var):
2741    def StartValue(self, n, var):
2742        r""" This is a shortcut to get the StartValue of 'var' in the nth solution."""
2743        return _pywrapcp.SolutionCollector_StartValue(self, n, var)

This is a shortcut to get the StartValue of 'var' in the nth solution.

def EndValue(self, n, var):
2745    def EndValue(self, n, var):
2746        r""" This is a shortcut to get the EndValue of 'var' in the nth solution."""
2747        return _pywrapcp.SolutionCollector_EndValue(self, n, var)

This is a shortcut to get the EndValue of 'var' in the nth solution.

def DurationValue(self, n, var):
2749    def DurationValue(self, n, var):
2750        r""" This is a shortcut to get the DurationValue of 'var' in the nth solution."""
2751        return _pywrapcp.SolutionCollector_DurationValue(self, n, var)

This is a shortcut to get the DurationValue of 'var' in the nth solution.

def PerformedValue(self, n, var):
2753    def PerformedValue(self, n, var):
2754        r""" This is a shortcut to get the PerformedValue of 'var' in the nth solution."""
2755        return _pywrapcp.SolutionCollector_PerformedValue(self, n, var)

This is a shortcut to get the PerformedValue of 'var' in the nth solution.

def ForwardSequence(self, n, var):
2757    def ForwardSequence(self, n, var):
2758        r"""
2759        This is a shortcut to get the ForwardSequence of 'var' in the
2760        nth solution. The forward sequence is the list of ranked interval
2761        variables starting from the start of the sequence.
2762        """
2763        return _pywrapcp.SolutionCollector_ForwardSequence(self, n, var)

This is a shortcut to get the ForwardSequence of 'var' in the nth solution. The forward sequence is the list of ranked interval variables starting from the start of the sequence.

def BackwardSequence(self, n, var):
2765    def BackwardSequence(self, n, var):
2766        r"""
2767        This is a shortcut to get the BackwardSequence of 'var' in the
2768        nth solution. The backward sequence is the list of ranked interval
2769        variables starting from the end of the sequence.
2770        """
2771        return _pywrapcp.SolutionCollector_BackwardSequence(self, n, var)

This is a shortcut to get the BackwardSequence of 'var' in the nth solution. The backward sequence is the list of ranked interval variables starting from the end of the sequence.

def Unperformed(self, n, var):
2773    def Unperformed(self, n, var):
2774        r"""
2775        This is a shortcut to get the list of unperformed of 'var' in the
2776        nth solution.
2777        """
2778        return _pywrapcp.SolutionCollector_Unperformed(self, n, var)

This is a shortcut to get the list of unperformed of 'var' in the nth solution.

class OptimizeVar:
2782class OptimizeVar(object):
2783    r"""
2784    This class encapsulates an objective. It requires the direction
2785    (minimize or maximize), the variable to optimize, and the
2786    improvement step.
2787    """
2788
2789    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2790
2791    def __init__(self, *args, **kwargs):
2792        raise AttributeError("No constructor defined")
2793    __repr__ = _swig_repr
2794
2795    def Best(self):
2796        r""" Returns the best value found during search."""
2797        return _pywrapcp.OptimizeVar_Best(self)
2798
2799    def BeginNextDecision(self, db):
2800        r""" Internal methods."""
2801        return _pywrapcp.OptimizeVar_BeginNextDecision(self, db)
2802
2803    def RefuteDecision(self, d):
2804        return _pywrapcp.OptimizeVar_RefuteDecision(self, d)
2805
2806    def AtSolution(self):
2807        return _pywrapcp.OptimizeVar_AtSolution(self)
2808
2809    def AcceptSolution(self):
2810        return _pywrapcp.OptimizeVar_AcceptSolution(self)
2811
2812    def DebugString(self):
2813        return _pywrapcp.OptimizeVar_DebugString(self)
2814    __swig_destroy__ = _pywrapcp.delete_OptimizeVar

This class encapsulates an objective. It requires the direction (minimize or maximize), the variable to optimize, and the improvement step.

OptimizeVar(*args, **kwargs)
2791    def __init__(self, *args, **kwargs):
2792        raise AttributeError("No constructor defined")
thisown
2789    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Best(self):
2795    def Best(self):
2796        r""" Returns the best value found during search."""
2797        return _pywrapcp.OptimizeVar_Best(self)

Returns the best value found during search.

def BeginNextDecision(self, db):
2799    def BeginNextDecision(self, db):
2800        r""" Internal methods."""
2801        return _pywrapcp.OptimizeVar_BeginNextDecision(self, db)

Internal methods.

def RefuteDecision(self, d):
2803    def RefuteDecision(self, d):
2804        return _pywrapcp.OptimizeVar_RefuteDecision(self, d)
def AtSolution(self):
2806    def AtSolution(self):
2807        return _pywrapcp.OptimizeVar_AtSolution(self)
def AcceptSolution(self):
2809    def AcceptSolution(self):
2810        return _pywrapcp.OptimizeVar_AcceptSolution(self)
def DebugString(self):
2812    def DebugString(self):
2813        return _pywrapcp.OptimizeVar_DebugString(self)
class SearchLimit(SearchMonitor):
2818class SearchLimit(SearchMonitor):
2819    r""" Base class of all search limits."""
2820
2821    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2822
2823    def __init__(self, *args, **kwargs):
2824        raise AttributeError("No constructor defined - class is abstract")
2825    __repr__ = _swig_repr
2826    __swig_destroy__ = _pywrapcp.delete_SearchLimit
2827
2828    def Crossed(self):
2829        r""" Returns true if the limit has been crossed."""
2830        return _pywrapcp.SearchLimit_Crossed(self)
2831
2832    def Check(self):
2833        r"""
2834        This method is called to check the status of the limit. A return
2835        value of true indicates that we have indeed crossed the limit. In
2836        that case, this method will not be called again and the remaining
2837        search will be discarded.
2838        """
2839        return _pywrapcp.SearchLimit_Check(self)
2840
2841    def Init(self):
2842        r""" This method is called when the search limit is initialized."""
2843        return _pywrapcp.SearchLimit_Init(self)
2844
2845    def EnterSearch(self):
2846        r""" Internal methods."""
2847        return _pywrapcp.SearchLimit_EnterSearch(self)
2848
2849    def BeginNextDecision(self, b):
2850        return _pywrapcp.SearchLimit_BeginNextDecision(self, b)
2851
2852    def RefuteDecision(self, d):
2853        return _pywrapcp.SearchLimit_RefuteDecision(self, d)
2854
2855    def DebugString(self):
2856        return _pywrapcp.SearchLimit_DebugString(self)

Base class of all search limits.

SearchLimit(*args, **kwargs)
2823    def __init__(self, *args, **kwargs):
2824        raise AttributeError("No constructor defined - class is abstract")
thisown
2821    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Crossed(self):
2828    def Crossed(self):
2829        r""" Returns true if the limit has been crossed."""
2830        return _pywrapcp.SearchLimit_Crossed(self)

Returns true if the limit has been crossed.

def Check(self):
2832    def Check(self):
2833        r"""
2834        This method is called to check the status of the limit. A return
2835        value of true indicates that we have indeed crossed the limit. In
2836        that case, this method will not be called again and the remaining
2837        search will be discarded.
2838        """
2839        return _pywrapcp.SearchLimit_Check(self)

This method is called to check the status of the limit. A return value of true indicates that we have indeed crossed the limit. In that case, this method will not be called again and the remaining search will be discarded.

def Init(self):
2841    def Init(self):
2842        r""" This method is called when the search limit is initialized."""
2843        return _pywrapcp.SearchLimit_Init(self)

This method is called when the search limit is initialized.

def EnterSearch(self):
2845    def EnterSearch(self):
2846        r""" Internal methods."""
2847        return _pywrapcp.SearchLimit_EnterSearch(self)

Internal methods.

def BeginNextDecision(self, b):
2849    def BeginNextDecision(self, b):
2850        return _pywrapcp.SearchLimit_BeginNextDecision(self, b)

Before calling DecisionBuilder::Next.

def RefuteDecision(self, d):
2852    def RefuteDecision(self, d):
2853        return _pywrapcp.SearchLimit_RefuteDecision(self, d)

Before refuting the decision.

def DebugString(self):
2855    def DebugString(self):
2856        return _pywrapcp.SearchLimit_DebugString(self)
class IntervalVar(PropagationBaseObject):
2860class IntervalVar(PropagationBaseObject):
2861    r"""
2862    Interval variables are often used in scheduling. The main characteristics
2863    of an IntervalVar are the start position, duration, and end
2864    date. All these characteristics can be queried and set, and demons can
2865    be posted on their modifications.
2866
2867    An important aspect is optionality: an IntervalVar can be performed or not.
2868    If unperformed, then it simply does not exist, and its characteristics
2869    cannot be accessed any more. An interval var is automatically marked
2870    as unperformed when it is not consistent anymore (start greater
2871    than end, duration < 0...)
2872    """
2873
2874    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
2875
2876    def __init__(self, *args, **kwargs):
2877        raise AttributeError("No constructor defined - class is abstract")
2878
2879    def StartMin(self):
2880        r"""
2881        These methods query, set, and watch the start position of the
2882        interval var.
2883        """
2884        return _pywrapcp.IntervalVar_StartMin(self)
2885
2886    def StartMax(self):
2887        return _pywrapcp.IntervalVar_StartMax(self)
2888
2889    def SetStartMin(self, m):
2890        return _pywrapcp.IntervalVar_SetStartMin(self, m)
2891
2892    def SetStartMax(self, m):
2893        return _pywrapcp.IntervalVar_SetStartMax(self, m)
2894
2895    def SetStartRange(self, mi, ma):
2896        return _pywrapcp.IntervalVar_SetStartRange(self, mi, ma)
2897
2898    def OldStartMin(self):
2899        return _pywrapcp.IntervalVar_OldStartMin(self)
2900
2901    def OldStartMax(self):
2902        return _pywrapcp.IntervalVar_OldStartMax(self)
2903
2904    def WhenStartRange(self, *args):
2905        return _pywrapcp.IntervalVar_WhenStartRange(self, *args)
2906
2907    def WhenStartBound(self, *args):
2908        return _pywrapcp.IntervalVar_WhenStartBound(self, *args)
2909
2910    def DurationMin(self):
2911        r""" These methods query, set, and watch the duration of the interval var."""
2912        return _pywrapcp.IntervalVar_DurationMin(self)
2913
2914    def DurationMax(self):
2915        return _pywrapcp.IntervalVar_DurationMax(self)
2916
2917    def SetDurationMin(self, m):
2918        return _pywrapcp.IntervalVar_SetDurationMin(self, m)
2919
2920    def SetDurationMax(self, m):
2921        return _pywrapcp.IntervalVar_SetDurationMax(self, m)
2922
2923    def SetDurationRange(self, mi, ma):
2924        return _pywrapcp.IntervalVar_SetDurationRange(self, mi, ma)
2925
2926    def OldDurationMin(self):
2927        return _pywrapcp.IntervalVar_OldDurationMin(self)
2928
2929    def OldDurationMax(self):
2930        return _pywrapcp.IntervalVar_OldDurationMax(self)
2931
2932    def WhenDurationRange(self, *args):
2933        return _pywrapcp.IntervalVar_WhenDurationRange(self, *args)
2934
2935    def WhenDurationBound(self, *args):
2936        return _pywrapcp.IntervalVar_WhenDurationBound(self, *args)
2937
2938    def EndMin(self):
2939        r""" These methods query, set, and watch the end position of the interval var."""
2940        return _pywrapcp.IntervalVar_EndMin(self)
2941
2942    def EndMax(self):
2943        return _pywrapcp.IntervalVar_EndMax(self)
2944
2945    def SetEndMin(self, m):
2946        return _pywrapcp.IntervalVar_SetEndMin(self, m)
2947
2948    def SetEndMax(self, m):
2949        return _pywrapcp.IntervalVar_SetEndMax(self, m)
2950
2951    def SetEndRange(self, mi, ma):
2952        return _pywrapcp.IntervalVar_SetEndRange(self, mi, ma)
2953
2954    def OldEndMin(self):
2955        return _pywrapcp.IntervalVar_OldEndMin(self)
2956
2957    def OldEndMax(self):
2958        return _pywrapcp.IntervalVar_OldEndMax(self)
2959
2960    def WhenEndRange(self, *args):
2961        return _pywrapcp.IntervalVar_WhenEndRange(self, *args)
2962
2963    def WhenEndBound(self, *args):
2964        return _pywrapcp.IntervalVar_WhenEndBound(self, *args)
2965
2966    def MustBePerformed(self):
2967        r"""
2968        These methods query, set, and watch the performed status of the
2969        interval var.
2970        """
2971        return _pywrapcp.IntervalVar_MustBePerformed(self)
2972
2973    def MayBePerformed(self):
2974        return _pywrapcp.IntervalVar_MayBePerformed(self)
2975
2976    def CannotBePerformed(self):
2977        return _pywrapcp.IntervalVar_CannotBePerformed(self)
2978
2979    def IsPerformedBound(self):
2980        return _pywrapcp.IntervalVar_IsPerformedBound(self)
2981
2982    def SetPerformed(self, val):
2983        return _pywrapcp.IntervalVar_SetPerformed(self, val)
2984
2985    def WasPerformedBound(self):
2986        return _pywrapcp.IntervalVar_WasPerformedBound(self)
2987
2988    def WhenPerformedBound(self, *args):
2989        return _pywrapcp.IntervalVar_WhenPerformedBound(self, *args)
2990
2991    def WhenAnything(self, *args):
2992        r"""
2993        *Overload 1:*
2994        Attaches a demon awakened when anything about this interval changes.
2995
2996        |
2997
2998        *Overload 2:*
2999        Attaches a closure awakened when anything about this interval changes.
3000        """
3001        return _pywrapcp.IntervalVar_WhenAnything(self, *args)
3002
3003    def StartExpr(self):
3004        r"""
3005        These methods create expressions encapsulating the start, end
3006        and duration of the interval var. Please note that these must not
3007        be used if the interval var is unperformed.
3008        """
3009        return _pywrapcp.IntervalVar_StartExpr(self)
3010
3011    def DurationExpr(self):
3012        return _pywrapcp.IntervalVar_DurationExpr(self)
3013
3014    def EndExpr(self):
3015        return _pywrapcp.IntervalVar_EndExpr(self)
3016
3017    def PerformedExpr(self):
3018        return _pywrapcp.IntervalVar_PerformedExpr(self)
3019
3020    def SafeStartExpr(self, unperformed_value):
3021        r"""
3022        These methods create expressions encapsulating the start, end
3023        and duration of the interval var. If the interval var is
3024        unperformed, they will return the unperformed_value.
3025        """
3026        return _pywrapcp.IntervalVar_SafeStartExpr(self, unperformed_value)
3027
3028    def SafeDurationExpr(self, unperformed_value):
3029        return _pywrapcp.IntervalVar_SafeDurationExpr(self, unperformed_value)
3030
3031    def SafeEndExpr(self, unperformed_value):
3032        return _pywrapcp.IntervalVar_SafeEndExpr(self, unperformed_value)
3033
3034    def EndsAfterEnd(self, other):
3035        return _pywrapcp.IntervalVar_EndsAfterEnd(self, other)
3036
3037    def EndsAfterEndWithDelay(self, other, delay):
3038        return _pywrapcp.IntervalVar_EndsAfterEndWithDelay(self, other, delay)
3039
3040    def EndsAfterStart(self, other):
3041        return _pywrapcp.IntervalVar_EndsAfterStart(self, other)
3042
3043    def EndsAfterStartWithDelay(self, other, delay):
3044        return _pywrapcp.IntervalVar_EndsAfterStartWithDelay(self, other, delay)
3045
3046    def EndsAtEnd(self, other):
3047        return _pywrapcp.IntervalVar_EndsAtEnd(self, other)
3048
3049    def EndsAtEndWithDelay(self, other, delay):
3050        return _pywrapcp.IntervalVar_EndsAtEndWithDelay(self, other, delay)
3051
3052    def EndsAtStart(self, other):
3053        return _pywrapcp.IntervalVar_EndsAtStart(self, other)
3054
3055    def EndsAtStartWithDelay(self, other, delay):
3056        return _pywrapcp.IntervalVar_EndsAtStartWithDelay(self, other, delay)
3057
3058    def StartsAfterEnd(self, other):
3059        return _pywrapcp.IntervalVar_StartsAfterEnd(self, other)
3060
3061    def StartsAfterEndWithDelay(self, other, delay):
3062        return _pywrapcp.IntervalVar_StartsAfterEndWithDelay(self, other, delay)
3063
3064    def StartsAfterStart(self, other):
3065        return _pywrapcp.IntervalVar_StartsAfterStart(self, other)
3066
3067    def StartsAfterStartWithDelay(self, other, delay):
3068        return _pywrapcp.IntervalVar_StartsAfterStartWithDelay(self, other, delay)
3069
3070    def StartsAtEnd(self, other):
3071        return _pywrapcp.IntervalVar_StartsAtEnd(self, other)
3072
3073    def StartsAtEndWithDelay(self, other, delay):
3074        return _pywrapcp.IntervalVar_StartsAtEndWithDelay(self, other, delay)
3075
3076    def StartsAtStart(self, other):
3077        return _pywrapcp.IntervalVar_StartsAtStart(self, other)
3078
3079    def StartsAtStartWithDelay(self, other, delay):
3080        return _pywrapcp.IntervalVar_StartsAtStartWithDelay(self, other, delay)
3081
3082    def StaysInSync(self, other):
3083        return _pywrapcp.IntervalVar_StaysInSync(self, other)
3084
3085    def StaysInSyncWithDelay(self, other, delay):
3086        return _pywrapcp.IntervalVar_StaysInSyncWithDelay(self, other, delay)
3087
3088    def EndsAfter(self, date):
3089        return _pywrapcp.IntervalVar_EndsAfter(self, date)
3090
3091    def EndsAt(self, date):
3092        return _pywrapcp.IntervalVar_EndsAt(self, date)
3093
3094    def EndsBefore(self, date):
3095        return _pywrapcp.IntervalVar_EndsBefore(self, date)
3096
3097    def StartsAfter(self, date):
3098        return _pywrapcp.IntervalVar_StartsAfter(self, date)
3099
3100    def StartsAt(self, date):
3101        return _pywrapcp.IntervalVar_StartsAt(self, date)
3102
3103    def StartsBefore(self, date):
3104        return _pywrapcp.IntervalVar_StartsBefore(self, date)
3105
3106    def CrossesDate(self, date):
3107        return _pywrapcp.IntervalVar_CrossesDate(self, date)
3108
3109    def AvoidsDate(self, date):
3110        return _pywrapcp.IntervalVar_AvoidsDate(self, date)
3111
3112    def __repr__(self):
3113        return _pywrapcp.IntervalVar___repr__(self)
3114
3115    def __str__(self):
3116        return _pywrapcp.IntervalVar___str__(self)

Interval variables are often used in scheduling. The main characteristics of an IntervalVar are the start position, duration, and end date. All these characteristics can be queried and set, and demons can be posted on their modifications.

An important aspect is optionality: an IntervalVar can be performed or not. If unperformed, then it simply does not exist, and its characteristics cannot be accessed any more. An interval var is automatically marked as unperformed when it is not consistent anymore (start greater than end, duration < 0...)

IntervalVar(*args, **kwargs)
2876    def __init__(self, *args, **kwargs):
2877        raise AttributeError("No constructor defined - class is abstract")
thisown
2874    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def StartMin(self):
2879    def StartMin(self):
2880        r"""
2881        These methods query, set, and watch the start position of the
2882        interval var.
2883        """
2884        return _pywrapcp.IntervalVar_StartMin(self)

These methods query, set, and watch the start position of the interval var.

def StartMax(self):
2886    def StartMax(self):
2887        return _pywrapcp.IntervalVar_StartMax(self)
def SetStartMin(self, m):
2889    def SetStartMin(self, m):
2890        return _pywrapcp.IntervalVar_SetStartMin(self, m)
def SetStartMax(self, m):
2892    def SetStartMax(self, m):
2893        return _pywrapcp.IntervalVar_SetStartMax(self, m)
def SetStartRange(self, mi, ma):
2895    def SetStartRange(self, mi, ma):
2896        return _pywrapcp.IntervalVar_SetStartRange(self, mi, ma)
def OldStartMin(self):
2898    def OldStartMin(self):
2899        return _pywrapcp.IntervalVar_OldStartMin(self)
def OldStartMax(self):
2901    def OldStartMax(self):
2902        return _pywrapcp.IntervalVar_OldStartMax(self)
def WhenStartRange(self, *args):
2904    def WhenStartRange(self, *args):
2905        return _pywrapcp.IntervalVar_WhenStartRange(self, *args)
def WhenStartBound(self, *args):
2907    def WhenStartBound(self, *args):
2908        return _pywrapcp.IntervalVar_WhenStartBound(self, *args)
def DurationMin(self):
2910    def DurationMin(self):
2911        r""" These methods query, set, and watch the duration of the interval var."""
2912        return _pywrapcp.IntervalVar_DurationMin(self)

These methods query, set, and watch the duration of the interval var.

def DurationMax(self):
2914    def DurationMax(self):
2915        return _pywrapcp.IntervalVar_DurationMax(self)
def SetDurationMin(self, m):
2917    def SetDurationMin(self, m):
2918        return _pywrapcp.IntervalVar_SetDurationMin(self, m)
def SetDurationMax(self, m):
2920    def SetDurationMax(self, m):
2921        return _pywrapcp.IntervalVar_SetDurationMax(self, m)
def SetDurationRange(self, mi, ma):
2923    def SetDurationRange(self, mi, ma):
2924        return _pywrapcp.IntervalVar_SetDurationRange(self, mi, ma)
def OldDurationMin(self):
2926    def OldDurationMin(self):
2927        return _pywrapcp.IntervalVar_OldDurationMin(self)
def OldDurationMax(self):
2929    def OldDurationMax(self):
2930        return _pywrapcp.IntervalVar_OldDurationMax(self)
def WhenDurationRange(self, *args):
2932    def WhenDurationRange(self, *args):
2933        return _pywrapcp.IntervalVar_WhenDurationRange(self, *args)
def WhenDurationBound(self, *args):
2935    def WhenDurationBound(self, *args):
2936        return _pywrapcp.IntervalVar_WhenDurationBound(self, *args)
def EndMin(self):
2938    def EndMin(self):
2939        r""" These methods query, set, and watch the end position of the interval var."""
2940        return _pywrapcp.IntervalVar_EndMin(self)

These methods query, set, and watch the end position of the interval var.

def EndMax(self):
2942    def EndMax(self):
2943        return _pywrapcp.IntervalVar_EndMax(self)
def SetEndMin(self, m):
2945    def SetEndMin(self, m):
2946        return _pywrapcp.IntervalVar_SetEndMin(self, m)
def SetEndMax(self, m):
2948    def SetEndMax(self, m):
2949        return _pywrapcp.IntervalVar_SetEndMax(self, m)
def SetEndRange(self, mi, ma):
2951    def SetEndRange(self, mi, ma):
2952        return _pywrapcp.IntervalVar_SetEndRange(self, mi, ma)
def OldEndMin(self):
2954    def OldEndMin(self):
2955        return _pywrapcp.IntervalVar_OldEndMin(self)
def OldEndMax(self):
2957    def OldEndMax(self):
2958        return _pywrapcp.IntervalVar_OldEndMax(self)
def WhenEndRange(self, *args):
2960    def WhenEndRange(self, *args):
2961        return _pywrapcp.IntervalVar_WhenEndRange(self, *args)
def WhenEndBound(self, *args):
2963    def WhenEndBound(self, *args):
2964        return _pywrapcp.IntervalVar_WhenEndBound(self, *args)
def MustBePerformed(self):
2966    def MustBePerformed(self):
2967        r"""
2968        These methods query, set, and watch the performed status of the
2969        interval var.
2970        """
2971        return _pywrapcp.IntervalVar_MustBePerformed(self)

These methods query, set, and watch the performed status of the interval var.

def MayBePerformed(self):
2973    def MayBePerformed(self):
2974        return _pywrapcp.IntervalVar_MayBePerformed(self)
def CannotBePerformed(self):
2976    def CannotBePerformed(self):
2977        return _pywrapcp.IntervalVar_CannotBePerformed(self)
def IsPerformedBound(self):
2979    def IsPerformedBound(self):
2980        return _pywrapcp.IntervalVar_IsPerformedBound(self)
def SetPerformed(self, val):
2982    def SetPerformed(self, val):
2983        return _pywrapcp.IntervalVar_SetPerformed(self, val)
def WasPerformedBound(self):
2985    def WasPerformedBound(self):
2986        return _pywrapcp.IntervalVar_WasPerformedBound(self)
def WhenPerformedBound(self, *args):
2988    def WhenPerformedBound(self, *args):
2989        return _pywrapcp.IntervalVar_WhenPerformedBound(self, *args)
def WhenAnything(self, *args):
2991    def WhenAnything(self, *args):
2992        r"""
2993        *Overload 1:*
2994        Attaches a demon awakened when anything about this interval changes.
2995
2996        |
2997
2998        *Overload 2:*
2999        Attaches a closure awakened when anything about this interval changes.
3000        """
3001        return _pywrapcp.IntervalVar_WhenAnything(self, *args)

Overload 1: Attaches a demon awakened when anything about this interval changes.

|

Overload 2: Attaches a closure awakened when anything about this interval changes.

def StartExpr(self):
3003    def StartExpr(self):
3004        r"""
3005        These methods create expressions encapsulating the start, end
3006        and duration of the interval var. Please note that these must not
3007        be used if the interval var is unperformed.
3008        """
3009        return _pywrapcp.IntervalVar_StartExpr(self)

These methods create expressions encapsulating the start, end and duration of the interval var. Please note that these must not be used if the interval var is unperformed.

def DurationExpr(self):
3011    def DurationExpr(self):
3012        return _pywrapcp.IntervalVar_DurationExpr(self)
def EndExpr(self):
3014    def EndExpr(self):
3015        return _pywrapcp.IntervalVar_EndExpr(self)
def PerformedExpr(self):
3017    def PerformedExpr(self):
3018        return _pywrapcp.IntervalVar_PerformedExpr(self)
def SafeStartExpr(self, unperformed_value):
3020    def SafeStartExpr(self, unperformed_value):
3021        r"""
3022        These methods create expressions encapsulating the start, end
3023        and duration of the interval var. If the interval var is
3024        unperformed, they will return the unperformed_value.
3025        """
3026        return _pywrapcp.IntervalVar_SafeStartExpr(self, unperformed_value)

These methods create expressions encapsulating the start, end and duration of the interval var. If the interval var is unperformed, they will return the unperformed_value.

def SafeDurationExpr(self, unperformed_value):
3028    def SafeDurationExpr(self, unperformed_value):
3029        return _pywrapcp.IntervalVar_SafeDurationExpr(self, unperformed_value)
def SafeEndExpr(self, unperformed_value):
3031    def SafeEndExpr(self, unperformed_value):
3032        return _pywrapcp.IntervalVar_SafeEndExpr(self, unperformed_value)
def EndsAfterEnd(self, other):
3034    def EndsAfterEnd(self, other):
3035        return _pywrapcp.IntervalVar_EndsAfterEnd(self, other)
def EndsAfterEndWithDelay(self, other, delay):
3037    def EndsAfterEndWithDelay(self, other, delay):
3038        return _pywrapcp.IntervalVar_EndsAfterEndWithDelay(self, other, delay)
def EndsAfterStart(self, other):
3040    def EndsAfterStart(self, other):
3041        return _pywrapcp.IntervalVar_EndsAfterStart(self, other)
def EndsAfterStartWithDelay(self, other, delay):
3043    def EndsAfterStartWithDelay(self, other, delay):
3044        return _pywrapcp.IntervalVar_EndsAfterStartWithDelay(self, other, delay)
def EndsAtEnd(self, other):
3046    def EndsAtEnd(self, other):
3047        return _pywrapcp.IntervalVar_EndsAtEnd(self, other)
def EndsAtEndWithDelay(self, other, delay):
3049    def EndsAtEndWithDelay(self, other, delay):
3050        return _pywrapcp.IntervalVar_EndsAtEndWithDelay(self, other, delay)
def EndsAtStart(self, other):
3052    def EndsAtStart(self, other):
3053        return _pywrapcp.IntervalVar_EndsAtStart(self, other)
def EndsAtStartWithDelay(self, other, delay):
3055    def EndsAtStartWithDelay(self, other, delay):
3056        return _pywrapcp.IntervalVar_EndsAtStartWithDelay(self, other, delay)
def StartsAfterEnd(self, other):
3058    def StartsAfterEnd(self, other):
3059        return _pywrapcp.IntervalVar_StartsAfterEnd(self, other)
def StartsAfterEndWithDelay(self, other, delay):
3061    def StartsAfterEndWithDelay(self, other, delay):
3062        return _pywrapcp.IntervalVar_StartsAfterEndWithDelay(self, other, delay)
def StartsAfterStart(self, other):
3064    def StartsAfterStart(self, other):
3065        return _pywrapcp.IntervalVar_StartsAfterStart(self, other)
def StartsAfterStartWithDelay(self, other, delay):
3067    def StartsAfterStartWithDelay(self, other, delay):
3068        return _pywrapcp.IntervalVar_StartsAfterStartWithDelay(self, other, delay)
def StartsAtEnd(self, other):
3070    def StartsAtEnd(self, other):
3071        return _pywrapcp.IntervalVar_StartsAtEnd(self, other)
def StartsAtEndWithDelay(self, other, delay):
3073    def StartsAtEndWithDelay(self, other, delay):
3074        return _pywrapcp.IntervalVar_StartsAtEndWithDelay(self, other, delay)
def StartsAtStart(self, other):
3076    def StartsAtStart(self, other):
3077        return _pywrapcp.IntervalVar_StartsAtStart(self, other)
def StartsAtStartWithDelay(self, other, delay):
3079    def StartsAtStartWithDelay(self, other, delay):
3080        return _pywrapcp.IntervalVar_StartsAtStartWithDelay(self, other, delay)
def StaysInSync(self, other):
3082    def StaysInSync(self, other):
3083        return _pywrapcp.IntervalVar_StaysInSync(self, other)
def StaysInSyncWithDelay(self, other, delay):
3085    def StaysInSyncWithDelay(self, other, delay):
3086        return _pywrapcp.IntervalVar_StaysInSyncWithDelay(self, other, delay)
def EndsAfter(self, date):
3088    def EndsAfter(self, date):
3089        return _pywrapcp.IntervalVar_EndsAfter(self, date)
def EndsAt(self, date):
3091    def EndsAt(self, date):
3092        return _pywrapcp.IntervalVar_EndsAt(self, date)
def EndsBefore(self, date):
3094    def EndsBefore(self, date):
3095        return _pywrapcp.IntervalVar_EndsBefore(self, date)
def StartsAfter(self, date):
3097    def StartsAfter(self, date):
3098        return _pywrapcp.IntervalVar_StartsAfter(self, date)
def StartsAt(self, date):
3100    def StartsAt(self, date):
3101        return _pywrapcp.IntervalVar_StartsAt(self, date)
def StartsBefore(self, date):
3103    def StartsBefore(self, date):
3104        return _pywrapcp.IntervalVar_StartsBefore(self, date)
def CrossesDate(self, date):
3106    def CrossesDate(self, date):
3107        return _pywrapcp.IntervalVar_CrossesDate(self, date)
def AvoidsDate(self, date):
3109    def AvoidsDate(self, date):
3110        return _pywrapcp.IntervalVar_AvoidsDate(self, date)
class SequenceVar(PropagationBaseObject):
3120class SequenceVar(PropagationBaseObject):
3121    r"""
3122    A sequence variable is a variable whose domain is a set of possible
3123    orderings of the interval variables. It allows ordering of tasks. It
3124    has two sets of methods: ComputePossibleFirstsAndLasts(), which
3125    returns the list of interval variables that can be ranked first or
3126    last; and RankFirst/RankNotFirst/RankLast/RankNotLast, which can be
3127    used to create the search decision.
3128    """
3129
3130    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3131
3132    def __init__(self, *args, **kwargs):
3133        raise AttributeError("No constructor defined")
3134
3135    def DebugString(self):
3136        return _pywrapcp.SequenceVar_DebugString(self)
3137
3138    def RankFirst(self, index):
3139        r"""
3140        Ranks the index_th interval var first of all unranked interval
3141        vars. After that, it will no longer be considered ranked.
3142        """
3143        return _pywrapcp.SequenceVar_RankFirst(self, index)
3144
3145    def RankNotFirst(self, index):
3146        r"""
3147        Indicates that the index_th interval var will not be ranked first
3148        of all currently unranked interval vars.
3149        """
3150        return _pywrapcp.SequenceVar_RankNotFirst(self, index)
3151
3152    def RankLast(self, index):
3153        r"""
3154        Ranks the index_th interval var first of all unranked interval
3155        vars. After that, it will no longer be considered ranked.
3156        """
3157        return _pywrapcp.SequenceVar_RankLast(self, index)
3158
3159    def RankNotLast(self, index):
3160        r"""
3161        Indicates that the index_th interval var will not be ranked first
3162        of all currently unranked interval vars.
3163        """
3164        return _pywrapcp.SequenceVar_RankNotLast(self, index)
3165
3166    def Interval(self, index):
3167        r""" Returns the index_th interval of the sequence."""
3168        return _pywrapcp.SequenceVar_Interval(self, index)
3169
3170    def Next(self, index):
3171        r""" Returns the next of the index_th interval of the sequence."""
3172        return _pywrapcp.SequenceVar_Next(self, index)
3173
3174    def Size(self):
3175        r""" Returns the number of interval vars in the sequence."""
3176        return _pywrapcp.SequenceVar_Size(self)
3177
3178    def __repr__(self):
3179        return _pywrapcp.SequenceVar___repr__(self)
3180
3181    def __str__(self):
3182        return _pywrapcp.SequenceVar___str__(self)

A sequence variable is a variable whose domain is a set of possible orderings of the interval variables. It allows ordering of tasks. It has two sets of methods: ComputePossibleFirstsAndLasts(), which returns the list of interval variables that can be ranked first or last; and RankFirst/RankNotFirst/RankLast/RankNotLast, which can be used to create the search decision.

SequenceVar(*args, **kwargs)
3132    def __init__(self, *args, **kwargs):
3133        raise AttributeError("No constructor defined")
thisown
3130    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def DebugString(self):
3135    def DebugString(self):
3136        return _pywrapcp.SequenceVar_DebugString(self)
def RankFirst(self, index):
3138    def RankFirst(self, index):
3139        r"""
3140        Ranks the index_th interval var first of all unranked interval
3141        vars. After that, it will no longer be considered ranked.
3142        """
3143        return _pywrapcp.SequenceVar_RankFirst(self, index)

Ranks the index_th interval var first of all unranked interval vars. After that, it will no longer be considered ranked.

def RankNotFirst(self, index):
3145    def RankNotFirst(self, index):
3146        r"""
3147        Indicates that the index_th interval var will not be ranked first
3148        of all currently unranked interval vars.
3149        """
3150        return _pywrapcp.SequenceVar_RankNotFirst(self, index)

Indicates that the index_th interval var will not be ranked first of all currently unranked interval vars.

def RankLast(self, index):
3152    def RankLast(self, index):
3153        r"""
3154        Ranks the index_th interval var first of all unranked interval
3155        vars. After that, it will no longer be considered ranked.
3156        """
3157        return _pywrapcp.SequenceVar_RankLast(self, index)

Ranks the index_th interval var first of all unranked interval vars. After that, it will no longer be considered ranked.

def RankNotLast(self, index):
3159    def RankNotLast(self, index):
3160        r"""
3161        Indicates that the index_th interval var will not be ranked first
3162        of all currently unranked interval vars.
3163        """
3164        return _pywrapcp.SequenceVar_RankNotLast(self, index)

Indicates that the index_th interval var will not be ranked first of all currently unranked interval vars.

def Interval(self, index):
3166    def Interval(self, index):
3167        r""" Returns the index_th interval of the sequence."""
3168        return _pywrapcp.SequenceVar_Interval(self, index)

Returns the index_th interval of the sequence.

def Next(self, index):
3170    def Next(self, index):
3171        r""" Returns the next of the index_th interval of the sequence."""
3172        return _pywrapcp.SequenceVar_Next(self, index)

Returns the next of the index_th interval of the sequence.

def Size(self):
3174    def Size(self):
3175        r""" Returns the number of interval vars in the sequence."""
3176        return _pywrapcp.SequenceVar_Size(self)

Returns the number of interval vars in the sequence.

Inherited Members
PropagationBaseObject
solver
Name
class AssignmentElement:
3186class AssignmentElement(object):
3187    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3188
3189    def __init__(self, *args, **kwargs):
3190        raise AttributeError("No constructor defined")
3191    __repr__ = _swig_repr
3192
3193    def Activate(self):
3194        return _pywrapcp.AssignmentElement_Activate(self)
3195
3196    def Deactivate(self):
3197        return _pywrapcp.AssignmentElement_Deactivate(self)
3198
3199    def Activated(self):
3200        return _pywrapcp.AssignmentElement_Activated(self)
3201    __swig_destroy__ = _pywrapcp.delete_AssignmentElement
AssignmentElement(*args, **kwargs)
3189    def __init__(self, *args, **kwargs):
3190        raise AttributeError("No constructor defined")
thisown
3187    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Activate(self):
3193    def Activate(self):
3194        return _pywrapcp.AssignmentElement_Activate(self)
def Deactivate(self):
3196    def Deactivate(self):
3197        return _pywrapcp.AssignmentElement_Deactivate(self)
def Activated(self):
3199    def Activated(self):
3200        return _pywrapcp.AssignmentElement_Activated(self)
class IntVarElement(AssignmentElement):
3205class IntVarElement(AssignmentElement):
3206    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3207
3208    def __init__(self, *args, **kwargs):
3209        raise AttributeError("No constructor defined")
3210    __repr__ = _swig_repr
3211
3212    def Var(self):
3213        return _pywrapcp.IntVarElement_Var(self)
3214
3215    def Min(self):
3216        return _pywrapcp.IntVarElement_Min(self)
3217
3218    def SetMin(self, m):
3219        return _pywrapcp.IntVarElement_SetMin(self, m)
3220
3221    def Max(self):
3222        return _pywrapcp.IntVarElement_Max(self)
3223
3224    def SetMax(self, m):
3225        return _pywrapcp.IntVarElement_SetMax(self, m)
3226
3227    def Value(self):
3228        return _pywrapcp.IntVarElement_Value(self)
3229
3230    def Bound(self):
3231        return _pywrapcp.IntVarElement_Bound(self)
3232
3233    def SetRange(self, l, u):
3234        return _pywrapcp.IntVarElement_SetRange(self, l, u)
3235
3236    def SetValue(self, v):
3237        return _pywrapcp.IntVarElement_SetValue(self, v)
3238
3239    def __eq__(self, element):
3240        return _pywrapcp.IntVarElement___eq__(self, element)
3241
3242    def __ne__(self, element):
3243        return _pywrapcp.IntVarElement___ne__(self, element)
3244    __swig_destroy__ = _pywrapcp.delete_IntVarElement
IntVarElement(*args, **kwargs)
3208    def __init__(self, *args, **kwargs):
3209        raise AttributeError("No constructor defined")
thisown
3206    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Var(self):
3212    def Var(self):
3213        return _pywrapcp.IntVarElement_Var(self)
def Min(self):
3215    def Min(self):
3216        return _pywrapcp.IntVarElement_Min(self)
def SetMin(self, m):
3218    def SetMin(self, m):
3219        return _pywrapcp.IntVarElement_SetMin(self, m)
def Max(self):
3221    def Max(self):
3222        return _pywrapcp.IntVarElement_Max(self)
def SetMax(self, m):
3224    def SetMax(self, m):
3225        return _pywrapcp.IntVarElement_SetMax(self, m)
def Value(self):
3227    def Value(self):
3228        return _pywrapcp.IntVarElement_Value(self)
def Bound(self):
3230    def Bound(self):
3231        return _pywrapcp.IntVarElement_Bound(self)
def SetRange(self, l, u):
3233    def SetRange(self, l, u):
3234        return _pywrapcp.IntVarElement_SetRange(self, l, u)
def SetValue(self, v):
3236    def SetValue(self, v):
3237        return _pywrapcp.IntVarElement_SetValue(self, v)
class IntervalVarElement(AssignmentElement):
3248class IntervalVarElement(AssignmentElement):
3249    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3250
3251    def __init__(self, *args, **kwargs):
3252        raise AttributeError("No constructor defined")
3253    __repr__ = _swig_repr
3254
3255    def Var(self):
3256        return _pywrapcp.IntervalVarElement_Var(self)
3257
3258    def StartMin(self):
3259        return _pywrapcp.IntervalVarElement_StartMin(self)
3260
3261    def StartMax(self):
3262        return _pywrapcp.IntervalVarElement_StartMax(self)
3263
3264    def StartValue(self):
3265        return _pywrapcp.IntervalVarElement_StartValue(self)
3266
3267    def DurationMin(self):
3268        return _pywrapcp.IntervalVarElement_DurationMin(self)
3269
3270    def DurationMax(self):
3271        return _pywrapcp.IntervalVarElement_DurationMax(self)
3272
3273    def DurationValue(self):
3274        return _pywrapcp.IntervalVarElement_DurationValue(self)
3275
3276    def EndMin(self):
3277        return _pywrapcp.IntervalVarElement_EndMin(self)
3278
3279    def EndMax(self):
3280        return _pywrapcp.IntervalVarElement_EndMax(self)
3281
3282    def EndValue(self):
3283        return _pywrapcp.IntervalVarElement_EndValue(self)
3284
3285    def PerformedMin(self):
3286        return _pywrapcp.IntervalVarElement_PerformedMin(self)
3287
3288    def PerformedMax(self):
3289        return _pywrapcp.IntervalVarElement_PerformedMax(self)
3290
3291    def PerformedValue(self):
3292        return _pywrapcp.IntervalVarElement_PerformedValue(self)
3293
3294    def SetStartMin(self, m):
3295        return _pywrapcp.IntervalVarElement_SetStartMin(self, m)
3296
3297    def SetStartMax(self, m):
3298        return _pywrapcp.IntervalVarElement_SetStartMax(self, m)
3299
3300    def SetStartRange(self, mi, ma):
3301        return _pywrapcp.IntervalVarElement_SetStartRange(self, mi, ma)
3302
3303    def SetStartValue(self, v):
3304        return _pywrapcp.IntervalVarElement_SetStartValue(self, v)
3305
3306    def SetDurationMin(self, m):
3307        return _pywrapcp.IntervalVarElement_SetDurationMin(self, m)
3308
3309    def SetDurationMax(self, m):
3310        return _pywrapcp.IntervalVarElement_SetDurationMax(self, m)
3311
3312    def SetDurationRange(self, mi, ma):
3313        return _pywrapcp.IntervalVarElement_SetDurationRange(self, mi, ma)
3314
3315    def SetDurationValue(self, v):
3316        return _pywrapcp.IntervalVarElement_SetDurationValue(self, v)
3317
3318    def SetEndMin(self, m):
3319        return _pywrapcp.IntervalVarElement_SetEndMin(self, m)
3320
3321    def SetEndMax(self, m):
3322        return _pywrapcp.IntervalVarElement_SetEndMax(self, m)
3323
3324    def SetEndRange(self, mi, ma):
3325        return _pywrapcp.IntervalVarElement_SetEndRange(self, mi, ma)
3326
3327    def SetEndValue(self, v):
3328        return _pywrapcp.IntervalVarElement_SetEndValue(self, v)
3329
3330    def SetPerformedMin(self, m):
3331        return _pywrapcp.IntervalVarElement_SetPerformedMin(self, m)
3332
3333    def SetPerformedMax(self, m):
3334        return _pywrapcp.IntervalVarElement_SetPerformedMax(self, m)
3335
3336    def SetPerformedRange(self, mi, ma):
3337        return _pywrapcp.IntervalVarElement_SetPerformedRange(self, mi, ma)
3338
3339    def SetPerformedValue(self, v):
3340        return _pywrapcp.IntervalVarElement_SetPerformedValue(self, v)
3341
3342    def __eq__(self, element):
3343        return _pywrapcp.IntervalVarElement___eq__(self, element)
3344
3345    def __ne__(self, element):
3346        return _pywrapcp.IntervalVarElement___ne__(self, element)
3347    __swig_destroy__ = _pywrapcp.delete_IntervalVarElement
IntervalVarElement(*args, **kwargs)
3251    def __init__(self, *args, **kwargs):
3252        raise AttributeError("No constructor defined")
thisown
3249    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Var(self):
3255    def Var(self):
3256        return _pywrapcp.IntervalVarElement_Var(self)
def StartMin(self):
3258    def StartMin(self):
3259        return _pywrapcp.IntervalVarElement_StartMin(self)
def StartMax(self):
3261    def StartMax(self):
3262        return _pywrapcp.IntervalVarElement_StartMax(self)
def StartValue(self):
3264    def StartValue(self):
3265        return _pywrapcp.IntervalVarElement_StartValue(self)
def DurationMin(self):
3267    def DurationMin(self):
3268        return _pywrapcp.IntervalVarElement_DurationMin(self)
def DurationMax(self):
3270    def DurationMax(self):
3271        return _pywrapcp.IntervalVarElement_DurationMax(self)
def DurationValue(self):
3273    def DurationValue(self):
3274        return _pywrapcp.IntervalVarElement_DurationValue(self)
def EndMin(self):
3276    def EndMin(self):
3277        return _pywrapcp.IntervalVarElement_EndMin(self)
def EndMax(self):
3279    def EndMax(self):
3280        return _pywrapcp.IntervalVarElement_EndMax(self)
def EndValue(self):
3282    def EndValue(self):
3283        return _pywrapcp.IntervalVarElement_EndValue(self)
def PerformedMin(self):
3285    def PerformedMin(self):
3286        return _pywrapcp.IntervalVarElement_PerformedMin(self)
def PerformedMax(self):
3288    def PerformedMax(self):
3289        return _pywrapcp.IntervalVarElement_PerformedMax(self)
def PerformedValue(self):
3291    def PerformedValue(self):
3292        return _pywrapcp.IntervalVarElement_PerformedValue(self)
def SetStartMin(self, m):
3294    def SetStartMin(self, m):
3295        return _pywrapcp.IntervalVarElement_SetStartMin(self, m)
def SetStartMax(self, m):
3297    def SetStartMax(self, m):
3298        return _pywrapcp.IntervalVarElement_SetStartMax(self, m)
def SetStartRange(self, mi, ma):
3300    def SetStartRange(self, mi, ma):
3301        return _pywrapcp.IntervalVarElement_SetStartRange(self, mi, ma)
def SetStartValue(self, v):
3303    def SetStartValue(self, v):
3304        return _pywrapcp.IntervalVarElement_SetStartValue(self, v)
def SetDurationMin(self, m):
3306    def SetDurationMin(self, m):
3307        return _pywrapcp.IntervalVarElement_SetDurationMin(self, m)
def SetDurationMax(self, m):
3309    def SetDurationMax(self, m):
3310        return _pywrapcp.IntervalVarElement_SetDurationMax(self, m)
def SetDurationRange(self, mi, ma):
3312    def SetDurationRange(self, mi, ma):
3313        return _pywrapcp.IntervalVarElement_SetDurationRange(self, mi, ma)
def SetDurationValue(self, v):
3315    def SetDurationValue(self, v):
3316        return _pywrapcp.IntervalVarElement_SetDurationValue(self, v)
def SetEndMin(self, m):
3318    def SetEndMin(self, m):
3319        return _pywrapcp.IntervalVarElement_SetEndMin(self, m)
def SetEndMax(self, m):
3321    def SetEndMax(self, m):
3322        return _pywrapcp.IntervalVarElement_SetEndMax(self, m)
def SetEndRange(self, mi, ma):
3324    def SetEndRange(self, mi, ma):
3325        return _pywrapcp.IntervalVarElement_SetEndRange(self, mi, ma)
def SetEndValue(self, v):
3327    def SetEndValue(self, v):
3328        return _pywrapcp.IntervalVarElement_SetEndValue(self, v)
def SetPerformedMin(self, m):
3330    def SetPerformedMin(self, m):
3331        return _pywrapcp.IntervalVarElement_SetPerformedMin(self, m)
def SetPerformedMax(self, m):
3333    def SetPerformedMax(self, m):
3334        return _pywrapcp.IntervalVarElement_SetPerformedMax(self, m)
def SetPerformedRange(self, mi, ma):
3336    def SetPerformedRange(self, mi, ma):
3337        return _pywrapcp.IntervalVarElement_SetPerformedRange(self, mi, ma)
def SetPerformedValue(self, v):
3339    def SetPerformedValue(self, v):
3340        return _pywrapcp.IntervalVarElement_SetPerformedValue(self, v)
class SequenceVarElement(AssignmentElement):
3351class SequenceVarElement(AssignmentElement):
3352    r"""
3353    The SequenceVarElement stores a partial representation of ranked
3354    interval variables in the underlying sequence variable.
3355    This representation consists of three vectors:
3356      - the forward sequence. That is the list of interval variables
3357        ranked first in the sequence.  The first element of the backward
3358        sequence is the first interval in the sequence variable.
3359      - the backward sequence. That is the list of interval variables
3360        ranked last in the sequence. The first element of the backward
3361        sequence is the last interval in the sequence variable.
3362      - The list of unperformed interval variables.
3363     Furthermore, if all performed variables are ranked, then by
3364     convention, the forward_sequence will contain all such variables
3365     and the backward_sequence will be empty.
3366    """
3367
3368    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3369
3370    def __init__(self, *args, **kwargs):
3371        raise AttributeError("No constructor defined")
3372    __repr__ = _swig_repr
3373
3374    def Var(self):
3375        return _pywrapcp.SequenceVarElement_Var(self)
3376
3377    def ForwardSequence(self):
3378        return _pywrapcp.SequenceVarElement_ForwardSequence(self)
3379
3380    def BackwardSequence(self):
3381        return _pywrapcp.SequenceVarElement_BackwardSequence(self)
3382
3383    def Unperformed(self):
3384        return _pywrapcp.SequenceVarElement_Unperformed(self)
3385
3386    def SetSequence(self, forward_sequence, backward_sequence, unperformed):
3387        return _pywrapcp.SequenceVarElement_SetSequence(self, forward_sequence, backward_sequence, unperformed)
3388
3389    def SetForwardSequence(self, forward_sequence):
3390        return _pywrapcp.SequenceVarElement_SetForwardSequence(self, forward_sequence)
3391
3392    def SetBackwardSequence(self, backward_sequence):
3393        return _pywrapcp.SequenceVarElement_SetBackwardSequence(self, backward_sequence)
3394
3395    def SetUnperformed(self, unperformed):
3396        return _pywrapcp.SequenceVarElement_SetUnperformed(self, unperformed)
3397
3398    def __eq__(self, element):
3399        return _pywrapcp.SequenceVarElement___eq__(self, element)
3400
3401    def __ne__(self, element):
3402        return _pywrapcp.SequenceVarElement___ne__(self, element)
3403    __swig_destroy__ = _pywrapcp.delete_SequenceVarElement

The SequenceVarElement stores a partial representation of ranked interval variables in the underlying sequence variable.

This representation consists of three vectors:
  • the forward sequence. That is the list of interval variables ranked first in the sequence. The first element of the backward sequence is the first interval in the sequence variable.
    • the backward sequence. That is the list of interval variables ranked last in the sequence. The first element of the backward sequence is the last interval in the sequence variable.
    • The list of unperformed interval variables. Furthermore, if all performed variables are ranked, then by convention, the forward_sequence will contain all such variables and the backward_sequence will be empty.
SequenceVarElement(*args, **kwargs)
3370    def __init__(self, *args, **kwargs):
3371        raise AttributeError("No constructor defined")
thisown
3368    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Var(self):
3374    def Var(self):
3375        return _pywrapcp.SequenceVarElement_Var(self)
def ForwardSequence(self):
3377    def ForwardSequence(self):
3378        return _pywrapcp.SequenceVarElement_ForwardSequence(self)
def BackwardSequence(self):
3380    def BackwardSequence(self):
3381        return _pywrapcp.SequenceVarElement_BackwardSequence(self)
def Unperformed(self):
3383    def Unperformed(self):
3384        return _pywrapcp.SequenceVarElement_Unperformed(self)
def SetSequence(self, forward_sequence, backward_sequence, unperformed):
3386    def SetSequence(self, forward_sequence, backward_sequence, unperformed):
3387        return _pywrapcp.SequenceVarElement_SetSequence(self, forward_sequence, backward_sequence, unperformed)
def SetForwardSequence(self, forward_sequence):
3389    def SetForwardSequence(self, forward_sequence):
3390        return _pywrapcp.SequenceVarElement_SetForwardSequence(self, forward_sequence)
def SetBackwardSequence(self, backward_sequence):
3392    def SetBackwardSequence(self, backward_sequence):
3393        return _pywrapcp.SequenceVarElement_SetBackwardSequence(self, backward_sequence)
def SetUnperformed(self, unperformed):
3395    def SetUnperformed(self, unperformed):
3396        return _pywrapcp.SequenceVarElement_SetUnperformed(self, unperformed)
class Assignment(PropagationBaseObject):
3407class Assignment(PropagationBaseObject):
3408    r"""
3409    An Assignment is a variable -> domains mapping, used
3410    to report solutions to the user.
3411    """
3412
3413    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3414
3415    def __init__(self, *args, **kwargs):
3416        raise AttributeError("No constructor defined")
3417    __repr__ = _swig_repr
3418
3419    def Clear(self):
3420        return _pywrapcp.Assignment_Clear(self)
3421
3422    def Empty(self):
3423        return _pywrapcp.Assignment_Empty(self)
3424
3425    def Size(self):
3426        return _pywrapcp.Assignment_Size(self)
3427
3428    def NumIntVars(self):
3429        return _pywrapcp.Assignment_NumIntVars(self)
3430
3431    def NumIntervalVars(self):
3432        return _pywrapcp.Assignment_NumIntervalVars(self)
3433
3434    def NumSequenceVars(self):
3435        return _pywrapcp.Assignment_NumSequenceVars(self)
3436
3437    def Store(self):
3438        return _pywrapcp.Assignment_Store(self)
3439
3440    def Restore(self):
3441        return _pywrapcp.Assignment_Restore(self)
3442
3443    def Load(self, *args):
3444        return _pywrapcp.Assignment_Load(self, *args)
3445
3446    def Save(self, *args):
3447        return _pywrapcp.Assignment_Save(self, *args)
3448
3449    def AddObjective(self, v):
3450        return _pywrapcp.Assignment_AddObjective(self, v)
3451
3452    def Objective(self):
3453        return _pywrapcp.Assignment_Objective(self)
3454
3455    def HasObjective(self):
3456        return _pywrapcp.Assignment_HasObjective(self)
3457
3458    def ObjectiveMin(self):
3459        return _pywrapcp.Assignment_ObjectiveMin(self)
3460
3461    def ObjectiveMax(self):
3462        return _pywrapcp.Assignment_ObjectiveMax(self)
3463
3464    def ObjectiveValue(self):
3465        return _pywrapcp.Assignment_ObjectiveValue(self)
3466
3467    def ObjectiveBound(self):
3468        return _pywrapcp.Assignment_ObjectiveBound(self)
3469
3470    def SetObjectiveMin(self, m):
3471        return _pywrapcp.Assignment_SetObjectiveMin(self, m)
3472
3473    def SetObjectiveMax(self, m):
3474        return _pywrapcp.Assignment_SetObjectiveMax(self, m)
3475
3476    def SetObjectiveValue(self, value):
3477        return _pywrapcp.Assignment_SetObjectiveValue(self, value)
3478
3479    def SetObjectiveRange(self, l, u):
3480        return _pywrapcp.Assignment_SetObjectiveRange(self, l, u)
3481
3482    def Min(self, var):
3483        return _pywrapcp.Assignment_Min(self, var)
3484
3485    def Max(self, var):
3486        return _pywrapcp.Assignment_Max(self, var)
3487
3488    def Value(self, var):
3489        return _pywrapcp.Assignment_Value(self, var)
3490
3491    def Bound(self, var):
3492        return _pywrapcp.Assignment_Bound(self, var)
3493
3494    def SetMin(self, var, m):
3495        return _pywrapcp.Assignment_SetMin(self, var, m)
3496
3497    def SetMax(self, var, m):
3498        return _pywrapcp.Assignment_SetMax(self, var, m)
3499
3500    def SetRange(self, var, l, u):
3501        return _pywrapcp.Assignment_SetRange(self, var, l, u)
3502
3503    def SetValue(self, var, value):
3504        return _pywrapcp.Assignment_SetValue(self, var, value)
3505
3506    def StartMin(self, var):
3507        return _pywrapcp.Assignment_StartMin(self, var)
3508
3509    def StartMax(self, var):
3510        return _pywrapcp.Assignment_StartMax(self, var)
3511
3512    def StartValue(self, var):
3513        return _pywrapcp.Assignment_StartValue(self, var)
3514
3515    def DurationMin(self, var):
3516        return _pywrapcp.Assignment_DurationMin(self, var)
3517
3518    def DurationMax(self, var):
3519        return _pywrapcp.Assignment_DurationMax(self, var)
3520
3521    def DurationValue(self, var):
3522        return _pywrapcp.Assignment_DurationValue(self, var)
3523
3524    def EndMin(self, var):
3525        return _pywrapcp.Assignment_EndMin(self, var)
3526
3527    def EndMax(self, var):
3528        return _pywrapcp.Assignment_EndMax(self, var)
3529
3530    def EndValue(self, var):
3531        return _pywrapcp.Assignment_EndValue(self, var)
3532
3533    def PerformedMin(self, var):
3534        return _pywrapcp.Assignment_PerformedMin(self, var)
3535
3536    def PerformedMax(self, var):
3537        return _pywrapcp.Assignment_PerformedMax(self, var)
3538
3539    def PerformedValue(self, var):
3540        return _pywrapcp.Assignment_PerformedValue(self, var)
3541
3542    def SetStartMin(self, var, m):
3543        return _pywrapcp.Assignment_SetStartMin(self, var, m)
3544
3545    def SetStartMax(self, var, m):
3546        return _pywrapcp.Assignment_SetStartMax(self, var, m)
3547
3548    def SetStartRange(self, var, mi, ma):
3549        return _pywrapcp.Assignment_SetStartRange(self, var, mi, ma)
3550
3551    def SetStartValue(self, var, value):
3552        return _pywrapcp.Assignment_SetStartValue(self, var, value)
3553
3554    def SetDurationMin(self, var, m):
3555        return _pywrapcp.Assignment_SetDurationMin(self, var, m)
3556
3557    def SetDurationMax(self, var, m):
3558        return _pywrapcp.Assignment_SetDurationMax(self, var, m)
3559
3560    def SetDurationRange(self, var, mi, ma):
3561        return _pywrapcp.Assignment_SetDurationRange(self, var, mi, ma)
3562
3563    def SetDurationValue(self, var, value):
3564        return _pywrapcp.Assignment_SetDurationValue(self, var, value)
3565
3566    def SetEndMin(self, var, m):
3567        return _pywrapcp.Assignment_SetEndMin(self, var, m)
3568
3569    def SetEndMax(self, var, m):
3570        return _pywrapcp.Assignment_SetEndMax(self, var, m)
3571
3572    def SetEndRange(self, var, mi, ma):
3573        return _pywrapcp.Assignment_SetEndRange(self, var, mi, ma)
3574
3575    def SetEndValue(self, var, value):
3576        return _pywrapcp.Assignment_SetEndValue(self, var, value)
3577
3578    def SetPerformedMin(self, var, m):
3579        return _pywrapcp.Assignment_SetPerformedMin(self, var, m)
3580
3581    def SetPerformedMax(self, var, m):
3582        return _pywrapcp.Assignment_SetPerformedMax(self, var, m)
3583
3584    def SetPerformedRange(self, var, mi, ma):
3585        return _pywrapcp.Assignment_SetPerformedRange(self, var, mi, ma)
3586
3587    def SetPerformedValue(self, var, value):
3588        return _pywrapcp.Assignment_SetPerformedValue(self, var, value)
3589
3590    def Add(self, *args):
3591        return _pywrapcp.Assignment_Add(self, *args)
3592
3593    def ForwardSequence(self, var):
3594        return _pywrapcp.Assignment_ForwardSequence(self, var)
3595
3596    def BackwardSequence(self, var):
3597        return _pywrapcp.Assignment_BackwardSequence(self, var)
3598
3599    def Unperformed(self, var):
3600        return _pywrapcp.Assignment_Unperformed(self, var)
3601
3602    def SetSequence(self, var, forward_sequence, backward_sequence, unperformed):
3603        return _pywrapcp.Assignment_SetSequence(self, var, forward_sequence, backward_sequence, unperformed)
3604
3605    def SetForwardSequence(self, var, forward_sequence):
3606        return _pywrapcp.Assignment_SetForwardSequence(self, var, forward_sequence)
3607
3608    def SetBackwardSequence(self, var, backward_sequence):
3609        return _pywrapcp.Assignment_SetBackwardSequence(self, var, backward_sequence)
3610
3611    def SetUnperformed(self, var, unperformed):
3612        return _pywrapcp.Assignment_SetUnperformed(self, var, unperformed)
3613
3614    def Activate(self, *args):
3615        return _pywrapcp.Assignment_Activate(self, *args)
3616
3617    def Deactivate(self, *args):
3618        return _pywrapcp.Assignment_Deactivate(self, *args)
3619
3620    def Activated(self, *args):
3621        return _pywrapcp.Assignment_Activated(self, *args)
3622
3623    def DebugString(self):
3624        return _pywrapcp.Assignment_DebugString(self)
3625
3626    def IntVarContainer(self):
3627        return _pywrapcp.Assignment_IntVarContainer(self)
3628
3629    def MutableIntVarContainer(self):
3630        return _pywrapcp.Assignment_MutableIntVarContainer(self)
3631
3632    def IntervalVarContainer(self):
3633        return _pywrapcp.Assignment_IntervalVarContainer(self)
3634
3635    def MutableIntervalVarContainer(self):
3636        return _pywrapcp.Assignment_MutableIntervalVarContainer(self)
3637
3638    def SequenceVarContainer(self):
3639        return _pywrapcp.Assignment_SequenceVarContainer(self)
3640
3641    def MutableSequenceVarContainer(self):
3642        return _pywrapcp.Assignment_MutableSequenceVarContainer(self)
3643
3644    def __eq__(self, assignment):
3645        return _pywrapcp.Assignment___eq__(self, assignment)
3646
3647    def __ne__(self, assignment):
3648        return _pywrapcp.Assignment___ne__(self, assignment)

An Assignment is a variable -> domains mapping, used to report solutions to the user.

Assignment(*args, **kwargs)
3415    def __init__(self, *args, **kwargs):
3416        raise AttributeError("No constructor defined")
thisown
3413    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Clear(self):
3419    def Clear(self):
3420        return _pywrapcp.Assignment_Clear(self)
def Empty(self):
3422    def Empty(self):
3423        return _pywrapcp.Assignment_Empty(self)
def Size(self):
3425    def Size(self):
3426        return _pywrapcp.Assignment_Size(self)
def NumIntVars(self):
3428    def NumIntVars(self):
3429        return _pywrapcp.Assignment_NumIntVars(self)
def NumIntervalVars(self):
3431    def NumIntervalVars(self):
3432        return _pywrapcp.Assignment_NumIntervalVars(self)
def NumSequenceVars(self):
3434    def NumSequenceVars(self):
3435        return _pywrapcp.Assignment_NumSequenceVars(self)
def Store(self):
3437    def Store(self):
3438        return _pywrapcp.Assignment_Store(self)
def Restore(self):
3440    def Restore(self):
3441        return _pywrapcp.Assignment_Restore(self)
def Load(self, *args):
3443    def Load(self, *args):
3444        return _pywrapcp.Assignment_Load(self, *args)
def Save(self, *args):
3446    def Save(self, *args):
3447        return _pywrapcp.Assignment_Save(self, *args)
def AddObjective(self, v):
3449    def AddObjective(self, v):
3450        return _pywrapcp.Assignment_AddObjective(self, v)
def Objective(self):
3452    def Objective(self):
3453        return _pywrapcp.Assignment_Objective(self)
def HasObjective(self):
3455    def HasObjective(self):
3456        return _pywrapcp.Assignment_HasObjective(self)
def ObjectiveMin(self):
3458    def ObjectiveMin(self):
3459        return _pywrapcp.Assignment_ObjectiveMin(self)
def ObjectiveMax(self):
3461    def ObjectiveMax(self):
3462        return _pywrapcp.Assignment_ObjectiveMax(self)
def ObjectiveValue(self):
3464    def ObjectiveValue(self):
3465        return _pywrapcp.Assignment_ObjectiveValue(self)
def ObjectiveBound(self):
3467    def ObjectiveBound(self):
3468        return _pywrapcp.Assignment_ObjectiveBound(self)
def SetObjectiveMin(self, m):
3470    def SetObjectiveMin(self, m):
3471        return _pywrapcp.Assignment_SetObjectiveMin(self, m)
def SetObjectiveMax(self, m):
3473    def SetObjectiveMax(self, m):
3474        return _pywrapcp.Assignment_SetObjectiveMax(self, m)
def SetObjectiveValue(self, value):
3476    def SetObjectiveValue(self, value):
3477        return _pywrapcp.Assignment_SetObjectiveValue(self, value)
def SetObjectiveRange(self, l, u):
3479    def SetObjectiveRange(self, l, u):
3480        return _pywrapcp.Assignment_SetObjectiveRange(self, l, u)
def Min(self, var):
3482    def Min(self, var):
3483        return _pywrapcp.Assignment_Min(self, var)
def Max(self, var):
3485    def Max(self, var):
3486        return _pywrapcp.Assignment_Max(self, var)
def Value(self, var):
3488    def Value(self, var):
3489        return _pywrapcp.Assignment_Value(self, var)
def Bound(self, var):
3491    def Bound(self, var):
3492        return _pywrapcp.Assignment_Bound(self, var)
def SetMin(self, var, m):
3494    def SetMin(self, var, m):
3495        return _pywrapcp.Assignment_SetMin(self, var, m)
def SetMax(self, var, m):
3497    def SetMax(self, var, m):
3498        return _pywrapcp.Assignment_SetMax(self, var, m)
def SetRange(self, var, l, u):
3500    def SetRange(self, var, l, u):
3501        return _pywrapcp.Assignment_SetRange(self, var, l, u)
def SetValue(self, var, value):
3503    def SetValue(self, var, value):
3504        return _pywrapcp.Assignment_SetValue(self, var, value)
def StartMin(self, var):
3506    def StartMin(self, var):
3507        return _pywrapcp.Assignment_StartMin(self, var)
def StartMax(self, var):
3509    def StartMax(self, var):
3510        return _pywrapcp.Assignment_StartMax(self, var)
def StartValue(self, var):
3512    def StartValue(self, var):
3513        return _pywrapcp.Assignment_StartValue(self, var)
def DurationMin(self, var):
3515    def DurationMin(self, var):
3516        return _pywrapcp.Assignment_DurationMin(self, var)
def DurationMax(self, var):
3518    def DurationMax(self, var):
3519        return _pywrapcp.Assignment_DurationMax(self, var)
def DurationValue(self, var):
3521    def DurationValue(self, var):
3522        return _pywrapcp.Assignment_DurationValue(self, var)
def EndMin(self, var):
3524    def EndMin(self, var):
3525        return _pywrapcp.Assignment_EndMin(self, var)
def EndMax(self, var):
3527    def EndMax(self, var):
3528        return _pywrapcp.Assignment_EndMax(self, var)
def EndValue(self, var):
3530    def EndValue(self, var):
3531        return _pywrapcp.Assignment_EndValue(self, var)
def PerformedMin(self, var):
3533    def PerformedMin(self, var):
3534        return _pywrapcp.Assignment_PerformedMin(self, var)
def PerformedMax(self, var):
3536    def PerformedMax(self, var):
3537        return _pywrapcp.Assignment_PerformedMax(self, var)
def PerformedValue(self, var):
3539    def PerformedValue(self, var):
3540        return _pywrapcp.Assignment_PerformedValue(self, var)
def SetStartMin(self, var, m):
3542    def SetStartMin(self, var, m):
3543        return _pywrapcp.Assignment_SetStartMin(self, var, m)
def SetStartMax(self, var, m):
3545    def SetStartMax(self, var, m):
3546        return _pywrapcp.Assignment_SetStartMax(self, var, m)
def SetStartRange(self, var, mi, ma):
3548    def SetStartRange(self, var, mi, ma):
3549        return _pywrapcp.Assignment_SetStartRange(self, var, mi, ma)
def SetStartValue(self, var, value):
3551    def SetStartValue(self, var, value):
3552        return _pywrapcp.Assignment_SetStartValue(self, var, value)
def SetDurationMin(self, var, m):
3554    def SetDurationMin(self, var, m):
3555        return _pywrapcp.Assignment_SetDurationMin(self, var, m)
def SetDurationMax(self, var, m):
3557    def SetDurationMax(self, var, m):
3558        return _pywrapcp.Assignment_SetDurationMax(self, var, m)
def SetDurationRange(self, var, mi, ma):
3560    def SetDurationRange(self, var, mi, ma):
3561        return _pywrapcp.Assignment_SetDurationRange(self, var, mi, ma)
def SetDurationValue(self, var, value):
3563    def SetDurationValue(self, var, value):
3564        return _pywrapcp.Assignment_SetDurationValue(self, var, value)
def SetEndMin(self, var, m):
3566    def SetEndMin(self, var, m):
3567        return _pywrapcp.Assignment_SetEndMin(self, var, m)
def SetEndMax(self, var, m):
3569    def SetEndMax(self, var, m):
3570        return _pywrapcp.Assignment_SetEndMax(self, var, m)
def SetEndRange(self, var, mi, ma):
3572    def SetEndRange(self, var, mi, ma):
3573        return _pywrapcp.Assignment_SetEndRange(self, var, mi, ma)
def SetEndValue(self, var, value):
3575    def SetEndValue(self, var, value):
3576        return _pywrapcp.Assignment_SetEndValue(self, var, value)
def SetPerformedMin(self, var, m):
3578    def SetPerformedMin(self, var, m):
3579        return _pywrapcp.Assignment_SetPerformedMin(self, var, m)
def SetPerformedMax(self, var, m):
3581    def SetPerformedMax(self, var, m):
3582        return _pywrapcp.Assignment_SetPerformedMax(self, var, m)
def SetPerformedRange(self, var, mi, ma):
3584    def SetPerformedRange(self, var, mi, ma):
3585        return _pywrapcp.Assignment_SetPerformedRange(self, var, mi, ma)
def SetPerformedValue(self, var, value):
3587    def SetPerformedValue(self, var, value):
3588        return _pywrapcp.Assignment_SetPerformedValue(self, var, value)
def Add(self, *args):
3590    def Add(self, *args):
3591        return _pywrapcp.Assignment_Add(self, *args)
def ForwardSequence(self, var):
3593    def ForwardSequence(self, var):
3594        return _pywrapcp.Assignment_ForwardSequence(self, var)
def BackwardSequence(self, var):
3596    def BackwardSequence(self, var):
3597        return _pywrapcp.Assignment_BackwardSequence(self, var)
def Unperformed(self, var):
3599    def Unperformed(self, var):
3600        return _pywrapcp.Assignment_Unperformed(self, var)
def SetSequence(self, var, forward_sequence, backward_sequence, unperformed):
3602    def SetSequence(self, var, forward_sequence, backward_sequence, unperformed):
3603        return _pywrapcp.Assignment_SetSequence(self, var, forward_sequence, backward_sequence, unperformed)
def SetForwardSequence(self, var, forward_sequence):
3605    def SetForwardSequence(self, var, forward_sequence):
3606        return _pywrapcp.Assignment_SetForwardSequence(self, var, forward_sequence)
def SetBackwardSequence(self, var, backward_sequence):
3608    def SetBackwardSequence(self, var, backward_sequence):
3609        return _pywrapcp.Assignment_SetBackwardSequence(self, var, backward_sequence)
def SetUnperformed(self, var, unperformed):
3611    def SetUnperformed(self, var, unperformed):
3612        return _pywrapcp.Assignment_SetUnperformed(self, var, unperformed)
def Activate(self, *args):
3614    def Activate(self, *args):
3615        return _pywrapcp.Assignment_Activate(self, *args)
def Deactivate(self, *args):
3617    def Deactivate(self, *args):
3618        return _pywrapcp.Assignment_Deactivate(self, *args)
def Activated(self, *args):
3620    def Activated(self, *args):
3621        return _pywrapcp.Assignment_Activated(self, *args)
def DebugString(self):
3623    def DebugString(self):
3624        return _pywrapcp.Assignment_DebugString(self)
def IntVarContainer(self):
3626    def IntVarContainer(self):
3627        return _pywrapcp.Assignment_IntVarContainer(self)
def MutableIntVarContainer(self):
3629    def MutableIntVarContainer(self):
3630        return _pywrapcp.Assignment_MutableIntVarContainer(self)
def IntervalVarContainer(self):
3632    def IntervalVarContainer(self):
3633        return _pywrapcp.Assignment_IntervalVarContainer(self)
def MutableIntervalVarContainer(self):
3635    def MutableIntervalVarContainer(self):
3636        return _pywrapcp.Assignment_MutableIntervalVarContainer(self)
def SequenceVarContainer(self):
3638    def SequenceVarContainer(self):
3639        return _pywrapcp.Assignment_SequenceVarContainer(self)
def MutableSequenceVarContainer(self):
3641    def MutableSequenceVarContainer(self):
3642        return _pywrapcp.Assignment_MutableSequenceVarContainer(self)
Inherited Members
PropagationBaseObject
solver
Name
class Pack(Constraint):
3655class Pack(Constraint):
3656    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3657
3658    def __init__(self, *args, **kwargs):
3659        raise AttributeError("No constructor defined")
3660    __repr__ = _swig_repr
3661
3662    def AddWeightedSumLessOrEqualConstantDimension(self, *args):
3663        r"""
3664        *Overload 1:*
3665        Dimensions are additional constraints than can restrict what is
3666        possible with the pack constraint. It can be used to set capacity
3667        limits, to count objects per bin, to compute unassigned
3668        penalties...
3669        This dimension imposes that for all bins b, the weighted sum
3670        (weights[i]) of all objects i assigned to 'b' is less or equal
3671        'bounds[b]'.
3672
3673        |
3674
3675        *Overload 2:*
3676        This dimension imposes that for all bins b, the weighted sum
3677        (weights->Run(i)) of all objects i assigned to 'b' is less or
3678        equal to 'bounds[b]'. Ownership of the callback is transferred to
3679        the pack constraint.
3680
3681        |
3682
3683        *Overload 3:*
3684        This dimension imposes that for all bins b, the weighted sum
3685        (weights->Run(i, b) of all objects i assigned to 'b' is less or
3686        equal to 'bounds[b]'. Ownership of the callback is transferred to
3687        the pack constraint.
3688        """
3689        return _pywrapcp.Pack_AddWeightedSumLessOrEqualConstantDimension(self, *args)
3690
3691    def AddWeightedSumEqualVarDimension(self, *args):
3692        r"""
3693        *Overload 1:*
3694        This dimension imposes that for all bins b, the weighted sum
3695        (weights[i]) of all objects i assigned to 'b' is equal to loads[b].
3696
3697        |
3698
3699        *Overload 2:*
3700        This dimension imposes that for all bins b, the weighted sum
3701        (weights->Run(i, b)) of all objects i assigned to 'b' is equal to
3702        loads[b].
3703        """
3704        return _pywrapcp.Pack_AddWeightedSumEqualVarDimension(self, *args)
3705
3706    def AddSumVariableWeightsLessOrEqualConstantDimension(self, usage, capacity):
3707        r"""
3708        This dimension imposes:
3709        forall b in bins,
3710           sum (i in items: usage[i] * is_assigned(i, b)) <= capacity[b]
3711        where is_assigned(i, b) is true if and only if item i is assigned
3712        to the bin b.
3713
3714        This can be used to model shapes of items by linking variables of
3715        the same item on parallel dimensions with an allowed assignment
3716        constraint.
3717        """
3718        return _pywrapcp.Pack_AddSumVariableWeightsLessOrEqualConstantDimension(self, usage, capacity)
3719
3720    def AddWeightedSumOfAssignedDimension(self, weights, cost_var):
3721        r"""
3722        This dimension enforces that cost_var == sum of weights[i] for
3723        all objects 'i' assigned to a bin.
3724        """
3725        return _pywrapcp.Pack_AddWeightedSumOfAssignedDimension(self, weights, cost_var)
3726
3727    def AddCountUsedBinDimension(self, count_var):
3728        r"""
3729        This dimension links 'count_var' to the actual number of bins used in the
3730        pack.
3731        """
3732        return _pywrapcp.Pack_AddCountUsedBinDimension(self, count_var)
3733
3734    def AddCountAssignedItemsDimension(self, count_var):
3735        r"""
3736        This dimension links 'count_var' to the actual number of items
3737        assigned to a bin in the pack.
3738        """
3739        return _pywrapcp.Pack_AddCountAssignedItemsDimension(self, count_var)
3740
3741    def Post(self):
3742        return _pywrapcp.Pack_Post(self)
3743
3744    def InitialPropagateWrapper(self):
3745        return _pywrapcp.Pack_InitialPropagateWrapper(self)
3746
3747    def DebugString(self):
3748        return _pywrapcp.Pack_DebugString(self)

A constraint is the main modeling object. It provides two methods:

  • Post() is responsible for creating the demons and attaching them to immediate demons().
  • InitialPropagate() is called once just after Post and performs the initial propagation. The subsequent propagations will be performed by the demons Posted during the post() method.
Pack(*args, **kwargs)
3658    def __init__(self, *args, **kwargs):
3659        raise AttributeError("No constructor defined")
thisown
3656    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def AddWeightedSumLessOrEqualConstantDimension(self, *args):
3662    def AddWeightedSumLessOrEqualConstantDimension(self, *args):
3663        r"""
3664        *Overload 1:*
3665        Dimensions are additional constraints than can restrict what is
3666        possible with the pack constraint. It can be used to set capacity
3667        limits, to count objects per bin, to compute unassigned
3668        penalties...
3669        This dimension imposes that for all bins b, the weighted sum
3670        (weights[i]) of all objects i assigned to 'b' is less or equal
3671        'bounds[b]'.
3672
3673        |
3674
3675        *Overload 2:*
3676        This dimension imposes that for all bins b, the weighted sum
3677        (weights->Run(i)) of all objects i assigned to 'b' is less or
3678        equal to 'bounds[b]'. Ownership of the callback is transferred to
3679        the pack constraint.
3680
3681        |
3682
3683        *Overload 3:*
3684        This dimension imposes that for all bins b, the weighted sum
3685        (weights->Run(i, b) of all objects i assigned to 'b' is less or
3686        equal to 'bounds[b]'. Ownership of the callback is transferred to
3687        the pack constraint.
3688        """
3689        return _pywrapcp.Pack_AddWeightedSumLessOrEqualConstantDimension(self, *args)

Overload 1: Dimensions are additional constraints than can restrict what is possible with the pack constraint. It can be used to set capacity limits, to count objects per bin, to compute unassigned penalties... This dimension imposes that for all bins b, the weighted sum (weights[i]) of all objects i assigned to 'b' is less or equal 'bounds[b]'.

|

Overload 2: This dimension imposes that for all bins b, the weighted sum (weights->Run(i)) of all objects i assigned to 'b' is less or equal to 'bounds[b]'. Ownership of the callback is transferred to the pack constraint.

|

Overload 3: This dimension imposes that for all bins b, the weighted sum (weights->Run(i, b) of all objects i assigned to 'b' is less or equal to 'bounds[b]'. Ownership of the callback is transferred to the pack constraint.

def AddWeightedSumEqualVarDimension(self, *args):
3691    def AddWeightedSumEqualVarDimension(self, *args):
3692        r"""
3693        *Overload 1:*
3694        This dimension imposes that for all bins b, the weighted sum
3695        (weights[i]) of all objects i assigned to 'b' is equal to loads[b].
3696
3697        |
3698
3699        *Overload 2:*
3700        This dimension imposes that for all bins b, the weighted sum
3701        (weights->Run(i, b)) of all objects i assigned to 'b' is equal to
3702        loads[b].
3703        """
3704        return _pywrapcp.Pack_AddWeightedSumEqualVarDimension(self, *args)

Overload 1: This dimension imposes that for all bins b, the weighted sum (weights[i]) of all objects i assigned to 'b' is equal to loads[b].

|

Overload 2: This dimension imposes that for all bins b, the weighted sum (weights->Run(i, b)) of all objects i assigned to 'b' is equal to loads[b].

def AddSumVariableWeightsLessOrEqualConstantDimension(self, usage, capacity):
3706    def AddSumVariableWeightsLessOrEqualConstantDimension(self, usage, capacity):
3707        r"""
3708        This dimension imposes:
3709        forall b in bins,
3710           sum (i in items: usage[i] * is_assigned(i, b)) <= capacity[b]
3711        where is_assigned(i, b) is true if and only if item i is assigned
3712        to the bin b.
3713
3714        This can be used to model shapes of items by linking variables of
3715        the same item on parallel dimensions with an allowed assignment
3716        constraint.
3717        """
3718        return _pywrapcp.Pack_AddSumVariableWeightsLessOrEqualConstantDimension(self, usage, capacity)

This dimension imposes: forall b in bins, sum (i in items: usage[i] * is_assigned(i, b)) <= capacity[b] where is_assigned(i, b) is true if and only if item i is assigned to the bin b.

This can be used to model shapes of items by linking variables of the same item on parallel dimensions with an allowed assignment constraint.

def AddWeightedSumOfAssignedDimension(self, weights, cost_var):
3720    def AddWeightedSumOfAssignedDimension(self, weights, cost_var):
3721        r"""
3722        This dimension enforces that cost_var == sum of weights[i] for
3723        all objects 'i' assigned to a bin.
3724        """
3725        return _pywrapcp.Pack_AddWeightedSumOfAssignedDimension(self, weights, cost_var)

This dimension enforces that cost_var == sum of weights[i] for all objects 'i' assigned to a bin.

def AddCountUsedBinDimension(self, count_var):
3727    def AddCountUsedBinDimension(self, count_var):
3728        r"""
3729        This dimension links 'count_var' to the actual number of bins used in the
3730        pack.
3731        """
3732        return _pywrapcp.Pack_AddCountUsedBinDimension(self, count_var)

This dimension links 'count_var' to the actual number of bins used in the pack.

def AddCountAssignedItemsDimension(self, count_var):
3734    def AddCountAssignedItemsDimension(self, count_var):
3735        r"""
3736        This dimension links 'count_var' to the actual number of items
3737        assigned to a bin in the pack.
3738        """
3739        return _pywrapcp.Pack_AddCountAssignedItemsDimension(self, count_var)

This dimension links 'count_var' to the actual number of items assigned to a bin in the pack.

def Post(self):
3741    def Post(self):
3742        return _pywrapcp.Pack_Post(self)

This method is called when the constraint is processed by the solver. Its main usage is to attach demons to variables.

def InitialPropagateWrapper(self):
3744    def InitialPropagateWrapper(self):
3745        return _pywrapcp.Pack_InitialPropagateWrapper(self)

This method performs the initial propagation of the constraint. It is called just after the post.

def DebugString(self):
3747    def DebugString(self):
3748        return _pywrapcp.Pack_DebugString(self)
class DisjunctiveConstraint(Constraint):
3752class DisjunctiveConstraint(Constraint):
3753    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3754
3755    def __init__(self, *args, **kwargs):
3756        raise AttributeError("No constructor defined - class is abstract")
3757    __repr__ = _swig_repr
3758
3759    def SequenceVar(self):
3760        r""" Creates a sequence variable from the constraint."""
3761        return _pywrapcp.DisjunctiveConstraint_SequenceVar(self)
3762
3763    def SetTransitionTime(self, transition_time):
3764        r"""
3765        Add a transition time between intervals.  It forces the distance between
3766        the end of interval a and start of interval b that follows it to be at
3767        least transition_time(a, b). This function must always return
3768        a positive or null value.
3769        """
3770        return _pywrapcp.DisjunctiveConstraint_SetTransitionTime(self, transition_time)
3771
3772    def TransitionTime(self, before_index, after_index):
3773        return _pywrapcp.DisjunctiveConstraint_TransitionTime(self, before_index, after_index)

A constraint is the main modeling object. It provides two methods:

  • Post() is responsible for creating the demons and attaching them to immediate demons().
  • InitialPropagate() is called once just after Post and performs the initial propagation. The subsequent propagations will be performed by the demons Posted during the post() method.
DisjunctiveConstraint(*args, **kwargs)
3755    def __init__(self, *args, **kwargs):
3756        raise AttributeError("No constructor defined - class is abstract")
thisown
3753    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def SequenceVar(self):
3759    def SequenceVar(self):
3760        r""" Creates a sequence variable from the constraint."""
3761        return _pywrapcp.DisjunctiveConstraint_SequenceVar(self)

Creates a sequence variable from the constraint.

def SetTransitionTime(self, transition_time):
3763    def SetTransitionTime(self, transition_time):
3764        r"""
3765        Add a transition time between intervals.  It forces the distance between
3766        the end of interval a and start of interval b that follows it to be at
3767        least transition_time(a, b). This function must always return
3768        a positive or null value.
3769        """
3770        return _pywrapcp.DisjunctiveConstraint_SetTransitionTime(self, transition_time)

Add a transition time between intervals. It forces the distance between the end of interval a and start of interval b that follows it to be at least transition_time(a, b). This function must always return a positive or null value.

def TransitionTime(self, before_index, after_index):
3772    def TransitionTime(self, before_index, after_index):
3773        return _pywrapcp.DisjunctiveConstraint_TransitionTime(self, before_index, after_index)
class RevInteger:
3777class RevInteger(object):
3778    r"""
3779    This class adds reversibility to a POD type.
3780    It contains the stamp optimization. i.e. the SaveValue call is done
3781    only once per node of the search tree.  Please note that actual
3782    stamps always starts at 1, thus an initial value of 0 will always
3783    trigger the first SaveValue.
3784    """
3785
3786    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3787    __repr__ = _swig_repr
3788
3789    def __init__(self, val):
3790        _pywrapcp.RevInteger_swiginit(self, _pywrapcp.new_RevInteger(val))
3791
3792    def Value(self):
3793        return _pywrapcp.RevInteger_Value(self)
3794
3795    def SetValue(self, s, val):
3796        return _pywrapcp.RevInteger_SetValue(self, s, val)
3797    __swig_destroy__ = _pywrapcp.delete_RevInteger

This class adds reversibility to a POD type. It contains the stamp optimization. i.e. the SaveValue call is done only once per node of the search tree. Please note that actual stamps always starts at 1, thus an initial value of 0 will always trigger the first SaveValue.

RevInteger(val)
3789    def __init__(self, val):
3790        _pywrapcp.RevInteger_swiginit(self, _pywrapcp.new_RevInteger(val))
thisown
3786    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Value(self):
3792    def Value(self):
3793        return _pywrapcp.RevInteger_Value(self)
def SetValue(self, s, val):
3795    def SetValue(self, s, val):
3796        return _pywrapcp.RevInteger_SetValue(self, s, val)
class NumericalRevInteger(RevInteger):
3801class NumericalRevInteger(RevInteger):
3802    r""" Subclass of Rev<T> which adds numerical operations."""
3803
3804    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3805    __repr__ = _swig_repr
3806
3807    def __init__(self, val):
3808        _pywrapcp.NumericalRevInteger_swiginit(self, _pywrapcp.new_NumericalRevInteger(val))
3809
3810    def Add(self, s, to_add):
3811        return _pywrapcp.NumericalRevInteger_Add(self, s, to_add)
3812
3813    def Incr(self, s):
3814        return _pywrapcp.NumericalRevInteger_Incr(self, s)
3815
3816    def Decr(self, s):
3817        return _pywrapcp.NumericalRevInteger_Decr(self, s)
3818    __swig_destroy__ = _pywrapcp.delete_NumericalRevInteger

Subclass of Rev which adds numerical operations.

NumericalRevInteger(val)
3807    def __init__(self, val):
3808        _pywrapcp.NumericalRevInteger_swiginit(self, _pywrapcp.new_NumericalRevInteger(val))
thisown
3804    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Add(self, s, to_add):
3810    def Add(self, s, to_add):
3811        return _pywrapcp.NumericalRevInteger_Add(self, s, to_add)
def Incr(self, s):
3813    def Incr(self, s):
3814        return _pywrapcp.NumericalRevInteger_Incr(self, s)
def Decr(self, s):
3816    def Decr(self, s):
3817        return _pywrapcp.NumericalRevInteger_Decr(self, s)
Inherited Members
RevInteger
Value
SetValue
class RevBool:
3822class RevBool(object):
3823    r"""
3824    This class adds reversibility to a POD type.
3825    It contains the stamp optimization. i.e. the SaveValue call is done
3826    only once per node of the search tree.  Please note that actual
3827    stamps always starts at 1, thus an initial value of 0 will always
3828    trigger the first SaveValue.
3829    """
3830
3831    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3832    __repr__ = _swig_repr
3833
3834    def __init__(self, val):
3835        _pywrapcp.RevBool_swiginit(self, _pywrapcp.new_RevBool(val))
3836
3837    def Value(self):
3838        return _pywrapcp.RevBool_Value(self)
3839
3840    def SetValue(self, s, val):
3841        return _pywrapcp.RevBool_SetValue(self, s, val)
3842    __swig_destroy__ = _pywrapcp.delete_RevBool

This class adds reversibility to a POD type. It contains the stamp optimization. i.e. the SaveValue call is done only once per node of the search tree. Please note that actual stamps always starts at 1, thus an initial value of 0 will always trigger the first SaveValue.

RevBool(val)
3834    def __init__(self, val):
3835        _pywrapcp.RevBool_swiginit(self, _pywrapcp.new_RevBool(val))
thisown
3831    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Value(self):
3837    def Value(self):
3838        return _pywrapcp.RevBool_Value(self)
def SetValue(self, s, val):
3840    def SetValue(self, s, val):
3841        return _pywrapcp.RevBool_SetValue(self, s, val)
class IntVarContainer:
3846class IntVarContainer(object):
3847    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3848
3849    def __init__(self, *args, **kwargs):
3850        raise AttributeError("No constructor defined")
3851    __repr__ = _swig_repr
3852
3853    def Contains(self, var):
3854        return _pywrapcp.IntVarContainer_Contains(self, var)
3855
3856    def Element(self, index):
3857        return _pywrapcp.IntVarContainer_Element(self, index)
3858
3859    def Size(self):
3860        return _pywrapcp.IntVarContainer_Size(self)
3861
3862    def Store(self):
3863        return _pywrapcp.IntVarContainer_Store(self)
3864
3865    def Restore(self):
3866        return _pywrapcp.IntVarContainer_Restore(self)
3867
3868    def __eq__(self, container):
3869        r"""
3870        Returns true if this and 'container' both represent the same V* -> E map.
3871        Runs in linear time; requires that the == operator on the type E is well
3872        defined.
3873        """
3874        return _pywrapcp.IntVarContainer___eq__(self, container)
3875
3876    def __ne__(self, container):
3877        return _pywrapcp.IntVarContainer___ne__(self, container)
3878    __swig_destroy__ = _pywrapcp.delete_IntVarContainer
IntVarContainer(*args, **kwargs)
3849    def __init__(self, *args, **kwargs):
3850        raise AttributeError("No constructor defined")
thisown
3847    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Contains(self, var):
3853    def Contains(self, var):
3854        return _pywrapcp.IntVarContainer_Contains(self, var)
def Element(self, index):
3856    def Element(self, index):
3857        return _pywrapcp.IntVarContainer_Element(self, index)
def Size(self):
3859    def Size(self):
3860        return _pywrapcp.IntVarContainer_Size(self)
def Store(self):
3862    def Store(self):
3863        return _pywrapcp.IntVarContainer_Store(self)
def Restore(self):
3865    def Restore(self):
3866        return _pywrapcp.IntVarContainer_Restore(self)
class IntervalVarContainer:
3882class IntervalVarContainer(object):
3883    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3884
3885    def __init__(self, *args, **kwargs):
3886        raise AttributeError("No constructor defined")
3887    __repr__ = _swig_repr
3888
3889    def Contains(self, var):
3890        return _pywrapcp.IntervalVarContainer_Contains(self, var)
3891
3892    def Element(self, index):
3893        return _pywrapcp.IntervalVarContainer_Element(self, index)
3894
3895    def Size(self):
3896        return _pywrapcp.IntervalVarContainer_Size(self)
3897
3898    def Store(self):
3899        return _pywrapcp.IntervalVarContainer_Store(self)
3900
3901    def Restore(self):
3902        return _pywrapcp.IntervalVarContainer_Restore(self)
3903
3904    def __eq__(self, container):
3905        r"""
3906        Returns true if this and 'container' both represent the same V* -> E map.
3907        Runs in linear time; requires that the == operator on the type E is well
3908        defined.
3909        """
3910        return _pywrapcp.IntervalVarContainer___eq__(self, container)
3911
3912    def __ne__(self, container):
3913        return _pywrapcp.IntervalVarContainer___ne__(self, container)
3914    __swig_destroy__ = _pywrapcp.delete_IntervalVarContainer
IntervalVarContainer(*args, **kwargs)
3885    def __init__(self, *args, **kwargs):
3886        raise AttributeError("No constructor defined")
thisown
3883    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Contains(self, var):
3889    def Contains(self, var):
3890        return _pywrapcp.IntervalVarContainer_Contains(self, var)
def Element(self, index):
3892    def Element(self, index):
3893        return _pywrapcp.IntervalVarContainer_Element(self, index)
def Size(self):
3895    def Size(self):
3896        return _pywrapcp.IntervalVarContainer_Size(self)
def Store(self):
3898    def Store(self):
3899        return _pywrapcp.IntervalVarContainer_Store(self)
def Restore(self):
3901    def Restore(self):
3902        return _pywrapcp.IntervalVarContainer_Restore(self)
class SequenceVarContainer:
3918class SequenceVarContainer(object):
3919    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3920
3921    def __init__(self, *args, **kwargs):
3922        raise AttributeError("No constructor defined")
3923    __repr__ = _swig_repr
3924
3925    def Contains(self, var):
3926        return _pywrapcp.SequenceVarContainer_Contains(self, var)
3927
3928    def Element(self, index):
3929        return _pywrapcp.SequenceVarContainer_Element(self, index)
3930
3931    def Size(self):
3932        return _pywrapcp.SequenceVarContainer_Size(self)
3933
3934    def Store(self):
3935        return _pywrapcp.SequenceVarContainer_Store(self)
3936
3937    def Restore(self):
3938        return _pywrapcp.SequenceVarContainer_Restore(self)
3939
3940    def __eq__(self, container):
3941        r"""
3942        Returns true if this and 'container' both represent the same V* -> E map.
3943        Runs in linear time; requires that the == operator on the type E is well
3944        defined.
3945        """
3946        return _pywrapcp.SequenceVarContainer___eq__(self, container)
3947
3948    def __ne__(self, container):
3949        return _pywrapcp.SequenceVarContainer___ne__(self, container)
3950    __swig_destroy__ = _pywrapcp.delete_SequenceVarContainer
SequenceVarContainer(*args, **kwargs)
3921    def __init__(self, *args, **kwargs):
3922        raise AttributeError("No constructor defined")
thisown
3919    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Contains(self, var):
3925    def Contains(self, var):
3926        return _pywrapcp.SequenceVarContainer_Contains(self, var)
def Element(self, index):
3928    def Element(self, index):
3929        return _pywrapcp.SequenceVarContainer_Element(self, index)
def Size(self):
3931    def Size(self):
3932        return _pywrapcp.SequenceVarContainer_Size(self)
def Store(self):
3934    def Store(self):
3935        return _pywrapcp.SequenceVarContainer_Store(self)
def Restore(self):
3937    def Restore(self):
3938        return _pywrapcp.SequenceVarContainer_Restore(self)
class LocalSearchOperator(BaseObject):
3954class LocalSearchOperator(BaseObject):
3955    r"""
3956    The base class for all local search operators.
3957
3958    A local search operator is an object that defines the neighborhood of a
3959    solution. In other words, a neighborhood is the set of solutions which can
3960    be reached from a given solution using an operator.
3961
3962    The behavior of the LocalSearchOperator class is similar to iterators.
3963    The operator is synchronized with an assignment (gives the
3964    current values of the variables); this is done in the Start() method.
3965
3966    Then one can iterate over the neighbors using the MakeNextNeighbor method.
3967    This method returns an assignment which represents the incremental changes
3968    to the current solution. It also returns a second assignment representing
3969    the changes to the last solution defined by the neighborhood operator; this
3970    assignment is empty if the neighborhood operator cannot track this
3971    information.
3972    """
3973
3974    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
3975
3976    def __init__(self, *args, **kwargs):
3977        raise AttributeError("No constructor defined - class is abstract")
3978    __repr__ = _swig_repr
3979
3980    def NextNeighbor(self, delta, deltadelta):
3981        return _pywrapcp.LocalSearchOperator_NextNeighbor(self, delta, deltadelta)
3982
3983    def Start(self, assignment):
3984        return _pywrapcp.LocalSearchOperator_Start(self, assignment)
3985    def __disown__(self):
3986        self.this.disown()
3987        _pywrapcp.disown_LocalSearchOperator(self)
3988        return weakref.proxy(self)

The base class for all local search operators.

A local search operator is an object that defines the neighborhood of a solution. In other words, a neighborhood is the set of solutions which can be reached from a given solution using an operator.

The behavior of the LocalSearchOperator class is similar to iterators. The operator is synchronized with an assignment (gives the current values of the variables); this is done in the Start() method.

Then one can iterate over the neighbors using the MakeNextNeighbor method. This method returns an assignment which represents the incremental changes to the current solution. It also returns a second assignment representing the changes to the last solution defined by the neighborhood operator; this assignment is empty if the neighborhood operator cannot track this information.

LocalSearchOperator(*args, **kwargs)
3976    def __init__(self, *args, **kwargs):
3977        raise AttributeError("No constructor defined - class is abstract")
thisown
3974    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def NextNeighbor(self, delta, deltadelta):
3980    def NextNeighbor(self, delta, deltadelta):
3981        return _pywrapcp.LocalSearchOperator_NextNeighbor(self, delta, deltadelta)
def Start(self, assignment):
3983    def Start(self, assignment):
3984        return _pywrapcp.LocalSearchOperator_Start(self, assignment)
Inherited Members
BaseObject
DebugString
class IntVarLocalSearchOperator(LocalSearchOperator):
3992class IntVarLocalSearchOperator(LocalSearchOperator):
3993    r"""
3994    Specialization of LocalSearchOperator built from an array of IntVars
3995    which specifies the scope of the operator.
3996    This class also takes care of storing current variable values in Start(),
3997    keeps track of changes done by the operator and builds the delta.
3998    The Deactivate() method can be used to perform Large Neighborhood Search.
3999    """
4000
4001    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4002    __repr__ = _swig_repr
4003
4004    def __init__(self, vars, keep_inverse_values=False):
4005        if self.__class__ == IntVarLocalSearchOperator:
4006            _self = None
4007        else:
4008            _self = self
4009        _pywrapcp.IntVarLocalSearchOperator_swiginit(self, _pywrapcp.new_IntVarLocalSearchOperator(_self, vars, keep_inverse_values))
4010    __swig_destroy__ = _pywrapcp.delete_IntVarLocalSearchOperator
4011
4012    def Start(self, assignment):
4013        r"""
4014        This method should not be overridden. Override OnStart() instead which is
4015        called before exiting this method.
4016        """
4017        return _pywrapcp.IntVarLocalSearchOperator_Start(self, assignment)
4018
4019    def IsIncremental(self):
4020        return _pywrapcp.IntVarLocalSearchOperator_IsIncremental(self)
4021
4022    def Size(self):
4023        return _pywrapcp.IntVarLocalSearchOperator_Size(self)
4024
4025    def Value(self, index):
4026        r"""
4027        Returns the value in the current assignment of the variable of given
4028        index.
4029        """
4030        return _pywrapcp.IntVarLocalSearchOperator_Value(self, index)
4031
4032    def Var(self, index):
4033        r""" Returns the variable of given index."""
4034        return _pywrapcp.IntVarLocalSearchOperator_Var(self, index)
4035
4036    def OldValue(self, index):
4037        return _pywrapcp.IntVarLocalSearchOperator_OldValue(self, index)
4038
4039    def PrevValue(self, index):
4040        return _pywrapcp.IntVarLocalSearchOperator_PrevValue(self, index)
4041
4042    def SetValue(self, index, value):
4043        return _pywrapcp.IntVarLocalSearchOperator_SetValue(self, index, value)
4044
4045    def Activated(self, index):
4046        return _pywrapcp.IntVarLocalSearchOperator_Activated(self, index)
4047
4048    def Activate(self, index):
4049        return _pywrapcp.IntVarLocalSearchOperator_Activate(self, index)
4050
4051    def Deactivate(self, index):
4052        return _pywrapcp.IntVarLocalSearchOperator_Deactivate(self, index)
4053
4054    def AddVars(self, vars):
4055        return _pywrapcp.IntVarLocalSearchOperator_AddVars(self, vars)
4056
4057    def OnStart(self):
4058        r"""
4059        Called by Start() after synchronizing the operator with the current
4060        assignment. Should be overridden instead of Start() to avoid calling
4061        IntVarLocalSearchOperator::Start explicitly.
4062        """
4063        return _pywrapcp.IntVarLocalSearchOperator_OnStart(self)
4064
4065    def NextNeighbor(self, delta, deltadelta):
4066        r"""
4067        OnStart() should really be protected, but then SWIG doesn't see it. So we
4068        make it public, but only subclasses should access to it (to override it).
4069        Redefines MakeNextNeighbor to export a simpler interface. The calls to
4070        ApplyChanges() and RevertChanges() are factored in this method, hiding
4071        both delta and deltadelta from subclasses which only need to override
4072        MakeOneNeighbor().
4073        Therefore this method should not be overridden. Override MakeOneNeighbor()
4074        instead.
4075        """
4076        return _pywrapcp.IntVarLocalSearchOperator_NextNeighbor(self, delta, deltadelta)
4077
4078    def OneNeighbor(self):
4079        r"""
4080        Creates a new neighbor. It returns false when the neighborhood is
4081        completely explored.
4082        MakeNextNeighbor() in a subclass of IntVarLocalSearchOperator.
4083        """
4084        return _pywrapcp.IntVarLocalSearchOperator_OneNeighbor(self)
4085    def __disown__(self):
4086        self.this.disown()
4087        _pywrapcp.disown_IntVarLocalSearchOperator(self)
4088        return weakref.proxy(self)

Specialization of LocalSearchOperator built from an array of IntVars which specifies the scope of the operator. This class also takes care of storing current variable values in Start(), keeps track of changes done by the operator and builds the delta. The Deactivate() method can be used to perform Large Neighborhood Search.

IntVarLocalSearchOperator(vars, keep_inverse_values=False)
4004    def __init__(self, vars, keep_inverse_values=False):
4005        if self.__class__ == IntVarLocalSearchOperator:
4006            _self = None
4007        else:
4008            _self = self
4009        _pywrapcp.IntVarLocalSearchOperator_swiginit(self, _pywrapcp.new_IntVarLocalSearchOperator(_self, vars, keep_inverse_values))
thisown
4001    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Start(self, assignment):
4012    def Start(self, assignment):
4013        r"""
4014        This method should not be overridden. Override OnStart() instead which is
4015        called before exiting this method.
4016        """
4017        return _pywrapcp.IntVarLocalSearchOperator_Start(self, assignment)

This method should not be overridden. Override OnStart() instead which is called before exiting this method.

def IsIncremental(self):
4019    def IsIncremental(self):
4020        return _pywrapcp.IntVarLocalSearchOperator_IsIncremental(self)
def Size(self):
4022    def Size(self):
4023        return _pywrapcp.IntVarLocalSearchOperator_Size(self)
def Value(self, index):
4025    def Value(self, index):
4026        r"""
4027        Returns the value in the current assignment of the variable of given
4028        index.
4029        """
4030        return _pywrapcp.IntVarLocalSearchOperator_Value(self, index)

Returns the value in the current assignment of the variable of given index.

def Var(self, index):
4032    def Var(self, index):
4033        r""" Returns the variable of given index."""
4034        return _pywrapcp.IntVarLocalSearchOperator_Var(self, index)

Returns the variable of given index.

def OldValue(self, index):
4036    def OldValue(self, index):
4037        return _pywrapcp.IntVarLocalSearchOperator_OldValue(self, index)
def PrevValue(self, index):
4039    def PrevValue(self, index):
4040        return _pywrapcp.IntVarLocalSearchOperator_PrevValue(self, index)
def SetValue(self, index, value):
4042    def SetValue(self, index, value):
4043        return _pywrapcp.IntVarLocalSearchOperator_SetValue(self, index, value)
def Activated(self, index):
4045    def Activated(self, index):
4046        return _pywrapcp.IntVarLocalSearchOperator_Activated(self, index)
def Activate(self, index):
4048    def Activate(self, index):
4049        return _pywrapcp.IntVarLocalSearchOperator_Activate(self, index)
def Deactivate(self, index):
4051    def Deactivate(self, index):
4052        return _pywrapcp.IntVarLocalSearchOperator_Deactivate(self, index)
def AddVars(self, vars):
4054    def AddVars(self, vars):
4055        return _pywrapcp.IntVarLocalSearchOperator_AddVars(self, vars)
def OnStart(self):
4057    def OnStart(self):
4058        r"""
4059        Called by Start() after synchronizing the operator with the current
4060        assignment. Should be overridden instead of Start() to avoid calling
4061        IntVarLocalSearchOperator::Start explicitly.
4062        """
4063        return _pywrapcp.IntVarLocalSearchOperator_OnStart(self)

Called by Start() after synchronizing the operator with the current assignment. Should be overridden instead of Start() to avoid calling IntVarLocalSearchOperator::Start explicitly.

def NextNeighbor(self, delta, deltadelta):
4065    def NextNeighbor(self, delta, deltadelta):
4066        r"""
4067        OnStart() should really be protected, but then SWIG doesn't see it. So we
4068        make it public, but only subclasses should access to it (to override it).
4069        Redefines MakeNextNeighbor to export a simpler interface. The calls to
4070        ApplyChanges() and RevertChanges() are factored in this method, hiding
4071        both delta and deltadelta from subclasses which only need to override
4072        MakeOneNeighbor().
4073        Therefore this method should not be overridden. Override MakeOneNeighbor()
4074        instead.
4075        """
4076        return _pywrapcp.IntVarLocalSearchOperator_NextNeighbor(self, delta, deltadelta)

OnStart() should really be protected, but then SWIG doesn't see it. So we make it public, but only subclasses should access to it (to override it). Redefines MakeNextNeighbor to export a simpler interface. The calls to ApplyChanges() and RevertChanges() are factored in this method, hiding both delta and deltadelta from subclasses which only need to override MakeOneNeighbor(). Therefore this method should not be overridden. Override MakeOneNeighbor() instead.

def OneNeighbor(self):
4078    def OneNeighbor(self):
4079        r"""
4080        Creates a new neighbor. It returns false when the neighborhood is
4081        completely explored.
4082        MakeNextNeighbor() in a subclass of IntVarLocalSearchOperator.
4083        """
4084        return _pywrapcp.IntVarLocalSearchOperator_OneNeighbor(self)

Creates a new neighbor. It returns false when the neighborhood is completely explored. MakeNextNeighbor() in a subclass of IntVarLocalSearchOperator.

Inherited Members
BaseObject
DebugString
class BaseLns(IntVarLocalSearchOperator):
4092class BaseLns(IntVarLocalSearchOperator):
4093    r"""
4094    This is the base class for building an Lns operator. An Lns fragment is a
4095    collection of variables which will be relaxed. Fragments are built with
4096    NextFragment(), which returns false if there are no more fragments to build.
4097    Optionally one can override InitFragments, which is called from
4098    LocalSearchOperator::Start to initialize fragment data.
4099
4100    Here's a sample relaxing one variable at a time:
4101
4102    class OneVarLns : public BaseLns {
4103     public:
4104      OneVarLns(const std::vector<IntVar*>& vars) : BaseLns(vars), index_(0) {}
4105      virtual ~OneVarLns() {}
4106      virtual void InitFragments() { index_ = 0; }
4107      virtual bool NextFragment() {
4108        const int size = Size();
4109        if (index_ < size) {
4110          AppendToFragment(index_);
4111          ++index_;
4112          return true;
4113        } else {
4114          return false;
4115        }
4116      }
4117
4118     private:
4119      int index_;
4120    };
4121    """
4122
4123    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4124    __repr__ = _swig_repr
4125
4126    def __init__(self, vars):
4127        if self.__class__ == BaseLns:
4128            _self = None
4129        else:
4130            _self = self
4131        _pywrapcp.BaseLns_swiginit(self, _pywrapcp.new_BaseLns(_self, vars))
4132    __swig_destroy__ = _pywrapcp.delete_BaseLns
4133
4134    def InitFragments(self):
4135        return _pywrapcp.BaseLns_InitFragments(self)
4136
4137    def NextFragment(self):
4138        return _pywrapcp.BaseLns_NextFragment(self)
4139
4140    def AppendToFragment(self, index):
4141        return _pywrapcp.BaseLns_AppendToFragment(self, index)
4142
4143    def FragmentSize(self):
4144        return _pywrapcp.BaseLns_FragmentSize(self)
4145
4146    def __getitem__(self, index):
4147        return _pywrapcp.BaseLns___getitem__(self, index)
4148
4149    def __len__(self):
4150        return _pywrapcp.BaseLns___len__(self)
4151    def __disown__(self):
4152        self.this.disown()
4153        _pywrapcp.disown_BaseLns(self)
4154        return weakref.proxy(self)

This is the base class for building an Lns operator. An Lns fragment is a collection of variables which will be relaxed. Fragments are built with NextFragment(), which returns false if there are no more fragments to build. Optionally one can override InitFragments, which is called from LocalSearchOperator::Start to initialize fragment data.

Here's a sample relaxing one variable at a time:

class OneVarLns : public BaseLns { public: OneVarLns(const std::vector& vars) : BaseLns(vars), index_(0) {} virtual ~OneVarLns() {} virtual void InitFragments() { index_ = 0; } virtual bool NextFragment() { const int size = Size(); if (index_ < size) { AppendToFragment(index_); ++index_; return true; } else { return false; } }

private: int index_; };

BaseLns(vars)
4126    def __init__(self, vars):
4127        if self.__class__ == BaseLns:
4128            _self = None
4129        else:
4130            _self = self
4131        _pywrapcp.BaseLns_swiginit(self, _pywrapcp.new_BaseLns(_self, vars))
thisown
4123    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def InitFragments(self):
4134    def InitFragments(self):
4135        return _pywrapcp.BaseLns_InitFragments(self)
def NextFragment(self):
4137    def NextFragment(self):
4138        return _pywrapcp.BaseLns_NextFragment(self)
def AppendToFragment(self, index):
4140    def AppendToFragment(self, index):
4141        return _pywrapcp.BaseLns_AppendToFragment(self, index)
def FragmentSize(self):
4143    def FragmentSize(self):
4144        return _pywrapcp.BaseLns_FragmentSize(self)
class ChangeValue(IntVarLocalSearchOperator):
4158class ChangeValue(IntVarLocalSearchOperator):
4159    r"""
4160    Defines operators which change the value of variables;
4161    each neighbor corresponds to *one* modified variable.
4162    Sub-classes have to define ModifyValue which determines what the new
4163    variable value is going to be (given the current value and the variable).
4164    """
4165
4166    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4167    __repr__ = _swig_repr
4168
4169    def __init__(self, vars):
4170        if self.__class__ == ChangeValue:
4171            _self = None
4172        else:
4173            _self = self
4174        _pywrapcp.ChangeValue_swiginit(self, _pywrapcp.new_ChangeValue(_self, vars))
4175    __swig_destroy__ = _pywrapcp.delete_ChangeValue
4176
4177    def ModifyValue(self, index, value):
4178        return _pywrapcp.ChangeValue_ModifyValue(self, index, value)
4179
4180    def OneNeighbor(self):
4181        r""" This method should not be overridden. Override ModifyValue() instead."""
4182        return _pywrapcp.ChangeValue_OneNeighbor(self)
4183    def __disown__(self):
4184        self.this.disown()
4185        _pywrapcp.disown_ChangeValue(self)
4186        return weakref.proxy(self)

Defines operators which change the value of variables; each neighbor corresponds to one modified variable. Sub-classes have to define ModifyValue which determines what the new variable value is going to be (given the current value and the variable).

ChangeValue(vars)
4169    def __init__(self, vars):
4170        if self.__class__ == ChangeValue:
4171            _self = None
4172        else:
4173            _self = self
4174        _pywrapcp.ChangeValue_swiginit(self, _pywrapcp.new_ChangeValue(_self, vars))
thisown
4166    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def ModifyValue(self, index, value):
4177    def ModifyValue(self, index, value):
4178        return _pywrapcp.ChangeValue_ModifyValue(self, index, value)
def OneNeighbor(self):
4180    def OneNeighbor(self):
4181        r""" This method should not be overridden. Override ModifyValue() instead."""
4182        return _pywrapcp.ChangeValue_OneNeighbor(self)

This method should not be overridden. Override ModifyValue() instead.

class PathOperator(IntVarLocalSearchOperator):
4190class PathOperator(IntVarLocalSearchOperator):
4191    r"""
4192    Base class of the local search operators dedicated to path modifications
4193    (a path is a set of nodes linked together by arcs).
4194    This family of neighborhoods supposes they are handling next variables
4195    representing the arcs (var[i] represents the node immediately after i on
4196    a path).
4197    Several services are provided:
4198    - arc manipulators (SetNext(), ReverseChain(), MoveChain())
4199    - path inspectors (Next(), Prev(), IsPathEnd())
4200    - path iterators: operators need a given number of nodes to define a
4201      neighbor; this class provides the iteration on a given number of (base)
4202      nodes which can be used to define a neighbor (through the BaseNode method)
4203    Subclasses only need to override MakeNeighbor to create neighbors using
4204    the services above (no direct manipulation of assignments).
4205    """
4206
4207    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4208
4209    def __init__(self, *args, **kwargs):
4210        raise AttributeError("No constructor defined - class is abstract")
4211    __repr__ = _swig_repr
4212
4213    def Neighbor(self):
4214        return _pywrapcp.PathOperator_Neighbor(self)

Base class of the local search operators dedicated to path modifications (a path is a set of nodes linked together by arcs). This family of neighborhoods supposes they are handling next variables representing the arcs (var[i] represents the node immediately after i on a path). Several services are provided:

  • arc manipulators (SetNext(), ReverseChain(), MoveChain())
  • path inspectors (Next(), Prev(), IsPathEnd())
  • path iterators: operators need a given number of nodes to define a neighbor; this class provides the iteration on a given number of (base) nodes which can be used to define a neighbor (through the BaseNode method) Subclasses only need to override MakeNeighbor to create neighbors using the services above (no direct manipulation of assignments).
PathOperator(*args, **kwargs)
4209    def __init__(self, *args, **kwargs):
4210        raise AttributeError("No constructor defined - class is abstract")
thisown
4207    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Neighbor(self):
4213    def Neighbor(self):
4214        return _pywrapcp.PathOperator_Neighbor(self)
class LocalSearchFilter(BaseObject):
4218class LocalSearchFilter(BaseObject):
4219    r"""
4220    Classes to which this template function can be applied to as of 04/2014.
4221    Usage: LocalSearchOperator* op = MakeLocalSearchOperator<Relocate>(...);
4222    class TwoOpt;
4223    class Relocate;
4224    class Exchange;
4225    class Cross;
4226    class MakeActiveOperator;
4227    class MakeInactiveOperator;
4228    class MakeChainInactiveOperator;
4229    class SwapActiveOperator;
4230    class ExtendedSwapActiveOperator;
4231    class MakeActiveAndRelocate;
4232    class RelocateAndMakeActiveOperator;
4233    class RelocateAndMakeInactiveOperator;
4234    Local Search Filters are used for fast neighbor pruning.
4235    Filtering a move is done in several phases:
4236    - in the Relax phase, filters determine which parts of their internals
4237      will be changed by the candidate, and modify intermediary State
4238    - in the Accept phase, filters check that the candidate is feasible,
4239    - if the Accept phase succeeds, the solver may decide to trigger a
4240      Synchronize phase that makes filters change their internal representation
4241      to the last candidate,
4242    - otherwise (Accept fails or the solver does not want to synchronize),
4243      a Revert phase makes filters erase any intermediary State generated by the
4244      Relax and Accept phases.
4245    A given filter has phases called with the following pattern:
4246    (Relax.Accept.Synchronize | Relax.Accept.Revert | Relax.Revert)*.
4247    Filters's Revert() is always called in the reverse order their Accept() was
4248    called, to allow late filters to use state done/undone by early filters'
4249    Accept()/Revert().
4250    """
4251
4252    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4253
4254    def __init__(self, *args, **kwargs):
4255        raise AttributeError("No constructor defined - class is abstract")
4256    __repr__ = _swig_repr
4257
4258    def Accept(self, delta, deltadelta, objective_min, objective_max):
4259        r"""
4260        Accepts a "delta" given the assignment with which the filter has been
4261        synchronized; the delta holds the variables which have been modified and
4262        their new value.
4263        If the filter represents a part of the global objective, its contribution
4264        must be between objective_min and objective_max.
4265        Sample: supposing one wants to maintain a[0,1] + b[0,1] <= 1,
4266        for the assignment (a,1), (b,0), the delta (b,1) will be rejected
4267        but the delta (a,0) will be accepted.
4268        TODO(user): Remove arguments when there are no more need for those.
4269        """
4270        return _pywrapcp.LocalSearchFilter_Accept(self, delta, deltadelta, objective_min, objective_max)
4271
4272    def IsIncremental(self):
4273        return _pywrapcp.LocalSearchFilter_IsIncremental(self)
4274
4275    def Synchronize(self, assignment, delta):
4276        r"""
4277        Synchronizes the filter with the current solution, delta being the
4278        difference with the solution passed to the previous call to Synchronize()
4279        or IncrementalSynchronize(). 'delta' can be used to incrementally
4280        synchronizing the filter with the new solution by only considering the
4281        changes in delta.
4282        """
4283        return _pywrapcp.LocalSearchFilter_Synchronize(self, assignment, delta)
4284    __swig_destroy__ = _pywrapcp.delete_LocalSearchFilter

Classes to which this template function can be applied to as of 04/2014. Usage: LocalSearchOperator* op = MakeLocalSearchOperator(...); class TwoOpt; class Relocate; class Exchange; class Cross; class MakeActiveOperator; class MakeInactiveOperator; class MakeChainInactiveOperator; class SwapActiveOperator; class ExtendedSwapActiveOperator; class MakeActiveAndRelocate; class RelocateAndMakeActiveOperator; class RelocateAndMakeInactiveOperator; Local Search Filters are used for fast neighbor pruning. Filtering a move is done in several phases:

  • in the Relax phase, filters determine which parts of their internals will be changed by the candidate, and modify intermediary State
  • in the Accept phase, filters check that the candidate is feasible,
  • if the Accept phase succeeds, the solver may decide to trigger a Synchronize phase that makes filters change their internal representation to the last candidate,
  • otherwise (Accept fails or the solver does not want to synchronize), a Revert phase makes filters erase any intermediary State generated by the Relax and Accept phases. A given filter has phases called with the following pattern: (Relax.Accept.Synchronize | Relax.Accept.Revert | Relax.Revert)*. Filters's Revert() is always called in the reverse order their Accept() was called, to allow late filters to use state done/undone by early filters' Accept()/Revert().
LocalSearchFilter(*args, **kwargs)
4254    def __init__(self, *args, **kwargs):
4255        raise AttributeError("No constructor defined - class is abstract")
thisown
4252    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Accept(self, delta, deltadelta, objective_min, objective_max):
4258    def Accept(self, delta, deltadelta, objective_min, objective_max):
4259        r"""
4260        Accepts a "delta" given the assignment with which the filter has been
4261        synchronized; the delta holds the variables which have been modified and
4262        their new value.
4263        If the filter represents a part of the global objective, its contribution
4264        must be between objective_min and objective_max.
4265        Sample: supposing one wants to maintain a[0,1] + b[0,1] <= 1,
4266        for the assignment (a,1), (b,0), the delta (b,1) will be rejected
4267        but the delta (a,0) will be accepted.
4268        TODO(user): Remove arguments when there are no more need for those.
4269        """
4270        return _pywrapcp.LocalSearchFilter_Accept(self, delta, deltadelta, objective_min, objective_max)

Accepts a "delta" given the assignment with which the filter has been synchronized; the delta holds the variables which have been modified and their new value. If the filter represents a part of the global objective, its contribution must be between objective_min and objective_max. Sample: supposing one wants to maintain a[0,1] + b[0,1] <= 1, for the assignment (a,1), (b,0), the delta (b,1) will be rejected but the delta (a,0) will be accepted. TODO(user): Remove arguments when there are no more need for those.

def IsIncremental(self):
4272    def IsIncremental(self):
4273        return _pywrapcp.LocalSearchFilter_IsIncremental(self)
def Synchronize(self, assignment, delta):
4275    def Synchronize(self, assignment, delta):
4276        r"""
4277        Synchronizes the filter with the current solution, delta being the
4278        difference with the solution passed to the previous call to Synchronize()
4279        or IncrementalSynchronize(). 'delta' can be used to incrementally
4280        synchronizing the filter with the new solution by only considering the
4281        changes in delta.
4282        """
4283        return _pywrapcp.LocalSearchFilter_Synchronize(self, assignment, delta)

Synchronizes the filter with the current solution, delta being the difference with the solution passed to the previous call to Synchronize() or IncrementalSynchronize(). 'delta' can be used to incrementally synchronizing the filter with the new solution by only considering the changes in delta.

Inherited Members
BaseObject
DebugString
class LocalSearchFilterManager(BaseObject):
4288class LocalSearchFilterManager(BaseObject):
4289    r"""
4290    Filter manager: when a move is made, filters are executed to decide whether
4291    the solution is feasible and compute parts of the new cost. This class
4292    schedules filter execution and composes costs as a sum.
4293    """
4294
4295    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4296    __repr__ = _swig_repr
4297
4298    def DebugString(self):
4299        return _pywrapcp.LocalSearchFilterManager_DebugString(self)
4300
4301    def __init__(self, *args):
4302        _pywrapcp.LocalSearchFilterManager_swiginit(self, _pywrapcp.new_LocalSearchFilterManager(*args))
4303
4304    def Accept(self, monitor, delta, deltadelta, objective_min, objective_max):
4305        r"""
4306        Returns true iff all filters return true, and the sum of their accepted
4307        objectives is between objective_min and objective_max.
4308        The monitor has its Begin/EndFiltering events triggered.
4309        """
4310        return _pywrapcp.LocalSearchFilterManager_Accept(self, monitor, delta, deltadelta, objective_min, objective_max)
4311
4312    def Synchronize(self, assignment, delta):
4313        r""" Synchronizes all filters to assignment."""
4314        return _pywrapcp.LocalSearchFilterManager_Synchronize(self, assignment, delta)
4315    __swig_destroy__ = _pywrapcp.delete_LocalSearchFilterManager

Filter manager: when a move is made, filters are executed to decide whether the solution is feasible and compute parts of the new cost. This class schedules filter execution and composes costs as a sum.

LocalSearchFilterManager(*args)
4301    def __init__(self, *args):
4302        _pywrapcp.LocalSearchFilterManager_swiginit(self, _pywrapcp.new_LocalSearchFilterManager(*args))
thisown
4295    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def DebugString(self):
4298    def DebugString(self):
4299        return _pywrapcp.LocalSearchFilterManager_DebugString(self)
def Accept(self, monitor, delta, deltadelta, objective_min, objective_max):
4304    def Accept(self, monitor, delta, deltadelta, objective_min, objective_max):
4305        r"""
4306        Returns true iff all filters return true, and the sum of their accepted
4307        objectives is between objective_min and objective_max.
4308        The monitor has its Begin/EndFiltering events triggered.
4309        """
4310        return _pywrapcp.LocalSearchFilterManager_Accept(self, monitor, delta, deltadelta, objective_min, objective_max)

Returns true iff all filters return true, and the sum of their accepted objectives is between objective_min and objective_max. The monitor has its Begin/EndFiltering events triggered.

def Synchronize(self, assignment, delta):
4312    def Synchronize(self, assignment, delta):
4313        r""" Synchronizes all filters to assignment."""
4314        return _pywrapcp.LocalSearchFilterManager_Synchronize(self, assignment, delta)

Synchronizes all filters to assignment.

class IntVarLocalSearchFilter(LocalSearchFilter):
4319class IntVarLocalSearchFilter(LocalSearchFilter):
4320    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4321    __repr__ = _swig_repr
4322
4323    def __init__(self, vars):
4324        if self.__class__ == IntVarLocalSearchFilter:
4325            _self = None
4326        else:
4327            _self = self
4328        _pywrapcp.IntVarLocalSearchFilter_swiginit(self, _pywrapcp.new_IntVarLocalSearchFilter(_self, vars))
4329    __swig_destroy__ = _pywrapcp.delete_IntVarLocalSearchFilter
4330
4331    def Synchronize(self, assignment, delta):
4332        r"""
4333        This method should not be overridden. Override OnSynchronize() instead
4334        which is called before exiting this method.
4335        """
4336        return _pywrapcp.IntVarLocalSearchFilter_Synchronize(self, assignment, delta)
4337
4338    def Size(self):
4339        return _pywrapcp.IntVarLocalSearchFilter_Size(self)
4340
4341    def Value(self, index):
4342        return _pywrapcp.IntVarLocalSearchFilter_Value(self, index)
4343
4344    def IndexFromVar(self, var):
4345        return _pywrapcp.IntVarLocalSearchFilter_IndexFromVar(self, var)
4346    def __disown__(self):
4347        self.this.disown()
4348        _pywrapcp.disown_IntVarLocalSearchFilter(self)
4349        return weakref.proxy(self)

Classes to which this template function can be applied to as of 04/2014. Usage: LocalSearchOperator* op = MakeLocalSearchOperator(...); class TwoOpt; class Relocate; class Exchange; class Cross; class MakeActiveOperator; class MakeInactiveOperator; class MakeChainInactiveOperator; class SwapActiveOperator; class ExtendedSwapActiveOperator; class MakeActiveAndRelocate; class RelocateAndMakeActiveOperator; class RelocateAndMakeInactiveOperator; Local Search Filters are used for fast neighbor pruning. Filtering a move is done in several phases:

  • in the Relax phase, filters determine which parts of their internals will be changed by the candidate, and modify intermediary State
  • in the Accept phase, filters check that the candidate is feasible,
  • if the Accept phase succeeds, the solver may decide to trigger a Synchronize phase that makes filters change their internal representation to the last candidate,
  • otherwise (Accept fails or the solver does not want to synchronize), a Revert phase makes filters erase any intermediary State generated by the Relax and Accept phases. A given filter has phases called with the following pattern: (Relax.Accept.Synchronize | Relax.Accept.Revert | Relax.Revert)*. Filters's Revert() is always called in the reverse order their Accept() was called, to allow late filters to use state done/undone by early filters' Accept()/Revert().
IntVarLocalSearchFilter(vars)
4323    def __init__(self, vars):
4324        if self.__class__ == IntVarLocalSearchFilter:
4325            _self = None
4326        else:
4327            _self = self
4328        _pywrapcp.IntVarLocalSearchFilter_swiginit(self, _pywrapcp.new_IntVarLocalSearchFilter(_self, vars))
thisown
4320    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Synchronize(self, assignment, delta):
4331    def Synchronize(self, assignment, delta):
4332        r"""
4333        This method should not be overridden. Override OnSynchronize() instead
4334        which is called before exiting this method.
4335        """
4336        return _pywrapcp.IntVarLocalSearchFilter_Synchronize(self, assignment, delta)

This method should not be overridden. Override OnSynchronize() instead which is called before exiting this method.

def Size(self):
4338    def Size(self):
4339        return _pywrapcp.IntVarLocalSearchFilter_Size(self)
def Value(self, index):
4341    def Value(self, index):
4342        return _pywrapcp.IntVarLocalSearchFilter_Value(self, index)
def IndexFromVar(self, var):
4344    def IndexFromVar(self, var):
4345        return _pywrapcp.IntVarLocalSearchFilter_IndexFromVar(self, var)
class BooleanVar(IntVar):
4353class BooleanVar(IntVar):
4354    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4355
4356    def __init__(self, *args, **kwargs):
4357        raise AttributeError("No constructor defined - class is abstract")
4358    __repr__ = _swig_repr
4359
4360    def Min(self):
4361        return _pywrapcp.BooleanVar_Min(self)
4362
4363    def SetMin(self, m):
4364        return _pywrapcp.BooleanVar_SetMin(self, m)
4365
4366    def Max(self):
4367        return _pywrapcp.BooleanVar_Max(self)
4368
4369    def SetMax(self, m):
4370        return _pywrapcp.BooleanVar_SetMax(self, m)
4371
4372    def SetRange(self, mi, ma):
4373        return _pywrapcp.BooleanVar_SetRange(self, mi, ma)
4374
4375    def Bound(self):
4376        return _pywrapcp.BooleanVar_Bound(self)
4377
4378    def Value(self):
4379        return _pywrapcp.BooleanVar_Value(self)
4380
4381    def RemoveValue(self, v):
4382        return _pywrapcp.BooleanVar_RemoveValue(self, v)
4383
4384    def RemoveInterval(self, l, u):
4385        return _pywrapcp.BooleanVar_RemoveInterval(self, l, u)
4386
4387    def WhenBound(self, d):
4388        return _pywrapcp.BooleanVar_WhenBound(self, d)
4389
4390    def WhenRange(self, d):
4391        return _pywrapcp.BooleanVar_WhenRange(self, d)
4392
4393    def WhenDomain(self, d):
4394        return _pywrapcp.BooleanVar_WhenDomain(self, d)
4395
4396    def Size(self):
4397        return _pywrapcp.BooleanVar_Size(self)
4398
4399    def Contains(self, v):
4400        return _pywrapcp.BooleanVar_Contains(self, v)
4401
4402    def HoleIteratorAux(self, reversible):
4403        return _pywrapcp.BooleanVar_HoleIteratorAux(self, reversible)
4404
4405    def DomainIteratorAux(self, reversible):
4406        return _pywrapcp.BooleanVar_DomainIteratorAux(self, reversible)
4407
4408    def DebugString(self):
4409        return _pywrapcp.BooleanVar_DebugString(self)

The class IntVar is a subset of IntExpr. In addition to the IntExpr protocol, it offers persistence, removing values from the domains, and a finer model for events.

BooleanVar(*args, **kwargs)
4356    def __init__(self, *args, **kwargs):
4357        raise AttributeError("No constructor defined - class is abstract")
thisown
4354    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Min(self):
4360    def Min(self):
4361        return _pywrapcp.BooleanVar_Min(self)
def SetMin(self, m):
4363    def SetMin(self, m):
4364        return _pywrapcp.BooleanVar_SetMin(self, m)
def Max(self):
4366    def Max(self):
4367        return _pywrapcp.BooleanVar_Max(self)
def SetMax(self, m):
4369    def SetMax(self, m):
4370        return _pywrapcp.BooleanVar_SetMax(self, m)
def SetRange(self, mi, ma):
4372    def SetRange(self, mi, ma):
4373        return _pywrapcp.BooleanVar_SetRange(self, mi, ma)

This method sets both the min and the max of the expression.

def Bound(self):
4375    def Bound(self):
4376        return _pywrapcp.BooleanVar_Bound(self)

Returns true if the min and the max of the expression are equal.

def Value(self):
4378    def Value(self):
4379        return _pywrapcp.BooleanVar_Value(self)

This method returns the value of the variable. This method checks before that the variable is bound.

def RemoveValue(self, v):
4381    def RemoveValue(self, v):
4382        return _pywrapcp.BooleanVar_RemoveValue(self, v)

This method removes the value 'v' from the domain of the variable.

def RemoveInterval(self, l, u):
4384    def RemoveInterval(self, l, u):
4385        return _pywrapcp.BooleanVar_RemoveInterval(self, l, u)

This method removes the interval 'l' .. 'u' from the domain of the variable. It assumes that 'l' <= 'u'.

def WhenBound(self, d):
4387    def WhenBound(self, d):
4388        return _pywrapcp.BooleanVar_WhenBound(self, d)

Overload 1: This method attaches a demon that will be awakened when the variable is bound.

|

Overload 2: This method attaches a closure that will be awakened when the variable is bound.

def WhenRange(self, d):
4390    def WhenRange(self, d):
4391        return _pywrapcp.BooleanVar_WhenRange(self, d)

Overload 1: Attach a demon that will watch the min or the max of the expression.

|

Overload 2: Attach a demon that will watch the min or the max of the expression.

def WhenDomain(self, d):
4393    def WhenDomain(self, d):
4394        return _pywrapcp.BooleanVar_WhenDomain(self, d)

Overload 1: This method attaches a demon that will watch any domain modification of the domain of the variable.

|

Overload 2: This method attaches a closure that will watch any domain modification of the domain of the variable.

def Size(self):
4396    def Size(self):
4397        return _pywrapcp.BooleanVar_Size(self)

This method returns the number of values in the domain of the variable.

def Contains(self, v):
4399    def Contains(self, v):
4400        return _pywrapcp.BooleanVar_Contains(self, v)

This method returns whether the value 'v' is in the domain of the variable.

def HoleIteratorAux(self, reversible):
4402    def HoleIteratorAux(self, reversible):
4403        return _pywrapcp.BooleanVar_HoleIteratorAux(self, reversible)

Creates a hole iterator. When 'reversible' is false, the returned object is created on the normal C++ heap and the solver does NOT take ownership of the object.

def DomainIteratorAux(self, reversible):
4405    def DomainIteratorAux(self, reversible):
4406        return _pywrapcp.BooleanVar_DomainIteratorAux(self, reversible)

Creates a domain iterator. When 'reversible' is false, the returned object is created on the normal C++ heap and the solver does NOT take ownership of the object.

def DebugString(self):
4408    def DebugString(self):
4409        return _pywrapcp.BooleanVar_DebugString(self)
class PyDecision(Decision):
4414class PyDecision(Decision):
4415  def ApplyWrapper(self, solver):
4416    try:
4417       self.Apply(solver)
4418    except Exception as e:
4419      if 'CP Solver fail' in str(e):
4420        solver.ShouldFail()
4421      else:
4422        raise
4423
4424  def RefuteWrapper(self, solver):
4425    try:
4426       self.Refute(solver)
4427    except Exception as e:
4428      if 'CP Solver fail' in str(e):
4429        solver.ShouldFail()
4430      else:
4431        raise
4432
4433  def DebugString(self):
4434    return "PyDecision"

A Decision represents a choice point in the search tree. The two main methods are Apply() to go left, or Refute() to go right.

def ApplyWrapper(self, solver):
4415  def ApplyWrapper(self, solver):
4416    try:
4417       self.Apply(solver)
4418    except Exception as e:
4419      if 'CP Solver fail' in str(e):
4420        solver.ShouldFail()
4421      else:
4422        raise

Apply will be called first when the decision is executed.

def RefuteWrapper(self, solver):
4424  def RefuteWrapper(self, solver):
4425    try:
4426       self.Refute(solver)
4427    except Exception as e:
4428      if 'CP Solver fail' in str(e):
4429        solver.ShouldFail()
4430      else:
4431        raise

Refute will be called after a backtrack.

def DebugString(self):
4433  def DebugString(self):
4434    return "PyDecision"
Inherited Members
Decision
thisown
class PyDecisionBuilder(DecisionBuilder):
4437class PyDecisionBuilder(DecisionBuilder):
4438  def NextWrapper(self, solver):
4439    try:
4440      return self.Next(solver)
4441    except Exception as e:
4442      if 'CP Solver fail' in str(e):
4443        return solver.FailDecision()
4444      else:
4445        raise
4446
4447  def DebugString(self):
4448    return "PyDecisionBuilder"

A DecisionBuilder is responsible for creating the search tree. The important method is Next(), which returns the next decision to execute.

def NextWrapper(self, solver):
4438  def NextWrapper(self, solver):
4439    try:
4440      return self.Next(solver)
4441    except Exception as e:
4442      if 'CP Solver fail' in str(e):
4443        return solver.FailDecision()
4444      else:
4445        raise

This is the main method of the decision builder class. It must return a decision (an instance of the class Decision). If it returns nullptr, this means that the decision builder has finished its work.

def DebugString(self):
4447  def DebugString(self):
4448    return "PyDecisionBuilder"
Inherited Members
DecisionBuilder
thisown
class PyDemon(Demon):
4451class PyDemon(Demon):
4452  def RunWrapper(self, solver):
4453    try:
4454      self.Run(solver)
4455    except Exception as e:
4456      if 'CP Solver fail' in str(e):
4457        solver.ShouldFail()
4458      else:
4459        raise
4460
4461  def DebugString(self):
4462    return "PyDemon"

A Demon is the base element of a propagation queue. It is the main object responsible for implementing the actual propagation of the constraint and pruning the inconsistent values in the domains of the variables. The main concept is that demons are listeners that are attached to the variables and listen to their modifications.

There are two methods:
  • Run() is the actual method called when the demon is processed.
  • priority() returns its priority. Standard priorities are slow, normal or fast. "immediate" is reserved for variables and is treated separately.
def RunWrapper(self, solver):
4452  def RunWrapper(self, solver):
4453    try:
4454      self.Run(solver)
4455    except Exception as e:
4456      if 'CP Solver fail' in str(e):
4457        solver.ShouldFail()
4458      else:
4459        raise

This is the main callback of the demon.

def DebugString(self):
4461  def DebugString(self):
4462    return "PyDemon"
class PyConstraintDemon(PyDemon):
4465class PyConstraintDemon(PyDemon):
4466  def __init__(self, ct, method, delayed, *args):
4467    super().__init__()
4468    self.__constraint = ct
4469    self.__method = method
4470    self.__delayed = delayed
4471    self.__args = args
4472
4473  def Run(self, solver):
4474    self.__method(self.__constraint, *self.__args)
4475
4476  def Priority(self):
4477    return Solver.DELAYED_PRIORITY if self.__delayed else Solver.NORMAL_PRIORITY
4478
4479  def DebugString(self):
4480    return 'PyConstraintDemon'

A Demon is the base element of a propagation queue. It is the main object responsible for implementing the actual propagation of the constraint and pruning the inconsistent values in the domains of the variables. The main concept is that demons are listeners that are attached to the variables and listen to their modifications.

There are two methods:
  • Run() is the actual method called when the demon is processed.
  • priority() returns its priority. Standard priorities are slow, normal or fast. "immediate" is reserved for variables and is treated separately.
PyConstraintDemon(ct, method, delayed, *args)
4466  def __init__(self, ct, method, delayed, *args):
4467    super().__init__()
4468    self.__constraint = ct
4469    self.__method = method
4470    self.__delayed = delayed
4471    self.__args = args

This indicates the priority of a demon. Immediate demons are treated separately and corresponds to variables.

def Run(self, solver):
4473  def Run(self, solver):
4474    self.__method(self.__constraint, *self.__args)
def Priority(self):
4476  def Priority(self):
4477    return Solver.DELAYED_PRIORITY if self.__delayed else Solver.NORMAL_PRIORITY

This method returns the priority of the demon. Usually a demon is fast, slow or normal. Immediate demons are reserved for internal use to maintain variables.

def DebugString(self):
4479  def DebugString(self):
4480    return 'PyConstraintDemon'
class PyConstraint(Constraint):
4483class PyConstraint(Constraint):
4484  def __init__(self, solver):
4485    super().__init__(solver)
4486    self.__demons = []
4487
4488  def Demon(self, method, *args):
4489    demon = PyConstraintDemon(self, method, False, *args)
4490    self.__demons.append(demon)
4491    return demon
4492
4493  def DelayedDemon(self, method, *args):
4494    demon = PyConstraintDemon(self, method, True, *args)
4495    self.__demons.append(demon)
4496    return demon
4497
4498  def InitialPropagateDemon(self):
4499    return self.solver().ConstraintInitialPropagateCallback(self)
4500
4501  def DelayedInitialPropagateDemon(self):
4502    return self.solver().DelayedConstraintInitialPropagateCallback(self)
4503
4504  def InitialPropagateWrapper(self):
4505    try:
4506      self.InitialPropagate()
4507    except Exception as e:
4508      if 'CP Solver fail' in str(e):
4509        self.solver().ShouldFail()
4510      else:
4511        raise
4512
4513  def DebugString(self):
4514    return "PyConstraint"

A constraint is the main modeling object. It provides two methods:

  • Post() is responsible for creating the demons and attaching them to immediate demons().
  • InitialPropagate() is called once just after Post and performs the initial propagation. The subsequent propagations will be performed by the demons Posted during the post() method.
PyConstraint(solver)
4484  def __init__(self, solver):
4485    super().__init__(solver)
4486    self.__demons = []
def Demon(self, method, *args):
4488  def Demon(self, method, *args):
4489    demon = PyConstraintDemon(self, method, False, *args)
4490    self.__demons.append(demon)
4491    return demon
def DelayedDemon(self, method, *args):
4493  def DelayedDemon(self, method, *args):
4494    demon = PyConstraintDemon(self, method, True, *args)
4495    self.__demons.append(demon)
4496    return demon
def InitialPropagateDemon(self):
4498  def InitialPropagateDemon(self):
4499    return self.solver().ConstraintInitialPropagateCallback(self)
def DelayedInitialPropagateDemon(self):
4501  def DelayedInitialPropagateDemon(self):
4502    return self.solver().DelayedConstraintInitialPropagateCallback(self)
def InitialPropagateWrapper(self):
4504  def InitialPropagateWrapper(self):
4505    try:
4506      self.InitialPropagate()
4507    except Exception as e:
4508      if 'CP Solver fail' in str(e):
4509        self.solver().ShouldFail()
4510      else:
4511        raise

This method performs the initial propagation of the constraint. It is called just after the post.

def DebugString(self):
4513  def DebugString(self):
4514    return "PyConstraint"
class RoutingIndexManager:
4516class RoutingIndexManager(object):
4517    r"""
4518    Manager for any NodeIndex <-> variable index conversion. The routing solver
4519    uses variable indices internally and through its API. These variable indices
4520    are tricky to manage directly because one Node can correspond to a multitude
4521    of variables, depending on the number of times they appear in the model, and
4522    if they're used as start and/or end points. This class aims to simplify
4523    variable index usage, allowing users to use NodeIndex instead.
4524
4525    Usage:
4526
4527      .. code-block:: c++
4528
4529          auto starts_ends = ...;  /// These are NodeIndex.
4530          RoutingIndexManager manager(10, 4, starts_ends);  // 10 nodes, 4 vehicles.
4531          RoutingModel model(manager);
4532
4533    Then, use 'manager.NodeToIndex(node)' whenever model requires a variable
4534    index.
4535
4536    Note: the mapping between node indices and variables indices is subject to
4537    change so no assumption should be made on it. The only guarantee is that
4538    indices range between 0 and n-1, where n = number of vehicles * 2 (for start
4539    and end nodes) + number of non-start or end nodes.
4540    """
4541
4542    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4543    __repr__ = _swig_repr
4544
4545    def __init__(self, *args):
4546        _pywrapcp.RoutingIndexManager_swiginit(self, _pywrapcp.new_RoutingIndexManager(*args))
4547
4548    def GetNumberOfNodes(self):
4549        return _pywrapcp.RoutingIndexManager_GetNumberOfNodes(self)
4550
4551    def GetNumberOfVehicles(self):
4552        return _pywrapcp.RoutingIndexManager_GetNumberOfVehicles(self)
4553
4554    def GetNumberOfIndices(self):
4555        return _pywrapcp.RoutingIndexManager_GetNumberOfIndices(self)
4556
4557    def GetStartIndex(self, vehicle):
4558        return _pywrapcp.RoutingIndexManager_GetStartIndex(self, vehicle)
4559
4560    def GetEndIndex(self, vehicle):
4561        return _pywrapcp.RoutingIndexManager_GetEndIndex(self, vehicle)
4562
4563    def NodeToIndex(self, node):
4564        return _pywrapcp.RoutingIndexManager_NodeToIndex(self, node)
4565
4566    def IndexToNode(self, index):
4567        return _pywrapcp.RoutingIndexManager_IndexToNode(self, index)
4568    __swig_destroy__ = _pywrapcp.delete_RoutingIndexManager

Manager for any NodeIndex <-> variable index conversion. The routing solver uses variable indices internally and through its API. These variable indices are tricky to manage directly because one Node can correspond to a multitude of variables, depending on the number of times they appear in the model, and if they're used as start and/or end points. This class aims to simplify variable index usage, allowing users to use NodeIndex instead.

Usage:

```c++

auto starts_ends = ...; /// These are NodeIndex. RoutingIndexManager manager(10, 4, starts_ends); // 10 nodes, 4 vehicles. RoutingModel model(manager); ```

Then, use 'manager.NodeToIndex(node)' whenever model requires a variable index.

Note: the mapping between node indices and variables indices is subject to change so no assumption should be made on it. The only guarantee is that indices range between 0 and n-1, where n = number of vehicles * 2 (for start and end nodes) + number of non-start or end nodes.

RoutingIndexManager(*args)
4545    def __init__(self, *args):
4546        _pywrapcp.RoutingIndexManager_swiginit(self, _pywrapcp.new_RoutingIndexManager(*args))
thisown
4542    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def GetNumberOfNodes(self):
4548    def GetNumberOfNodes(self):
4549        return _pywrapcp.RoutingIndexManager_GetNumberOfNodes(self)
def GetNumberOfVehicles(self):
4551    def GetNumberOfVehicles(self):
4552        return _pywrapcp.RoutingIndexManager_GetNumberOfVehicles(self)
def GetNumberOfIndices(self):
4554    def GetNumberOfIndices(self):
4555        return _pywrapcp.RoutingIndexManager_GetNumberOfIndices(self)
def GetStartIndex(self, vehicle):
4557    def GetStartIndex(self, vehicle):
4558        return _pywrapcp.RoutingIndexManager_GetStartIndex(self, vehicle)
def GetEndIndex(self, vehicle):
4560    def GetEndIndex(self, vehicle):
4561        return _pywrapcp.RoutingIndexManager_GetEndIndex(self, vehicle)
def NodeToIndex(self, node):
4563    def NodeToIndex(self, node):
4564        return _pywrapcp.RoutingIndexManager_NodeToIndex(self, node)
def IndexToNode(self, index):
4566    def IndexToNode(self, index):
4567        return _pywrapcp.RoutingIndexManager_IndexToNode(self, index)
def DefaultRoutingModelParameters():
4573def DefaultRoutingModelParameters():
4574    return _pywrapcp.DefaultRoutingModelParameters()
def DefaultRoutingSearchParameters():
4576def DefaultRoutingSearchParameters():
4577    return _pywrapcp.DefaultRoutingSearchParameters()
def FindErrorInRoutingSearchParameters(search_parameters):
4579def FindErrorInRoutingSearchParameters(search_parameters):
4580    r"""
4581    Returns an empty std::string if the routing search parameters are valid, and
4582    a non-empty, human readable error description if they're not.
4583    """
4584    return _pywrapcp.FindErrorInRoutingSearchParameters(search_parameters)

Returns an empty std::string if the routing search parameters are valid, and a non-empty, human readable error description if they're not.

BOOL_UNSPECIFIED = 0
BOOL_FALSE = 2
BOOL_TRUE = 3
class FirstSolutionStrategy:
4588class FirstSolutionStrategy(object):
4589    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4590    __repr__ = _swig_repr
4591
4592    def __init__(self):
4593        _pywrapcp.FirstSolutionStrategy_swiginit(self, _pywrapcp.new_FirstSolutionStrategy())
4594    __swig_destroy__ = _pywrapcp.delete_FirstSolutionStrategy
thisown
4589    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

class LocalSearchMetaheuristic:
4598class LocalSearchMetaheuristic(object):
4599    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4600    __repr__ = _swig_repr
4601
4602    def __init__(self):
4603        _pywrapcp.LocalSearchMetaheuristic_swiginit(self, _pywrapcp.new_LocalSearchMetaheuristic())
4604    __swig_destroy__ = _pywrapcp.delete_LocalSearchMetaheuristic
thisown
4599    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

class PathsMetadata:
4608class PathsMetadata(object):
4609    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4610    __repr__ = _swig_repr
4611
4612    def __init__(self, manager):
4613        _pywrapcp.PathsMetadata_swiginit(self, _pywrapcp.new_PathsMetadata(manager))
4614
4615    def IsStart(self, node):
4616        return _pywrapcp.PathsMetadata_IsStart(self, node)
4617
4618    def IsEnd(self, node):
4619        return _pywrapcp.PathsMetadata_IsEnd(self, node)
4620
4621    def GetPath(self, start_or_end_node):
4622        return _pywrapcp.PathsMetadata_GetPath(self, start_or_end_node)
4623
4624    def NumPaths(self):
4625        return _pywrapcp.PathsMetadata_NumPaths(self)
4626
4627    def Paths(self):
4628        return _pywrapcp.PathsMetadata_Paths(self)
4629
4630    def Starts(self):
4631        return _pywrapcp.PathsMetadata_Starts(self)
4632
4633    def Ends(self):
4634        return _pywrapcp.PathsMetadata_Ends(self)
4635    __swig_destroy__ = _pywrapcp.delete_PathsMetadata
PathsMetadata(manager)
4612    def __init__(self, manager):
4613        _pywrapcp.PathsMetadata_swiginit(self, _pywrapcp.new_PathsMetadata(manager))
thisown
4609    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def IsStart(self, node):
4615    def IsStart(self, node):
4616        return _pywrapcp.PathsMetadata_IsStart(self, node)
def IsEnd(self, node):
4618    def IsEnd(self, node):
4619        return _pywrapcp.PathsMetadata_IsEnd(self, node)
def GetPath(self, start_or_end_node):
4621    def GetPath(self, start_or_end_node):
4622        return _pywrapcp.PathsMetadata_GetPath(self, start_or_end_node)
def NumPaths(self):
4624    def NumPaths(self):
4625        return _pywrapcp.PathsMetadata_NumPaths(self)
def Paths(self):
4627    def Paths(self):
4628        return _pywrapcp.PathsMetadata_Paths(self)
def Starts(self):
4630    def Starts(self):
4631        return _pywrapcp.PathsMetadata_Starts(self)
def Ends(self):
4633    def Ends(self):
4634        return _pywrapcp.PathsMetadata_Ends(self)
class RoutingModel:
4639class RoutingModel(object):
4640    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
4641    __repr__ = _swig_repr
4642    ROUTING_NOT_SOLVED = _pywrapcp.RoutingModel_ROUTING_NOT_SOLVED
4643    r""" Problem not solved yet (before calling RoutingModel::Solve())."""
4644    ROUTING_SUCCESS = _pywrapcp.RoutingModel_ROUTING_SUCCESS
4645    r""" Problem solved successfully after calling RoutingModel::Solve()."""
4646    ROUTING_PARTIAL_SUCCESS_LOCAL_OPTIMUM_NOT_REACHED = _pywrapcp.RoutingModel_ROUTING_PARTIAL_SUCCESS_LOCAL_OPTIMUM_NOT_REACHED
4647    r"""
4648    Problem solved successfully after calling RoutingModel::Solve(), except
4649    that a local optimum has not been reached. Leaving more time would allow
4650    improving the solution.
4651    """
4652    ROUTING_FAIL = _pywrapcp.RoutingModel_ROUTING_FAIL
4653    r""" No solution found to the problem after calling RoutingModel::Solve()."""
4654    ROUTING_FAIL_TIMEOUT = _pywrapcp.RoutingModel_ROUTING_FAIL_TIMEOUT
4655    r""" Time limit reached before finding a solution with RoutingModel::Solve()."""
4656    ROUTING_INVALID = _pywrapcp.RoutingModel_ROUTING_INVALID
4657    r""" Model, model parameters or flags are not valid."""
4658    ROUTING_INFEASIBLE = _pywrapcp.RoutingModel_ROUTING_INFEASIBLE
4659    r""" Problem proven to be infeasible."""
4660    ROUTING_OPTIMAL = _pywrapcp.RoutingModel_ROUTING_OPTIMAL
4661    r""" Problem has been solved to optimality."""
4662    PICKUP_AND_DELIVERY_NO_ORDER = _pywrapcp.RoutingModel_PICKUP_AND_DELIVERY_NO_ORDER
4663    r""" Any precedence is accepted."""
4664    PICKUP_AND_DELIVERY_LIFO = _pywrapcp.RoutingModel_PICKUP_AND_DELIVERY_LIFO
4665    r""" Deliveries must be performed in reverse order of pickups."""
4666    PICKUP_AND_DELIVERY_FIFO = _pywrapcp.RoutingModel_PICKUP_AND_DELIVERY_FIFO
4667    r""" Deliveries must be performed in the same order as pickups."""
4668
4669    def __init__(self, *args):
4670        _pywrapcp.RoutingModel_swiginit(self, _pywrapcp.new_RoutingModel(*args))
4671    __swig_destroy__ = _pywrapcp.delete_RoutingModel
4672    kTransitEvaluatorSignUnknown = _pywrapcp.RoutingModel_kTransitEvaluatorSignUnknown
4673    kTransitEvaluatorSignPositiveOrZero = _pywrapcp.RoutingModel_kTransitEvaluatorSignPositiveOrZero
4674    kTransitEvaluatorSignNegativeOrZero = _pywrapcp.RoutingModel_kTransitEvaluatorSignNegativeOrZero
4675
4676    def RegisterUnaryTransitVector(self, values):
4677        r"""
4678        Registers 'callback' and returns its index.
4679        The sign parameter allows to notify the solver that the callback only
4680        return values of the given sign. This can help the solver, but passing
4681        an incorrect sign may crash in non-opt compilation mode, and yield
4682        incorrect results in opt.
4683        """
4684        return _pywrapcp.RoutingModel_RegisterUnaryTransitVector(self, values)
4685
4686    def RegisterUnaryTransitCallback(self, *args):
4687        return _pywrapcp.RoutingModel_RegisterUnaryTransitCallback(self, *args)
4688
4689    def RegisterTransitMatrix(self, values):
4690        return _pywrapcp.RoutingModel_RegisterTransitMatrix(self, values)
4691
4692    def RegisterTransitCallback(self, *args):
4693        return _pywrapcp.RoutingModel_RegisterTransitCallback(self, *args)
4694
4695    def TransitCallback(self, callback_index):
4696        return _pywrapcp.RoutingModel_TransitCallback(self, callback_index)
4697
4698    def UnaryTransitCallbackOrNull(self, callback_index):
4699        return _pywrapcp.RoutingModel_UnaryTransitCallbackOrNull(self, callback_index)
4700
4701    def AddDimension(self, evaluator_index, slack_max, capacity, fix_start_cumul_to_zero, name):
4702        r"""
4703        Model creation
4704        Methods to add dimensions to routes; dimensions represent quantities
4705        accumulated at nodes along the routes. They represent quantities such as
4706        weights or volumes carried along the route, or distance or times.
4707        Quantities at a node are represented by "cumul" variables and the increase
4708        or decrease of quantities between nodes are represented by "transit"
4709        variables. These variables are linked as follows:
4710        if j == next(i), cumul(j) = cumul(i) + transit(i, j) + slack(i)
4711        where slack is a positive slack variable (can represent waiting times for
4712        a time dimension).
4713        Setting the value of fix_start_cumul_to_zero to true will force the
4714        "cumul" variable of the start node of all vehicles to be equal to 0.
4715        Creates a dimension where the transit variable is constrained to be
4716        equal to evaluator(i, next(i)); 'slack_max' is the upper bound of the
4717        slack variable and 'capacity' is the upper bound of the cumul variables.
4718        'name' is the name used to reference the dimension; this name is used to
4719        get cumul and transit variables from the routing model.
4720        Returns false if a dimension with the same name has already been created
4721        (and doesn't create the new dimension).
4722        Takes ownership of the callback 'evaluator'.
4723        """
4724        return _pywrapcp.RoutingModel_AddDimension(self, evaluator_index, slack_max, capacity, fix_start_cumul_to_zero, name)
4725
4726    def AddDimensionWithVehicleTransits(self, evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name):
4727        return _pywrapcp.RoutingModel_AddDimensionWithVehicleTransits(self, evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name)
4728
4729    def AddDimensionWithVehicleCapacity(self, evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4730        return _pywrapcp.RoutingModel_AddDimensionWithVehicleCapacity(self, evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name)
4731
4732    def AddDimensionWithVehicleTransitAndCapacity(self, evaluator_indices, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4733        return _pywrapcp.RoutingModel_AddDimensionWithVehicleTransitAndCapacity(self, evaluator_indices, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name)
4734
4735    def AddConstantDimensionWithSlack(self, value, capacity, slack_max, fix_start_cumul_to_zero, name):
4736        r"""
4737        Creates a dimension where the transit variable is constrained to be
4738        equal to 'value'; 'capacity' is the upper bound of the cumul variables.
4739        'name' is the name used to reference the dimension; this name is used to
4740        get cumul and transit variables from the routing model.
4741        Returns a pair consisting of an index to the registered unary transit
4742        callback and a bool denoting whether the dimension has been created.
4743        It is false if a dimension with the same name has already been created
4744        (and doesn't create the new dimension but still register a new callback).
4745        """
4746        return _pywrapcp.RoutingModel_AddConstantDimensionWithSlack(self, value, capacity, slack_max, fix_start_cumul_to_zero, name)
4747
4748    def AddConstantDimension(self, value, capacity, fix_start_cumul_to_zero, name):
4749        return _pywrapcp.RoutingModel_AddConstantDimension(self, value, capacity, fix_start_cumul_to_zero, name)
4750
4751    def AddVectorDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4752        r"""
4753        Creates a dimension where the transit variable is constrained to be
4754        equal to 'values[i]' for node i; 'capacity' is the upper bound of
4755        the cumul variables. 'name' is the name used to reference the dimension;
4756        this name is used to get cumul and transit variables from the routing
4757        model.
4758        Returns a pair consisting of an index to the registered unary transit
4759        callback and a bool denoting whether the dimension has been created.
4760        It is false if a dimension with the same name has already been created
4761        (and doesn't create the new dimension but still register a new callback).
4762        """
4763        return _pywrapcp.RoutingModel_AddVectorDimension(self, values, capacity, fix_start_cumul_to_zero, name)
4764
4765    def AddMatrixDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4766        r"""
4767        Creates a dimension where the transit variable is constrained to be
4768        equal to 'values[i][next(i)]' for node i; 'capacity' is the upper bound of
4769        the cumul variables. 'name' is the name used to reference the dimension;
4770        this name is used to get cumul and transit variables from the routing
4771        model.
4772        Returns a pair consisting of an index to the registered transit callback
4773        and a bool denoting whether the dimension has been created.
4774        It is false if a dimension with the same name has already been created
4775        (and doesn't create the new dimension but still register a new callback).
4776        """
4777        return _pywrapcp.RoutingModel_AddMatrixDimension(self, values, capacity, fix_start_cumul_to_zero, name)
4778
4779    def GetAllDimensionNames(self):
4780        r""" Outputs the names of all dimensions added to the routing engine."""
4781        return _pywrapcp.RoutingModel_GetAllDimensionNames(self)
4782
4783    def GetDimensions(self):
4784        r""" Returns all dimensions of the model."""
4785        return _pywrapcp.RoutingModel_GetDimensions(self)
4786
4787    def GetDimensionsWithSoftOrSpanCosts(self):
4788        r""" Returns dimensions with soft or vehicle span costs."""
4789        return _pywrapcp.RoutingModel_GetDimensionsWithSoftOrSpanCosts(self)
4790
4791    def GetUnaryDimensions(self):
4792        r""" Returns dimensions for which all transit evaluators are unary."""
4793        return _pywrapcp.RoutingModel_GetUnaryDimensions(self)
4794
4795    def GetDimensionsWithGlobalCumulOptimizers(self):
4796        r""" Returns the dimensions which have [global|local]_dimension_optimizers_."""
4797        return _pywrapcp.RoutingModel_GetDimensionsWithGlobalCumulOptimizers(self)
4798
4799    def GetDimensionsWithLocalCumulOptimizers(self):
4800        return _pywrapcp.RoutingModel_GetDimensionsWithLocalCumulOptimizers(self)
4801
4802    def HasGlobalCumulOptimizer(self, dimension):
4803        r""" Returns whether the given dimension has global/local cumul optimizers."""
4804        return _pywrapcp.RoutingModel_HasGlobalCumulOptimizer(self, dimension)
4805
4806    def HasLocalCumulOptimizer(self, dimension):
4807        return _pywrapcp.RoutingModel_HasLocalCumulOptimizer(self, dimension)
4808
4809    def GetMutableGlobalCumulLPOptimizer(self, dimension):
4810        r"""
4811        Returns the global/local dimension cumul optimizer for a given dimension,
4812        or nullptr if there is none.
4813        """
4814        return _pywrapcp.RoutingModel_GetMutableGlobalCumulLPOptimizer(self, dimension)
4815
4816    def GetMutableGlobalCumulMPOptimizer(self, dimension):
4817        return _pywrapcp.RoutingModel_GetMutableGlobalCumulMPOptimizer(self, dimension)
4818
4819    def GetMutableLocalCumulLPOptimizer(self, dimension):
4820        return _pywrapcp.RoutingModel_GetMutableLocalCumulLPOptimizer(self, dimension)
4821
4822    def GetMutableLocalCumulMPOptimizer(self, dimension):
4823        return _pywrapcp.RoutingModel_GetMutableLocalCumulMPOptimizer(self, dimension)
4824
4825    def HasDimension(self, dimension_name):
4826        r""" Returns true if a dimension exists for a given dimension name."""
4827        return _pywrapcp.RoutingModel_HasDimension(self, dimension_name)
4828
4829    def GetDimensionOrDie(self, dimension_name):
4830        r""" Returns a dimension from its name. Dies if the dimension does not exist."""
4831        return _pywrapcp.RoutingModel_GetDimensionOrDie(self, dimension_name)
4832
4833    def GetMutableDimension(self, dimension_name):
4834        r"""
4835        Returns a dimension from its name. Returns nullptr if the dimension does
4836        not exist.
4837        """
4838        return _pywrapcp.RoutingModel_GetMutableDimension(self, dimension_name)
4839
4840    def SetPrimaryConstrainedDimension(self, dimension_name):
4841        r"""
4842        Set the given dimension as "primary constrained". As of August 2013, this
4843        is only used by ArcIsMoreConstrainedThanArc().
4844        "dimension" must be the name of an existing dimension, or be empty, in
4845        which case there will not be a primary dimension after this call.
4846        """
4847        return _pywrapcp.RoutingModel_SetPrimaryConstrainedDimension(self, dimension_name)
4848
4849    def GetPrimaryConstrainedDimension(self):
4850        r""" Get the primary constrained dimension, or an empty string if it is unset."""
4851        return _pywrapcp.RoutingModel_GetPrimaryConstrainedDimension(self)
4852
4853    def GetResourceGroup(self, rg_index):
4854        return _pywrapcp.RoutingModel_GetResourceGroup(self, rg_index)
4855
4856    def GetDimensionResourceGroupIndices(self, dimension):
4857        r"""
4858        Returns the indices of resource groups for this dimension. This method can
4859        only be called after the model has been closed.
4860        """
4861        return _pywrapcp.RoutingModel_GetDimensionResourceGroupIndices(self, dimension)
4862
4863    def GetDimensionResourceGroupIndex(self, dimension):
4864        r"""
4865        Returns the index of the resource group attached to the dimension.
4866        DCHECKS that there's exactly one resource group for this dimension.
4867        """
4868        return _pywrapcp.RoutingModel_GetDimensionResourceGroupIndex(self, dimension)
4869
4870    def AddDisjunction(self, *args):
4871        r"""
4872        Adds a disjunction constraint on the indices: exactly 'max_cardinality' of
4873        the indices are active. Start and end indices of any vehicle cannot be
4874        part of a disjunction.
4875
4876        If a penalty is given, at most 'max_cardinality' of the indices can be
4877        active, and if less are active, 'penalty' is payed per inactive index.
4878        This is equivalent to adding the constraint:
4879            p + Sum(i)active[i] == max_cardinality
4880        where p is an integer variable, and the following cost to the cost
4881        function:
4882            p * penalty.
4883        'penalty' must be positive to make the disjunction optional; a negative
4884        penalty will force 'max_cardinality' indices of the disjunction to be
4885        performed, and therefore p == 0.
4886        Note: passing a vector with a single index will model an optional index
4887        with a penalty cost if it is not visited.
4888        """
4889        return _pywrapcp.RoutingModel_AddDisjunction(self, *args)
4890
4891    def GetDisjunctionIndices(self, index):
4892        r""" Returns the indices of the disjunctions to which an index belongs."""
4893        return _pywrapcp.RoutingModel_GetDisjunctionIndices(self, index)
4894
4895    def GetDisjunctionPenalty(self, index):
4896        r""" Returns the penalty of the node disjunction of index 'index'."""
4897        return _pywrapcp.RoutingModel_GetDisjunctionPenalty(self, index)
4898
4899    def GetDisjunctionMaxCardinality(self, index):
4900        r"""
4901        Returns the maximum number of possible active nodes of the node
4902        disjunction of index 'index'.
4903        """
4904        return _pywrapcp.RoutingModel_GetDisjunctionMaxCardinality(self, index)
4905
4906    def GetNumberOfDisjunctions(self):
4907        r""" Returns the number of node disjunctions in the model."""
4908        return _pywrapcp.RoutingModel_GetNumberOfDisjunctions(self)
4909
4910    def HasMandatoryDisjunctions(self):
4911        r"""
4912        Returns true if the model contains mandatory disjunctions (ones with
4913        kNoPenalty as penalty).
4914        """
4915        return _pywrapcp.RoutingModel_HasMandatoryDisjunctions(self)
4916
4917    def HasMaxCardinalityConstrainedDisjunctions(self):
4918        r"""
4919        Returns true if the model contains at least one disjunction which is
4920        constrained by its max_cardinality.
4921        """
4922        return _pywrapcp.RoutingModel_HasMaxCardinalityConstrainedDisjunctions(self)
4923
4924    def GetPerfectBinaryDisjunctions(self):
4925        r"""
4926        Returns the list of all perfect binary disjunctions, as pairs of variable
4927        indices: a disjunction is "perfect" when its variables do not appear in
4928        any other disjunction. Each pair is sorted (lowest variable index first),
4929        and the output vector is also sorted (lowest pairs first).
4930        """
4931        return _pywrapcp.RoutingModel_GetPerfectBinaryDisjunctions(self)
4932
4933    def IgnoreDisjunctionsAlreadyForcedToZero(self):
4934        r"""
4935        SPECIAL: Makes the solver ignore all the disjunctions whose active
4936        variables are all trivially zero (i.e. Max() == 0), by setting their
4937        max_cardinality to 0.
4938        This can be useful when using the BaseBinaryDisjunctionNeighborhood
4939        operators, in the context of arc-based routing.
4940        """
4941        return _pywrapcp.RoutingModel_IgnoreDisjunctionsAlreadyForcedToZero(self)
4942
4943    def AddSoftSameVehicleConstraint(self, indices, cost):
4944        r"""
4945        Adds a soft constraint to force a set of variable indices to be on the
4946        same vehicle. If all nodes are not on the same vehicle, each extra vehicle
4947        used adds 'cost' to the cost function.
4948        """
4949        return _pywrapcp.RoutingModel_AddSoftSameVehicleConstraint(self, indices, cost)
4950
4951    def SetAllowedVehiclesForIndex(self, vehicles, index):
4952        r"""
4953        Sets the vehicles which can visit a given node. If the node is in a
4954        disjunction, this will not prevent it from being unperformed.
4955        Specifying an empty vector of vehicles has no effect (all vehicles
4956        will be allowed to visit the node).
4957        """
4958        return _pywrapcp.RoutingModel_SetAllowedVehiclesForIndex(self, vehicles, index)
4959
4960    def IsVehicleAllowedForIndex(self, vehicle, index):
4961        r""" Returns true if a vehicle is allowed to visit a given node."""
4962        return _pywrapcp.RoutingModel_IsVehicleAllowedForIndex(self, vehicle, index)
4963
4964    def AddPickupAndDelivery(self, pickup, delivery):
4965        r"""
4966        Notifies that index1 and index2 form a pair of nodes which should belong
4967        to the same route. This methods helps the search find better solutions,
4968        especially in the local search phase.
4969        It should be called each time you have an equality constraint linking
4970        the vehicle variables of two node (including for instance pickup and
4971        delivery problems):
4972            Solver* const solver = routing.solver();
4973            int64_t index1 = manager.NodeToIndex(node1);
4974            int64_t index2 = manager.NodeToIndex(node2);
4975            solver->AddConstraint(solver->MakeEquality(
4976                routing.VehicleVar(index1),
4977                routing.VehicleVar(index2)));
4978            routing.AddPickupAndDelivery(index1, index2);
4979        """
4980        return _pywrapcp.RoutingModel_AddPickupAndDelivery(self, pickup, delivery)
4981
4982    def AddPickupAndDeliverySets(self, pickup_disjunction, delivery_disjunction):
4983        r"""
4984        Same as AddPickupAndDelivery but notifying that the performed node from
4985        the disjunction of index 'pickup_disjunction' is on the same route as the
4986        performed node from the disjunction of index 'delivery_disjunction'.
4987        """
4988        return _pywrapcp.RoutingModel_AddPickupAndDeliverySets(self, pickup_disjunction, delivery_disjunction)
4989
4990    def GetPickupPositions(self, node_index):
4991        r""" Returns the pickup and delivery positions where the node is a pickup."""
4992        return _pywrapcp.RoutingModel_GetPickupPositions(self, node_index)
4993
4994    def GetDeliveryPositions(self, node_index):
4995        r""" Returns the pickup and delivery positions where the node is a delivery."""
4996        return _pywrapcp.RoutingModel_GetDeliveryPositions(self, node_index)
4997
4998    def IsPickup(self, node_index):
4999        r""" Returns whether the node is a pickup (resp. delivery)."""
5000        return _pywrapcp.RoutingModel_IsPickup(self, node_index)
5001
5002    def IsDelivery(self, node_index):
5003        return _pywrapcp.RoutingModel_IsDelivery(self, node_index)
5004
5005    def SetPickupAndDeliveryPolicyOfAllVehicles(self, policy):
5006        r"""
5007        Sets the Pickup and delivery policy of all vehicles. It is equivalent to
5008        calling SetPickupAndDeliveryPolicyOfVehicle on all vehicles.
5009        """
5010        return _pywrapcp.RoutingModel_SetPickupAndDeliveryPolicyOfAllVehicles(self, policy)
5011
5012    def SetPickupAndDeliveryPolicyOfVehicle(self, policy, vehicle):
5013        return _pywrapcp.RoutingModel_SetPickupAndDeliveryPolicyOfVehicle(self, policy, vehicle)
5014
5015    def GetPickupAndDeliveryPolicyOfVehicle(self, vehicle):
5016        return _pywrapcp.RoutingModel_GetPickupAndDeliveryPolicyOfVehicle(self, vehicle)
5017
5018    def GetNumOfSingletonNodes(self):
5019        r"""
5020        Returns the number of non-start/end nodes which do not appear in a
5021        pickup/delivery pair.
5022        """
5023        return _pywrapcp.RoutingModel_GetNumOfSingletonNodes(self)
5024    TYPE_ADDED_TO_VEHICLE = _pywrapcp.RoutingModel_TYPE_ADDED_TO_VEHICLE
5025    r""" When visited, the number of types 'T' on the vehicle increases by one."""
5026    ADDED_TYPE_REMOVED_FROM_VEHICLE = _pywrapcp.RoutingModel_ADDED_TYPE_REMOVED_FROM_VEHICLE
5027    r"""
5028    When visited, one instance of type 'T' previously added to the route
5029    (TYPE_ADDED_TO_VEHICLE), if any, is removed from the vehicle.
5030    If the type was not previously added to the route or all added instances
5031    have already been removed, this visit has no effect on the types.
5032    """
5033    TYPE_ON_VEHICLE_UP_TO_VISIT = _pywrapcp.RoutingModel_TYPE_ON_VEHICLE_UP_TO_VISIT
5034    r"""
5035    With the following policy, the visit enforces that type 'T' is
5036    considered on the route from its start until this node is visited.
5037    """
5038    TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED = _pywrapcp.RoutingModel_TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED
5039    r"""
5040    The visit doesn't have an impact on the number of types 'T' on the
5041    route, as it's (virtually) added and removed directly.
5042    This policy can be used for visits which are part of an incompatibility
5043    or requirement set without affecting the type count on the route.
5044    """
5045
5046    def SetVisitType(self, index, type, type_policy):
5047        return _pywrapcp.RoutingModel_SetVisitType(self, index, type, type_policy)
5048
5049    def GetVisitType(self, index):
5050        return _pywrapcp.RoutingModel_GetVisitType(self, index)
5051
5052    def GetSingleNodesOfType(self, type):
5053        return _pywrapcp.RoutingModel_GetSingleNodesOfType(self, type)
5054
5055    def GetPairIndicesOfType(self, type):
5056        return _pywrapcp.RoutingModel_GetPairIndicesOfType(self, type)
5057
5058    def GetVisitTypePolicy(self, index):
5059        return _pywrapcp.RoutingModel_GetVisitTypePolicy(self, index)
5060
5061    def CloseVisitTypes(self):
5062        r"""
5063        This function should be called once all node visit types have been set and
5064        prior to adding any incompatibilities/requirements.
5065        "close" types.
5066        """
5067        return _pywrapcp.RoutingModel_CloseVisitTypes(self)
5068
5069    def GetNumberOfVisitTypes(self):
5070        return _pywrapcp.RoutingModel_GetNumberOfVisitTypes(self)
5071
5072    def AddHardTypeIncompatibility(self, type1, type2):
5073        r"""
5074        Incompatibilities:
5075        Two nodes with "hard" incompatible types cannot share the same route at
5076        all, while with a "temporal" incompatibility they can't be on the same
5077        route at the same time.
5078        """
5079        return _pywrapcp.RoutingModel_AddHardTypeIncompatibility(self, type1, type2)
5080
5081    def AddTemporalTypeIncompatibility(self, type1, type2):
5082        return _pywrapcp.RoutingModel_AddTemporalTypeIncompatibility(self, type1, type2)
5083
5084    def GetHardTypeIncompatibilitiesOfType(self, type):
5085        r""" Returns visit types incompatible with a given type."""
5086        return _pywrapcp.RoutingModel_GetHardTypeIncompatibilitiesOfType(self, type)
5087
5088    def GetTemporalTypeIncompatibilitiesOfType(self, type):
5089        return _pywrapcp.RoutingModel_GetTemporalTypeIncompatibilitiesOfType(self, type)
5090
5091    def HasHardTypeIncompatibilities(self):
5092        r"""
5093        Returns true iff any hard (resp. temporal) type incompatibilities have
5094        been added to the model.
5095        """
5096        return _pywrapcp.RoutingModel_HasHardTypeIncompatibilities(self)
5097
5098    def HasTemporalTypeIncompatibilities(self):
5099        return _pywrapcp.RoutingModel_HasTemporalTypeIncompatibilities(self)
5100
5101    def AddSameVehicleRequiredTypeAlternatives(self, dependent_type, required_type_alternatives):
5102        r"""
5103        Requirements:
5104        NOTE: As of 2019-04, cycles in the requirement graph are not supported,
5105        and lead to the dependent nodes being skipped if possible (otherwise
5106        the model is considered infeasible).
5107        The following functions specify that "dependent_type" requires at least
5108        one of the types in "required_type_alternatives".
5109
5110        For same-vehicle requirements, a node of dependent type type_D requires at
5111        least one node of type type_R among the required alternatives on the same
5112        route.
5113        """
5114        return _pywrapcp.RoutingModel_AddSameVehicleRequiredTypeAlternatives(self, dependent_type, required_type_alternatives)
5115
5116    def AddRequiredTypeAlternativesWhenAddingType(self, dependent_type, required_type_alternatives):
5117        r"""
5118        If type_D depends on type_R when adding type_D, any node_D of type_D and
5119        VisitTypePolicy TYPE_ADDED_TO_VEHICLE or
5120        TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED requires at least one type_R on its
5121        vehicle at the time node_D is visited.
5122        """
5123        return _pywrapcp.RoutingModel_AddRequiredTypeAlternativesWhenAddingType(self, dependent_type, required_type_alternatives)
5124
5125    def AddRequiredTypeAlternativesWhenRemovingType(self, dependent_type, required_type_alternatives):
5126        r"""
5127        The following requirements apply when visiting dependent nodes that remove
5128        their type from the route, i.e. type_R must be on the vehicle when type_D
5129        of VisitTypePolicy ADDED_TYPE_REMOVED_FROM_VEHICLE,
5130        TYPE_ON_VEHICLE_UP_TO_VISIT or TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED is
5131        visited.
5132        """
5133        return _pywrapcp.RoutingModel_AddRequiredTypeAlternativesWhenRemovingType(self, dependent_type, required_type_alternatives)
5134
5135    def GetSameVehicleRequiredTypeAlternativesOfType(self, type):
5136        r"""
5137        Returns the set of same-vehicle requirement alternatives for the given
5138        type.
5139        """
5140        return _pywrapcp.RoutingModel_GetSameVehicleRequiredTypeAlternativesOfType(self, type)
5141
5142    def GetRequiredTypeAlternativesWhenAddingType(self, type):
5143        r""" Returns the set of requirement alternatives when adding the given type."""
5144        return _pywrapcp.RoutingModel_GetRequiredTypeAlternativesWhenAddingType(self, type)
5145
5146    def GetRequiredTypeAlternativesWhenRemovingType(self, type):
5147        r""" Returns the set of requirement alternatives when removing the given type."""
5148        return _pywrapcp.RoutingModel_GetRequiredTypeAlternativesWhenRemovingType(self, type)
5149
5150    def HasSameVehicleTypeRequirements(self):
5151        r"""
5152        Returns true iff any same-route (resp. temporal) type requirements have
5153        been added to the model.
5154        """
5155        return _pywrapcp.RoutingModel_HasSameVehicleTypeRequirements(self)
5156
5157    def HasTemporalTypeRequirements(self):
5158        return _pywrapcp.RoutingModel_HasTemporalTypeRequirements(self)
5159
5160    def HasTypeRegulations(self):
5161        r"""
5162        Returns true iff the model has any incompatibilities or requirements set
5163        on node types.
5164        """
5165        return _pywrapcp.RoutingModel_HasTypeRegulations(self)
5166
5167    def UnperformedPenalty(self, var_index):
5168        r"""
5169        Get the "unperformed" penalty of a node. This is only well defined if the
5170        node is only part of a single Disjunction, and that disjunction has a
5171        penalty. For forced active nodes returns max int64_t. In all other cases,
5172        this returns 0.
5173        """
5174        return _pywrapcp.RoutingModel_UnperformedPenalty(self, var_index)
5175
5176    def UnperformedPenaltyOrValue(self, default_value, var_index):
5177        r"""
5178        Same as above except that it returns default_value instead of 0 when
5179        penalty is not well defined (default value is passed as first argument to
5180        simplify the usage of the method in a callback).
5181        """
5182        return _pywrapcp.RoutingModel_UnperformedPenaltyOrValue(self, default_value, var_index)
5183
5184    def GetDepot(self):
5185        r"""
5186        Returns the variable index of the first starting or ending node of all
5187        routes. If all routes start  and end at the same node (single depot), this
5188        is the node returned.
5189        """
5190        return _pywrapcp.RoutingModel_GetDepot(self)
5191
5192    def SetMaximumNumberOfActiveVehicles(self, max_active_vehicles):
5193        r"""
5194        Constrains the maximum number of active vehicles, aka the number of
5195        vehicles which do not have an empty route. For instance, this can be used
5196        to limit the number of routes in the case where there are fewer drivers
5197        than vehicles and that the fleet of vehicle is heterogeneous.
5198        """
5199        return _pywrapcp.RoutingModel_SetMaximumNumberOfActiveVehicles(self, max_active_vehicles)
5200
5201    def GetMaximumNumberOfActiveVehicles(self):
5202        r""" Returns the maximum number of active vehicles."""
5203        return _pywrapcp.RoutingModel_GetMaximumNumberOfActiveVehicles(self)
5204
5205    def SetArcCostEvaluatorOfAllVehicles(self, evaluator_index):
5206        r"""
5207        Sets the cost function of the model such that the cost of a segment of a
5208        route between node 'from' and 'to' is evaluator(from, to), whatever the
5209        route or vehicle performing the route.
5210        """
5211        return _pywrapcp.RoutingModel_SetArcCostEvaluatorOfAllVehicles(self, evaluator_index)
5212
5213    def SetArcCostEvaluatorOfVehicle(self, evaluator_index, vehicle):
5214        r""" Sets the cost function for a given vehicle route."""
5215        return _pywrapcp.RoutingModel_SetArcCostEvaluatorOfVehicle(self, evaluator_index, vehicle)
5216
5217    def SetFixedCostOfAllVehicles(self, cost):
5218        r"""
5219        Sets the fixed cost of all vehicle routes. It is equivalent to calling
5220        SetFixedCostOfVehicle on all vehicle routes.
5221        """
5222        return _pywrapcp.RoutingModel_SetFixedCostOfAllVehicles(self, cost)
5223
5224    def SetFixedCostOfVehicle(self, cost, vehicle):
5225        r""" Sets the fixed cost of one vehicle route."""
5226        return _pywrapcp.RoutingModel_SetFixedCostOfVehicle(self, cost, vehicle)
5227
5228    def GetFixedCostOfVehicle(self, vehicle):
5229        r"""
5230        Returns the route fixed cost taken into account if the route of the
5231        vehicle is not empty, aka there's at least one node on the route other
5232        than the first and last nodes.
5233        """
5234        return _pywrapcp.RoutingModel_GetFixedCostOfVehicle(self, vehicle)
5235
5236    def SetPathEnergyCostOfVehicle(self, force, distance, unit_cost, vehicle):
5237        return _pywrapcp.RoutingModel_SetPathEnergyCostOfVehicle(self, force, distance, unit_cost, vehicle)
5238
5239    def SetAmortizedCostFactorsOfAllVehicles(self, linear_cost_factor, quadratic_cost_factor):
5240        r"""
5241        The following methods set the linear and quadratic cost factors of
5242        vehicles (must be positive values). The default value of these parameters
5243        is zero for all vehicles.
5244
5245        When set, the cost_ of the model will contain terms aiming at reducing the
5246        number of vehicles used in the model, by adding the following to the
5247        objective for every vehicle v:
5248        INDICATOR(v used in the model) *
5249          [linear_cost_factor_of_vehicle_[v]
5250           - quadratic_cost_factor_of_vehicle_[v]*(square of length of route v)]
5251        i.e. for every used vehicle, we add the linear factor as fixed cost, and
5252        subtract the square of the route length multiplied by the quadratic
5253        factor. This second term aims at making the routes as dense as possible.
5254
5255        Sets the linear and quadratic cost factor of all vehicles.
5256        """
5257        return _pywrapcp.RoutingModel_SetAmortizedCostFactorsOfAllVehicles(self, linear_cost_factor, quadratic_cost_factor)
5258
5259    def SetAmortizedCostFactorsOfVehicle(self, linear_cost_factor, quadratic_cost_factor, vehicle):
5260        r""" Sets the linear and quadratic cost factor of the given vehicle."""
5261        return _pywrapcp.RoutingModel_SetAmortizedCostFactorsOfVehicle(self, linear_cost_factor, quadratic_cost_factor, vehicle)
5262
5263    def GetAmortizedLinearCostFactorOfVehicles(self):
5264        return _pywrapcp.RoutingModel_GetAmortizedLinearCostFactorOfVehicles(self)
5265
5266    def GetAmortizedQuadraticCostFactorOfVehicles(self):
5267        return _pywrapcp.RoutingModel_GetAmortizedQuadraticCostFactorOfVehicles(self)
5268
5269    def SetVehicleUsedWhenEmpty(self, is_used, vehicle):
5270        return _pywrapcp.RoutingModel_SetVehicleUsedWhenEmpty(self, is_used, vehicle)
5271
5272    def IsVehicleUsedWhenEmpty(self, vehicle):
5273        return _pywrapcp.RoutingModel_IsVehicleUsedWhenEmpty(self, vehicle)
5274
5275    def SetFirstSolutionEvaluator(self, evaluator):
5276        r"""
5277        Gets/sets the evaluator used during the search. Only relevant when
5278        RoutingSearchParameters.first_solution_strategy = EVALUATOR_STRATEGY.
5279        Takes ownership of evaluator.
5280        """
5281        return _pywrapcp.RoutingModel_SetFirstSolutionEvaluator(self, evaluator)
5282
5283    def AddLocalSearchOperator(self, ls_operator):
5284        r"""
5285        Adds a local search operator to the set of operators used to solve the
5286        vehicle routing problem.
5287        """
5288        return _pywrapcp.RoutingModel_AddLocalSearchOperator(self, ls_operator)
5289
5290    def AddSearchMonitor(self, monitor):
5291        r""" Adds a search monitor to the search used to solve the routing model."""
5292        return _pywrapcp.RoutingModel_AddSearchMonitor(self, monitor)
5293
5294    def AddAtSolutionCallback(self, callback, track_unchecked_neighbors=False):
5295        r"""
5296        Adds a callback called each time a solution is found during the search.
5297        This is a shortcut to creating a monitor to call the callback on
5298        AtSolution() and adding it with AddSearchMonitor.
5299        If track_unchecked_neighbors is true, the callback will also be called on
5300        AcceptUncheckedNeighbor() events, which is useful to grab solutions
5301        obtained when solver_parameters.check_solution_period > 1 (aka fastLS).
5302        """
5303        return _pywrapcp.RoutingModel_AddAtSolutionCallback(self, callback, track_unchecked_neighbors)
5304
5305    def AddVariableMinimizedByFinalizer(self, var):
5306        r"""
5307        Adds a variable to minimize in the solution finalizer. The solution
5308        finalizer is called each time a solution is found during the search and
5309        allows to instantiate secondary variables (such as dimension cumul
5310        variables).
5311        """
5312        return _pywrapcp.RoutingModel_AddVariableMinimizedByFinalizer(self, var)
5313
5314    def AddVariableMaximizedByFinalizer(self, var):
5315        r"""
5316        Adds a variable to maximize in the solution finalizer (see above for
5317        information on the solution finalizer).
5318        """
5319        return _pywrapcp.RoutingModel_AddVariableMaximizedByFinalizer(self, var)
5320
5321    def AddWeightedVariableMinimizedByFinalizer(self, var, cost):
5322        r"""
5323        Adds a variable to minimize in the solution finalizer, with a weighted
5324        priority: the higher the more priority it has.
5325        """
5326        return _pywrapcp.RoutingModel_AddWeightedVariableMinimizedByFinalizer(self, var, cost)
5327
5328    def AddWeightedVariableMaximizedByFinalizer(self, var, cost):
5329        r"""
5330        Adds a variable to maximize in the solution finalizer, with a weighted
5331        priority: the higher the more priority it has.
5332        """
5333        return _pywrapcp.RoutingModel_AddWeightedVariableMaximizedByFinalizer(self, var, cost)
5334
5335    def AddVariableTargetToFinalizer(self, var, target):
5336        r"""
5337        Add a variable to set the closest possible to the target value in the
5338        solution finalizer.
5339        """
5340        return _pywrapcp.RoutingModel_AddVariableTargetToFinalizer(self, var, target)
5341
5342    def AddWeightedVariableTargetToFinalizer(self, var, target, cost):
5343        r"""
5344        Same as above with a weighted priority: the higher the cost, the more
5345        priority it has to be set close to the target value.
5346        """
5347        return _pywrapcp.RoutingModel_AddWeightedVariableTargetToFinalizer(self, var, target, cost)
5348
5349    def CloseModel(self):
5350        r"""
5351        Closes the current routing model; after this method is called, no
5352        modification to the model can be done, but RoutesToAssignment becomes
5353        available. Note that CloseModel() is automatically called by Solve() and
5354        other methods that produce solution.
5355        This is equivalent to calling
5356        CloseModelWithParameters(DefaultRoutingSearchParameters()).
5357        """
5358        return _pywrapcp.RoutingModel_CloseModel(self)
5359
5360    def CloseModelWithParameters(self, search_parameters):
5361        r"""
5362        Same as above taking search parameters (as of 10/2015 some the parameters
5363        have to be set when closing the model).
5364        """
5365        return _pywrapcp.RoutingModel_CloseModelWithParameters(self, search_parameters)
5366
5367    def Solve(self, assignment=None):
5368        r"""
5369        Solves the current routing model; closes the current model.
5370        This is equivalent to calling
5371        SolveWithParameters(DefaultRoutingSearchParameters())
5372        or
5373        SolveFromAssignmentWithParameters(assignment,
5374                                          DefaultRoutingSearchParameters()).
5375        """
5376        return _pywrapcp.RoutingModel_Solve(self, assignment)
5377
5378    def SolveWithParameters(self, search_parameters, solutions=None):
5379        r"""
5380        Solves the current routing model with the given parameters. If 'solutions'
5381        is specified, it will contain the k best solutions found during the search
5382        (from worst to best, including the one returned by this method), where k
5383        corresponds to the 'number_of_solutions_to_collect' in
5384        'search_parameters'. Note that the Assignment returned by the method and
5385        the ones in solutions are owned by the underlying solver and should not be
5386        deleted.
5387        """
5388        return _pywrapcp.RoutingModel_SolveWithParameters(self, search_parameters, solutions)
5389
5390    def SolveFromAssignmentWithParameters(self, assignment, search_parameters, solutions=None):
5391        r"""
5392        Same as above, except that if assignment is not null, it will be used as
5393        the initial solution.
5394        """
5395        return _pywrapcp.RoutingModel_SolveFromAssignmentWithParameters(self, assignment, search_parameters, solutions)
5396
5397    def FastSolveFromAssignmentWithParameters(self, assignment, search_parameters, check_solution_in_cp, touched=None):
5398        r"""
5399        Improves a given assignment using unchecked local search.
5400        If check_solution_in_cp is true the final solution will be checked with
5401        the CP solver.
5402        As of 11/2023, only works with greedy descent.
5403        """
5404        return _pywrapcp.RoutingModel_FastSolveFromAssignmentWithParameters(self, assignment, search_parameters, check_solution_in_cp, touched)
5405
5406    def SolveFromAssignmentsWithParameters(self, assignments, search_parameters, solutions=None):
5407        r"""
5408        Same as above but will try all assignments in order as first solutions
5409        until one succeeds.
5410        """
5411        return _pywrapcp.RoutingModel_SolveFromAssignmentsWithParameters(self, assignments, search_parameters, solutions)
5412
5413    def SolveWithIteratedLocalSearch(self, search_parameters):
5414        r"""
5415        Solves the current routing model by using an Iterated Local Search
5416        approach.
5417        """
5418        return _pywrapcp.RoutingModel_SolveWithIteratedLocalSearch(self, search_parameters)
5419
5420    def SetAssignmentFromOtherModelAssignment(self, target_assignment, source_model, source_assignment):
5421        r"""
5422        Given a "source_model" and its "source_assignment", resets
5423        "target_assignment" with the IntVar variables (nexts_, and vehicle_vars_
5424        if costs aren't homogeneous across vehicles) of "this" model, with the
5425        values set according to those in "other_assignment".
5426        The objective_element of target_assignment is set to this->cost_.
5427        """
5428        return _pywrapcp.RoutingModel_SetAssignmentFromOtherModelAssignment(self, target_assignment, source_model, source_assignment)
5429
5430    def ComputeLowerBound(self):
5431        r"""
5432        Computes a lower bound to the routing problem solving a linear assignment
5433        problem. The routing model must be closed before calling this method.
5434        Note that problems with node disjunction constraints (including optional
5435        nodes) and non-homogenous costs are not supported (the method returns 0 in
5436        these cases).
5437        """
5438        return _pywrapcp.RoutingModel_ComputeLowerBound(self)
5439
5440    def objective_lower_bound(self):
5441        r"""
5442        Returns the current lower bound found by internal solvers during the
5443        search.
5444        """
5445        return _pywrapcp.RoutingModel_objective_lower_bound(self)
5446
5447    def status(self):
5448        r""" Returns the current status of the routing model."""
5449        return _pywrapcp.RoutingModel_status(self)
5450
5451    def enable_deep_serialization(self):
5452        r""" Returns the value of the internal enable_deep_serialization_ parameter."""
5453        return _pywrapcp.RoutingModel_enable_deep_serialization(self)
5454
5455    def ApplyLocks(self, locks):
5456        r"""
5457        Applies a lock chain to the next search. 'locks' represents an ordered
5458        vector of nodes representing a partial route which will be fixed during
5459        the next search; it will constrain next variables such that:
5460        next[locks[i]] == locks[i+1].
5461
5462        Returns the next variable at the end of the locked chain; this variable is
5463        not locked. An assignment containing the locks can be obtained by calling
5464        PreAssignment().
5465        """
5466        return _pywrapcp.RoutingModel_ApplyLocks(self, locks)
5467
5468    def ApplyLocksToAllVehicles(self, locks, close_routes):
5469        r"""
5470        Applies lock chains to all vehicles to the next search, such that locks[p]
5471        is the lock chain for route p. Returns false if the locks do not contain
5472        valid routes; expects that the routes do not contain the depots,
5473        i.e. there are empty vectors in place of empty routes.
5474        If close_routes is set to true, adds the end nodes to the route of each
5475        vehicle and deactivates other nodes.
5476        An assignment containing the locks can be obtained by calling
5477        PreAssignment().
5478        """
5479        return _pywrapcp.RoutingModel_ApplyLocksToAllVehicles(self, locks, close_routes)
5480
5481    def PreAssignment(self):
5482        r"""
5483        Returns an assignment used to fix some of the variables of the problem.
5484        In practice, this assignment locks partial routes of the problem. This
5485        can be used in the context of locking the parts of the routes which have
5486        already been driven in online routing problems.
5487        """
5488        return _pywrapcp.RoutingModel_PreAssignment(self)
5489
5490    def MutablePreAssignment(self):
5491        return _pywrapcp.RoutingModel_MutablePreAssignment(self)
5492
5493    def WriteAssignment(self, file_name):
5494        r"""
5495        Writes the current solution to a file containing an AssignmentProto.
5496        Returns false if the file cannot be opened or if there is no current
5497        solution.
5498        """
5499        return _pywrapcp.RoutingModel_WriteAssignment(self, file_name)
5500
5501    def ReadAssignment(self, file_name):
5502        r"""
5503        Reads an assignment from a file and returns the current solution.
5504        Returns nullptr if the file cannot be opened or if the assignment is not
5505        valid.
5506        """
5507        return _pywrapcp.RoutingModel_ReadAssignment(self, file_name)
5508
5509    def RestoreAssignment(self, solution):
5510        r"""
5511        Restores an assignment as a solution in the routing model and returns the
5512        new solution. Returns nullptr if the assignment is not valid.
5513        """
5514        return _pywrapcp.RoutingModel_RestoreAssignment(self, solution)
5515
5516    def ReadAssignmentFromRoutes(self, routes, ignore_inactive_indices):
5517        r"""
5518        Restores the routes as the current solution. Returns nullptr if the
5519        solution cannot be restored (routes do not contain a valid solution). Note
5520        that calling this method will run the solver to assign values to the
5521        dimension variables; this may take considerable amount of time, especially
5522        when using dimensions with slack.
5523        """
5524        return _pywrapcp.RoutingModel_ReadAssignmentFromRoutes(self, routes, ignore_inactive_indices)
5525
5526    def RoutesToAssignment(self, routes, ignore_inactive_indices, close_routes, assignment):
5527        r"""
5528        Fills an assignment from a specification of the routes of the
5529        vehicles. The routes are specified as lists of variable indices that
5530        appear on the routes of the vehicles. The indices of the outer vector in
5531        'routes' correspond to vehicles IDs, the inner vector contains the
5532        variable indices on the routes for the given vehicle. The inner vectors
5533        must not contain the start and end indices, as these are determined by the
5534        routing model.  Sets the value of NextVars in the assignment, adding the
5535        variables to the assignment if necessary. The method does not touch other
5536        variables in the assignment. The method can only be called after the model
5537        is closed.  With ignore_inactive_indices set to false, this method will
5538        fail (return nullptr) in case some of the route contain indices that are
5539        deactivated in the model; when set to true, these indices will be
5540        skipped.  Returns true if routes were successfully
5541        loaded. However, such assignment still might not be a valid
5542        solution to the routing problem due to more complex constraints;
5543        it is advisible to call solver()->CheckSolution() afterwards.
5544        """
5545        return _pywrapcp.RoutingModel_RoutesToAssignment(self, routes, ignore_inactive_indices, close_routes, assignment)
5546
5547    def AssignmentToRoutes(self, assignment, routes):
5548        r"""
5549        Converts the solution in the given assignment to routes for all vehicles.
5550        Expects that assignment contains a valid solution (i.e. routes for all
5551        vehicles end with an end index for that vehicle).
5552        """
5553        return _pywrapcp.RoutingModel_AssignmentToRoutes(self, assignment, routes)
5554
5555    def CompactAssignment(self, assignment):
5556        r"""
5557        Converts the solution in the given assignment to routes for all vehicles.
5558        If the returned vector is route_indices, route_indices[i][j] is the index
5559        for jth location visited on route i. Note that contrary to
5560        AssignmentToRoutes, the vectors do include start and end locations.
5561        Returns a compacted version of the given assignment, in which all vehicles
5562        with id lower or equal to some N have non-empty routes, and all vehicles
5563        with id greater than N have empty routes. Does not take ownership of the
5564        returned object.
5565        If found, the cost of the compact assignment is the same as in the
5566        original assignment and it preserves the values of 'active' variables.
5567        Returns nullptr if a compact assignment was not found.
5568        This method only works in homogenous mode, and it only swaps equivalent
5569        vehicles (vehicles with the same start and end nodes). When creating the
5570        compact assignment, the empty plan is replaced by the route assigned to
5571        the compatible vehicle with the highest id. Note that with more complex
5572        constraints on vehicle variables, this method might fail even if a compact
5573        solution exists.
5574        This method changes the vehicle and dimension variables as necessary.
5575        While compacting the solution, only basic checks on vehicle variables are
5576        performed; if one of these checks fails no attempts to repair it are made
5577        (instead, the method returns nullptr).
5578        """
5579        return _pywrapcp.RoutingModel_CompactAssignment(self, assignment)
5580
5581    def CompactAndCheckAssignment(self, assignment):
5582        r"""
5583        Same as CompactAssignment() but also checks the validity of the final
5584        compact solution; if it is not valid, no attempts to repair it are made
5585        (instead, the method returns nullptr).
5586        """
5587        return _pywrapcp.RoutingModel_CompactAndCheckAssignment(self, assignment)
5588
5589    def AddToAssignment(self, var):
5590        r""" Adds an extra variable to the vehicle routing assignment."""
5591        return _pywrapcp.RoutingModel_AddToAssignment(self, var)
5592
5593    def AddIntervalToAssignment(self, interval):
5594        return _pywrapcp.RoutingModel_AddIntervalToAssignment(self, interval)
5595
5596    def PackCumulsOfOptimizerDimensionsFromAssignment(self, original_assignment, duration_limit, time_limit_was_reached=None):
5597        r"""
5598        For every dimension in the model with an optimizer in
5599        local/global_dimension_optimizers_, this method tries to pack the cumul
5600        values of the dimension, such that:
5601        - The cumul costs (span costs, soft lower and upper bound costs, etc) are
5602          minimized.
5603        - The cumuls of the ends of the routes are minimized for this given
5604          minimal cumul cost.
5605        - Given these minimal end cumuls, the route start cumuls are maximized.
5606        Returns the assignment resulting from allocating these packed cumuls with
5607        the solver, and nullptr if these cumuls could not be set by the solver.
5608        """
5609        return _pywrapcp.RoutingModel_PackCumulsOfOptimizerDimensionsFromAssignment(self, original_assignment, duration_limit, time_limit_was_reached)
5610
5611    def GetOrCreateNodeNeighborsByCostClass(self, *args):
5612        r"""
5613        *Overload 1:*
5614        Returns neighbors of all nodes for every cost class. The result is cached
5615        and is computed once. The number of neighbors considered is based on a
5616        ratio of non-vehicle nodes, specified by neighbors_ratio, with a minimum
5617        of min-neighbors node considered.
5618
5619        |
5620
5621        *Overload 2:*
5622        Returns parameters.num_neighbors neighbors of all nodes for every cost
5623        class. The result is cached and is computed once.
5624
5625        |
5626
5627        *Overload 3:*
5628        Returns parameters.num_neighbors neighbors of all nodes for every cost
5629        class. The result is cached and is computed once.
5630        """
5631        return _pywrapcp.RoutingModel_GetOrCreateNodeNeighborsByCostClass(self, *args)
5632
5633    def AddLocalSearchFilter(self, filter):
5634        r"""
5635        Adds a custom local search filter to the list of filters used to speed up
5636        local search by pruning unfeasible variable assignments.
5637        Calling this method after the routing model has been closed (CloseModel()
5638        or Solve() has been called) has no effect.
5639        The routing model does not take ownership of the filter.
5640        """
5641        return _pywrapcp.RoutingModel_AddLocalSearchFilter(self, filter)
5642
5643    def Start(self, vehicle):
5644        r"""
5645        Model inspection.
5646        Returns the variable index of the starting node of a vehicle route.
5647        """
5648        return _pywrapcp.RoutingModel_Start(self, vehicle)
5649
5650    def End(self, vehicle):
5651        r""" Returns the variable index of the ending node of a vehicle route."""
5652        return _pywrapcp.RoutingModel_End(self, vehicle)
5653
5654    def IsStart(self, index):
5655        r""" Returns true if 'index' represents the first node of a route."""
5656        return _pywrapcp.RoutingModel_IsStart(self, index)
5657
5658    def IsEnd(self, index):
5659        r""" Returns true if 'index' represents the last node of a route."""
5660        return _pywrapcp.RoutingModel_IsEnd(self, index)
5661
5662    def VehicleIndex(self, index):
5663        r"""
5664        Returns the vehicle of the given start/end index, and -1 if the given
5665        index is not a vehicle start/end.
5666        """
5667        return _pywrapcp.RoutingModel_VehicleIndex(self, index)
5668
5669    def Next(self, assignment, index):
5670        r"""
5671        Assignment inspection
5672        Returns the variable index of the node directly after the node
5673        corresponding to 'index' in 'assignment'.
5674        """
5675        return _pywrapcp.RoutingModel_Next(self, assignment, index)
5676
5677    def IsVehicleUsed(self, assignment, vehicle):
5678        r""" Returns true if the route of 'vehicle' is non empty in 'assignment'."""
5679        return _pywrapcp.RoutingModel_IsVehicleUsed(self, assignment, vehicle)
5680
5681    def NextVar(self, index):
5682        r"""
5683        Returns the next variable of the node corresponding to index. Note that
5684        NextVar(index) == index is equivalent to ActiveVar(index) == 0.
5685        """
5686        return _pywrapcp.RoutingModel_NextVar(self, index)
5687
5688    def ActiveVar(self, index):
5689        r""" Returns the active variable of the node corresponding to index."""
5690        return _pywrapcp.RoutingModel_ActiveVar(self, index)
5691
5692    def ActiveVehicleVar(self, vehicle):
5693        r"""
5694        Returns the active variable of the vehicle. It will be equal to 1 iff the
5695        route of the vehicle is not empty, 0 otherwise.
5696        """
5697        return _pywrapcp.RoutingModel_ActiveVehicleVar(self, vehicle)
5698
5699    def VehicleRouteConsideredVar(self, vehicle):
5700        r"""
5701        Returns the variable specifying whether or not the given vehicle route is
5702        considered for costs and constraints. It will be equal to 1 iff the route
5703        of the vehicle is not empty OR vehicle_used_when_empty_[vehicle] is true.
5704        """
5705        return _pywrapcp.RoutingModel_VehicleRouteConsideredVar(self, vehicle)
5706
5707    def VehicleVar(self, index):
5708        r"""
5709        Returns the vehicle variable of the node corresponding to index. Note that
5710        VehicleVar(index) == -1 is equivalent to ActiveVar(index) == 0.
5711        """
5712        return _pywrapcp.RoutingModel_VehicleVar(self, index)
5713
5714    def ResourceVar(self, vehicle, resource_group):
5715        r"""
5716        Returns the resource variable for the given vehicle index in the given
5717        resource group. If a vehicle doesn't require a resource from the
5718        corresponding resource group, then ResourceVar(v, r_g) == -1.
5719        """
5720        return _pywrapcp.RoutingModel_ResourceVar(self, vehicle, resource_group)
5721
5722    def CostVar(self):
5723        r""" Returns the global cost variable which is being minimized."""
5724        return _pywrapcp.RoutingModel_CostVar(self)
5725
5726    def GetArcCostForVehicle(self, from_index, to_index, vehicle):
5727        r"""
5728        Returns the cost of the transit arc between two nodes for a given vehicle.
5729        Input are variable indices of node. This returns 0 if vehicle < 0.
5730        """
5731        return _pywrapcp.RoutingModel_GetArcCostForVehicle(self, from_index, to_index, vehicle)
5732
5733    def CostsAreHomogeneousAcrossVehicles(self):
5734        r""" Whether costs are homogeneous across all vehicles."""
5735        return _pywrapcp.RoutingModel_CostsAreHomogeneousAcrossVehicles(self)
5736
5737    def GetHomogeneousCost(self, from_index, to_index):
5738        r"""
5739        Returns the cost of the segment between two nodes supposing all vehicle
5740        costs are the same (returns the cost for the first vehicle otherwise).
5741        """
5742        return _pywrapcp.RoutingModel_GetHomogeneousCost(self, from_index, to_index)
5743
5744    def GetArcCostForFirstSolution(self, from_index, to_index):
5745        r"""
5746        Returns the cost of the arc in the context of the first solution strategy.
5747        This is typically a simplification of the actual cost; see the .cc.
5748        """
5749        return _pywrapcp.RoutingModel_GetArcCostForFirstSolution(self, from_index, to_index)
5750
5751    def GetArcCostForClass(self, from_index, to_index, cost_class_index):
5752        r"""
5753        Returns the cost of the segment between two nodes for a given cost
5754        class. Input are variable indices of nodes and the cost class.
5755        Unlike GetArcCostForVehicle(), if cost_class is kNoCost, then the
5756        returned cost won't necessarily be zero: only some of the components
5757        of the cost that depend on the cost class will be omited. See the code
5758        for details.
5759        """
5760        return _pywrapcp.RoutingModel_GetArcCostForClass(self, from_index, to_index, cost_class_index)
5761
5762    def GetCostClassIndexOfVehicle(self, vehicle):
5763        r""" Get the cost class index of the given vehicle."""
5764        return _pywrapcp.RoutingModel_GetCostClassIndexOfVehicle(self, vehicle)
5765
5766    def HasVehicleWithCostClassIndex(self, cost_class_index):
5767        r"""
5768        Returns true iff the model contains a vehicle with the given
5769        cost_class_index.
5770        """
5771        return _pywrapcp.RoutingModel_HasVehicleWithCostClassIndex(self, cost_class_index)
5772
5773    def GetCostClassesCount(self):
5774        r""" Returns the number of different cost classes in the model."""
5775        return _pywrapcp.RoutingModel_GetCostClassesCount(self)
5776
5777    def GetNonZeroCostClassesCount(self):
5778        r""" Ditto, minus the 'always zero', built-in cost class."""
5779        return _pywrapcp.RoutingModel_GetNonZeroCostClassesCount(self)
5780
5781    def GetVehicleClassIndexOfVehicle(self, vehicle):
5782        return _pywrapcp.RoutingModel_GetVehicleClassIndexOfVehicle(self, vehicle)
5783
5784    def GetVehicleOfClass(self, vehicle_class):
5785        r"""
5786        Returns a vehicle of the given vehicle class, and -1 if there are no
5787        vehicles for this class.
5788        """
5789        return _pywrapcp.RoutingModel_GetVehicleOfClass(self, vehicle_class)
5790
5791    def GetVehicleClassesCount(self):
5792        r""" Returns the number of different vehicle classes in the model."""
5793        return _pywrapcp.RoutingModel_GetVehicleClassesCount(self)
5794
5795    def GetSameVehicleIndicesOfIndex(self, node):
5796        r""" Returns variable indices of nodes constrained to be on the same route."""
5797        return _pywrapcp.RoutingModel_GetSameVehicleIndicesOfIndex(self, node)
5798
5799    def GetVehicleTypeContainer(self):
5800        return _pywrapcp.RoutingModel_GetVehicleTypeContainer(self)
5801
5802    def ArcIsMoreConstrainedThanArc(self, _from, to1, to2):
5803        r"""
5804        Returns whether the arc from->to1 is more constrained than from->to2,
5805        taking into account, in order:
5806        - whether the destination node isn't an end node
5807        - whether the destination node is mandatory
5808        - whether the destination node is bound to the same vehicle as the source
5809        - the "primary constrained" dimension (see SetPrimaryConstrainedDimension)
5810        It then breaks ties using, in order:
5811        - the arc cost (taking unperformed penalties into account)
5812        - the size of the vehicle vars of "to1" and "to2" (lowest size wins)
5813        - the value: the lowest value of the indices to1 and to2 wins.
5814        See the .cc for details.
5815        The more constrained arc is typically preferable when building a
5816        first solution. This method is intended to be used as a callback for the
5817        BestValueByComparisonSelector value selector.
5818        Args:
5819          from: the variable index of the source node
5820          to1: the variable index of the first candidate destination node.
5821          to2: the variable index of the second candidate destination node.
5822        """
5823        return _pywrapcp.RoutingModel_ArcIsMoreConstrainedThanArc(self, _from, to1, to2)
5824
5825    def DebugOutputAssignment(self, solution_assignment, dimension_to_print):
5826        r"""
5827        Print some debugging information about an assignment, including the
5828        feasible intervals of the CumulVar for dimension "dimension_to_print"
5829        at each step of the routes.
5830        If "dimension_to_print" is omitted, all dimensions will be printed.
5831        """
5832        return _pywrapcp.RoutingModel_DebugOutputAssignment(self, solution_assignment, dimension_to_print)
5833
5834    def CheckIfAssignmentIsFeasible(self, assignment, call_at_solution_monitors):
5835        r"""
5836        Returns a vector cumul_bounds, for which cumul_bounds[i][j] is a pair
5837        containing the minimum and maximum of the CumulVar of the jth node on
5838        route i.
5839        - cumul_bounds[i][j].first is the minimum.
5840        - cumul_bounds[i][j].second is the maximum.
5841        Checks if an assignment is feasible.
5842        """
5843        return _pywrapcp.RoutingModel_CheckIfAssignmentIsFeasible(self, assignment, call_at_solution_monitors)
5844
5845    def solver(self):
5846        r"""
5847        Returns the underlying constraint solver. Can be used to add extra
5848        constraints and/or modify search algorithms.
5849        """
5850        return _pywrapcp.RoutingModel_solver(self)
5851
5852    def CheckLimit(self, *args):
5853        r"""
5854        Returns true if the search limit has been crossed with the given time
5855        offset.
5856        """
5857        return _pywrapcp.RoutingModel_CheckLimit(self, *args)
5858
5859    def RemainingTime(self):
5860        r""" Returns the time left in the search limit."""
5861        return _pywrapcp.RoutingModel_RemainingTime(self)
5862
5863    def UpdateTimeLimit(self, time_limit):
5864        r""" Updates the time limit of the search limit."""
5865        return _pywrapcp.RoutingModel_UpdateTimeLimit(self, time_limit)
5866
5867    def TimeBuffer(self):
5868        r""" Returns the time buffer to safely return a solution."""
5869        return _pywrapcp.RoutingModel_TimeBuffer(self)
5870
5871    def GetMutableCPSatInterrupt(self):
5872        r""" Returns the atomic<bool> to stop the CP-SAT solver."""
5873        return _pywrapcp.RoutingModel_GetMutableCPSatInterrupt(self)
5874
5875    def GetMutableCPInterrupt(self):
5876        r""" Returns the atomic<bool> to stop the CP solver."""
5877        return _pywrapcp.RoutingModel_GetMutableCPInterrupt(self)
5878
5879    def CancelSearch(self):
5880        r""" Cancels the current search."""
5881        return _pywrapcp.RoutingModel_CancelSearch(self)
5882
5883    def nodes(self):
5884        r"""
5885        Sizes and indices
5886        Returns the number of nodes in the model.
5887        """
5888        return _pywrapcp.RoutingModel_nodes(self)
5889
5890    def vehicles(self):
5891        r""" Returns the number of vehicle routes in the model."""
5892        return _pywrapcp.RoutingModel_vehicles(self)
5893
5894    def Size(self):
5895        r""" Returns the number of next variables in the model."""
5896        return _pywrapcp.RoutingModel_Size(self)
5897
5898    def GetNumberOfDecisionsInFirstSolution(self, search_parameters):
5899        r"""
5900        Returns statistics on first solution search, number of decisions sent to
5901        filters, number of decisions rejected by filters.
5902        """
5903        return _pywrapcp.RoutingModel_GetNumberOfDecisionsInFirstSolution(self, search_parameters)
5904
5905    def GetNumberOfRejectsInFirstSolution(self, search_parameters):
5906        return _pywrapcp.RoutingModel_GetNumberOfRejectsInFirstSolution(self, search_parameters)
5907
5908    def GetAutomaticFirstSolutionStrategy(self):
5909        r""" Returns the automatic first solution strategy selected."""
5910        return _pywrapcp.RoutingModel_GetAutomaticFirstSolutionStrategy(self)
5911
5912    def IsMatchingModel(self):
5913        r""" Returns true if a vehicle/node matching problem is detected."""
5914        return _pywrapcp.RoutingModel_IsMatchingModel(self)
5915
5916    def AreRoutesInterdependent(self, parameters):
5917        r"""
5918        Returns true if routes are interdependent. This means that any
5919        modification to a route might impact another.
5920        """
5921        return _pywrapcp.RoutingModel_AreRoutesInterdependent(self, parameters)
5922
5923    def MakeGuidedSlackFinalizer(self, dimension, initializer):
5924        r"""
5925        The next few members are in the public section only for testing purposes.
5926
5927        MakeGuidedSlackFinalizer creates a DecisionBuilder for the slacks of a
5928        dimension using a callback to choose which values to start with.
5929        The finalizer works only when all next variables in the model have
5930        been fixed. It has the following two characteristics:
5931        1. It follows the routes defined by the nexts variables when choosing a
5932           variable to make a decision on.
5933        2. When it comes to choose a value for the slack of node i, the decision
5934           builder first calls the callback with argument i, and supposingly the
5935           returned value is x it creates decisions slack[i] = x, slack[i] = x +
5936           1, slack[i] = x - 1, slack[i] = x + 2, etc.
5937        """
5938        return _pywrapcp.RoutingModel_MakeGuidedSlackFinalizer(self, dimension, initializer)
5939
5940    def MakeSelfDependentDimensionFinalizer(self, dimension):
5941        r"""
5942        MakeSelfDependentDimensionFinalizer is a finalizer for the slacks of a
5943        self-dependent dimension. It makes an extensive use of the caches of the
5944        state dependent transits.
5945        In detail, MakeSelfDependentDimensionFinalizer returns a composition of a
5946        local search decision builder with a greedy descent operator for the cumul
5947        of the start of each route and a guided slack finalizer. Provided there
5948        are no time windows and the maximum slacks are large enough, once the
5949        cumul of the start of route is fixed, the guided finalizer can find
5950        optimal values of the slacks for the rest of the route in time
5951        proportional to the length of the route. Therefore the composed finalizer
5952        generally works in time O(log(t)*n*m), where t is the latest possible
5953        departute time, n is the number of nodes in the network and m is the
5954        number of vehicles.
5955        """
5956        return _pywrapcp.RoutingModel_MakeSelfDependentDimensionFinalizer(self, dimension)
5957
5958    def GetPathsMetadata(self):
5959        return _pywrapcp.RoutingModel_GetPathsMetadata(self)
RoutingModel(*args)
4669    def __init__(self, *args):
4670        _pywrapcp.RoutingModel_swiginit(self, _pywrapcp.new_RoutingModel(*args))
thisown
4640    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

ROUTING_NOT_SOLVED = 0

Problem not solved yet (before calling RoutingModel::Solve()).

ROUTING_SUCCESS = 1

Problem solved successfully after calling RoutingModel::Solve().

ROUTING_PARTIAL_SUCCESS_LOCAL_OPTIMUM_NOT_REACHED = 2

Problem solved successfully after calling RoutingModel::Solve(), except that a local optimum has not been reached. Leaving more time would allow improving the solution.

ROUTING_FAIL = 3

No solution found to the problem after calling RoutingModel::Solve().

ROUTING_FAIL_TIMEOUT = 4

Time limit reached before finding a solution with RoutingModel::Solve().

ROUTING_INVALID = 5

Model, model parameters or flags are not valid.

ROUTING_INFEASIBLE = 6

Problem proven to be infeasible.

ROUTING_OPTIMAL = 7

Problem has been solved to optimality.

PICKUP_AND_DELIVERY_NO_ORDER = 0

Any precedence is accepted.

PICKUP_AND_DELIVERY_LIFO = 1

Deliveries must be performed in reverse order of pickups.

PICKUP_AND_DELIVERY_FIFO = 2

Deliveries must be performed in the same order as pickups.

kTransitEvaluatorSignUnknown = 0
kTransitEvaluatorSignPositiveOrZero = 1
kTransitEvaluatorSignNegativeOrZero = 2
def RegisterUnaryTransitVector(self, values):
4676    def RegisterUnaryTransitVector(self, values):
4677        r"""
4678        Registers 'callback' and returns its index.
4679        The sign parameter allows to notify the solver that the callback only
4680        return values of the given sign. This can help the solver, but passing
4681        an incorrect sign may crash in non-opt compilation mode, and yield
4682        incorrect results in opt.
4683        """
4684        return _pywrapcp.RoutingModel_RegisterUnaryTransitVector(self, values)

Registers 'callback' and returns its index. The sign parameter allows to notify the solver that the callback only return values of the given sign. This can help the solver, but passing an incorrect sign may crash in non-opt compilation mode, and yield incorrect results in opt.

def RegisterUnaryTransitCallback(self, *args):
4686    def RegisterUnaryTransitCallback(self, *args):
4687        return _pywrapcp.RoutingModel_RegisterUnaryTransitCallback(self, *args)
def RegisterTransitMatrix(self, values):
4689    def RegisterTransitMatrix(self, values):
4690        return _pywrapcp.RoutingModel_RegisterTransitMatrix(self, values)
def RegisterTransitCallback(self, *args):
4692    def RegisterTransitCallback(self, *args):
4693        return _pywrapcp.RoutingModel_RegisterTransitCallback(self, *args)
def TransitCallback(self, callback_index):
4695    def TransitCallback(self, callback_index):
4696        return _pywrapcp.RoutingModel_TransitCallback(self, callback_index)
def UnaryTransitCallbackOrNull(self, callback_index):
4698    def UnaryTransitCallbackOrNull(self, callback_index):
4699        return _pywrapcp.RoutingModel_UnaryTransitCallbackOrNull(self, callback_index)
def AddDimension( self, evaluator_index, slack_max, capacity, fix_start_cumul_to_zero, name):
4701    def AddDimension(self, evaluator_index, slack_max, capacity, fix_start_cumul_to_zero, name):
4702        r"""
4703        Model creation
4704        Methods to add dimensions to routes; dimensions represent quantities
4705        accumulated at nodes along the routes. They represent quantities such as
4706        weights or volumes carried along the route, or distance or times.
4707        Quantities at a node are represented by "cumul" variables and the increase
4708        or decrease of quantities between nodes are represented by "transit"
4709        variables. These variables are linked as follows:
4710        if j == next(i), cumul(j) = cumul(i) + transit(i, j) + slack(i)
4711        where slack is a positive slack variable (can represent waiting times for
4712        a time dimension).
4713        Setting the value of fix_start_cumul_to_zero to true will force the
4714        "cumul" variable of the start node of all vehicles to be equal to 0.
4715        Creates a dimension where the transit variable is constrained to be
4716        equal to evaluator(i, next(i)); 'slack_max' is the upper bound of the
4717        slack variable and 'capacity' is the upper bound of the cumul variables.
4718        'name' is the name used to reference the dimension; this name is used to
4719        get cumul and transit variables from the routing model.
4720        Returns false if a dimension with the same name has already been created
4721        (and doesn't create the new dimension).
4722        Takes ownership of the callback 'evaluator'.
4723        """
4724        return _pywrapcp.RoutingModel_AddDimension(self, evaluator_index, slack_max, capacity, fix_start_cumul_to_zero, name)

Model creation Methods to add dimensions to routes; dimensions represent quantities accumulated at nodes along the routes. They represent quantities such as weights or volumes carried along the route, or distance or times. Quantities at a node are represented by "cumul" variables and the increase or decrease of quantities between nodes are represented by "transit" variables. These variables are linked as follows: if j == next(i), cumul(j) = cumul(i) + transit(i, j) + slack(i) where slack is a positive slack variable (can represent waiting times for a time dimension). Setting the value of fix_start_cumul_to_zero to true will force the "cumul" variable of the start node of all vehicles to be equal to 0. Creates a dimension where the transit variable is constrained to be equal to evaluator(i, next(i)); 'slack_max' is the upper bound of the slack variable and 'capacity' is the upper bound of the cumul variables. 'name' is the name used to reference the dimension; this name is used to get cumul and transit variables from the routing model. Returns false if a dimension with the same name has already been created (and doesn't create the new dimension). Takes ownership of the callback 'evaluator'.

def AddDimensionWithVehicleTransits( self, evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name):
4726    def AddDimensionWithVehicleTransits(self, evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name):
4727        return _pywrapcp.RoutingModel_AddDimensionWithVehicleTransits(self, evaluator_indices, slack_max, capacity, fix_start_cumul_to_zero, name)
def AddDimensionWithVehicleCapacity( self, evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4729    def AddDimensionWithVehicleCapacity(self, evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4730        return _pywrapcp.RoutingModel_AddDimensionWithVehicleCapacity(self, evaluator_index, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name)
def AddDimensionWithVehicleTransitAndCapacity( self, evaluator_indices, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4732    def AddDimensionWithVehicleTransitAndCapacity(self, evaluator_indices, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name):
4733        return _pywrapcp.RoutingModel_AddDimensionWithVehicleTransitAndCapacity(self, evaluator_indices, slack_max, vehicle_capacities, fix_start_cumul_to_zero, name)
def AddConstantDimensionWithSlack(self, value, capacity, slack_max, fix_start_cumul_to_zero, name):
4735    def AddConstantDimensionWithSlack(self, value, capacity, slack_max, fix_start_cumul_to_zero, name):
4736        r"""
4737        Creates a dimension where the transit variable is constrained to be
4738        equal to 'value'; 'capacity' is the upper bound of the cumul variables.
4739        'name' is the name used to reference the dimension; this name is used to
4740        get cumul and transit variables from the routing model.
4741        Returns a pair consisting of an index to the registered unary transit
4742        callback and a bool denoting whether the dimension has been created.
4743        It is false if a dimension with the same name has already been created
4744        (and doesn't create the new dimension but still register a new callback).
4745        """
4746        return _pywrapcp.RoutingModel_AddConstantDimensionWithSlack(self, value, capacity, slack_max, fix_start_cumul_to_zero, name)

Creates a dimension where the transit variable is constrained to be equal to 'value'; 'capacity' is the upper bound of the cumul variables. 'name' is the name used to reference the dimension; this name is used to get cumul and transit variables from the routing model. Returns a pair consisting of an index to the registered unary transit callback and a bool denoting whether the dimension has been created. It is false if a dimension with the same name has already been created (and doesn't create the new dimension but still register a new callback).

def AddConstantDimension(self, value, capacity, fix_start_cumul_to_zero, name):
4748    def AddConstantDimension(self, value, capacity, fix_start_cumul_to_zero, name):
4749        return _pywrapcp.RoutingModel_AddConstantDimension(self, value, capacity, fix_start_cumul_to_zero, name)
def AddVectorDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4751    def AddVectorDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4752        r"""
4753        Creates a dimension where the transit variable is constrained to be
4754        equal to 'values[i]' for node i; 'capacity' is the upper bound of
4755        the cumul variables. 'name' is the name used to reference the dimension;
4756        this name is used to get cumul and transit variables from the routing
4757        model.
4758        Returns a pair consisting of an index to the registered unary transit
4759        callback and a bool denoting whether the dimension has been created.
4760        It is false if a dimension with the same name has already been created
4761        (and doesn't create the new dimension but still register a new callback).
4762        """
4763        return _pywrapcp.RoutingModel_AddVectorDimension(self, values, capacity, fix_start_cumul_to_zero, name)

Creates a dimension where the transit variable is constrained to be equal to 'values[i]' for node i; 'capacity' is the upper bound of the cumul variables. 'name' is the name used to reference the dimension; this name is used to get cumul and transit variables from the routing model. Returns a pair consisting of an index to the registered unary transit callback and a bool denoting whether the dimension has been created. It is false if a dimension with the same name has already been created (and doesn't create the new dimension but still register a new callback).

def AddMatrixDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4765    def AddMatrixDimension(self, values, capacity, fix_start_cumul_to_zero, name):
4766        r"""
4767        Creates a dimension where the transit variable is constrained to be
4768        equal to 'values[i][next(i)]' for node i; 'capacity' is the upper bound of
4769        the cumul variables. 'name' is the name used to reference the dimension;
4770        this name is used to get cumul and transit variables from the routing
4771        model.
4772        Returns a pair consisting of an index to the registered transit callback
4773        and a bool denoting whether the dimension has been created.
4774        It is false if a dimension with the same name has already been created
4775        (and doesn't create the new dimension but still register a new callback).
4776        """
4777        return _pywrapcp.RoutingModel_AddMatrixDimension(self, values, capacity, fix_start_cumul_to_zero, name)

Creates a dimension where the transit variable is constrained to be equal to 'values[i][next(i)]' for node i; 'capacity' is the upper bound of the cumul variables. 'name' is the name used to reference the dimension; this name is used to get cumul and transit variables from the routing model. Returns a pair consisting of an index to the registered transit callback and a bool denoting whether the dimension has been created. It is false if a dimension with the same name has already been created (and doesn't create the new dimension but still register a new callback).

def GetAllDimensionNames(self):
4779    def GetAllDimensionNames(self):
4780        r""" Outputs the names of all dimensions added to the routing engine."""
4781        return _pywrapcp.RoutingModel_GetAllDimensionNames(self)

Outputs the names of all dimensions added to the routing engine.

def GetDimensions(self):
4783    def GetDimensions(self):
4784        r""" Returns all dimensions of the model."""
4785        return _pywrapcp.RoutingModel_GetDimensions(self)

Returns all dimensions of the model.

def GetDimensionsWithSoftOrSpanCosts(self):
4787    def GetDimensionsWithSoftOrSpanCosts(self):
4788        r""" Returns dimensions with soft or vehicle span costs."""
4789        return _pywrapcp.RoutingModel_GetDimensionsWithSoftOrSpanCosts(self)

Returns dimensions with soft or vehicle span costs.

def GetUnaryDimensions(self):
4791    def GetUnaryDimensions(self):
4792        r""" Returns dimensions for which all transit evaluators are unary."""
4793        return _pywrapcp.RoutingModel_GetUnaryDimensions(self)

Returns dimensions for which all transit evaluators are unary.

def GetDimensionsWithGlobalCumulOptimizers(self):
4795    def GetDimensionsWithGlobalCumulOptimizers(self):
4796        r""" Returns the dimensions which have [global|local]_dimension_optimizers_."""
4797        return _pywrapcp.RoutingModel_GetDimensionsWithGlobalCumulOptimizers(self)

Returns the dimensions which have [global|local]_dimension_optimizers_.

def GetDimensionsWithLocalCumulOptimizers(self):
4799    def GetDimensionsWithLocalCumulOptimizers(self):
4800        return _pywrapcp.RoutingModel_GetDimensionsWithLocalCumulOptimizers(self)
def HasGlobalCumulOptimizer(self, dimension):
4802    def HasGlobalCumulOptimizer(self, dimension):
4803        r""" Returns whether the given dimension has global/local cumul optimizers."""
4804        return _pywrapcp.RoutingModel_HasGlobalCumulOptimizer(self, dimension)

Returns whether the given dimension has global/local cumul optimizers.

def HasLocalCumulOptimizer(self, dimension):
4806    def HasLocalCumulOptimizer(self, dimension):
4807        return _pywrapcp.RoutingModel_HasLocalCumulOptimizer(self, dimension)
def GetMutableGlobalCumulLPOptimizer(self, dimension):
4809    def GetMutableGlobalCumulLPOptimizer(self, dimension):
4810        r"""
4811        Returns the global/local dimension cumul optimizer for a given dimension,
4812        or nullptr if there is none.
4813        """
4814        return _pywrapcp.RoutingModel_GetMutableGlobalCumulLPOptimizer(self, dimension)

Returns the global/local dimension cumul optimizer for a given dimension, or nullptr if there is none.

def GetMutableGlobalCumulMPOptimizer(self, dimension):
4816    def GetMutableGlobalCumulMPOptimizer(self, dimension):
4817        return _pywrapcp.RoutingModel_GetMutableGlobalCumulMPOptimizer(self, dimension)
def GetMutableLocalCumulLPOptimizer(self, dimension):
4819    def GetMutableLocalCumulLPOptimizer(self, dimension):
4820        return _pywrapcp.RoutingModel_GetMutableLocalCumulLPOptimizer(self, dimension)
def GetMutableLocalCumulMPOptimizer(self, dimension):
4822    def GetMutableLocalCumulMPOptimizer(self, dimension):
4823        return _pywrapcp.RoutingModel_GetMutableLocalCumulMPOptimizer(self, dimension)
def HasDimension(self, dimension_name):
4825    def HasDimension(self, dimension_name):
4826        r""" Returns true if a dimension exists for a given dimension name."""
4827        return _pywrapcp.RoutingModel_HasDimension(self, dimension_name)

Returns true if a dimension exists for a given dimension name.

def GetDimensionOrDie(self, dimension_name):
4829    def GetDimensionOrDie(self, dimension_name):
4830        r""" Returns a dimension from its name. Dies if the dimension does not exist."""
4831        return _pywrapcp.RoutingModel_GetDimensionOrDie(self, dimension_name)

Returns a dimension from its name. Dies if the dimension does not exist.

def GetMutableDimension(self, dimension_name):
4833    def GetMutableDimension(self, dimension_name):
4834        r"""
4835        Returns a dimension from its name. Returns nullptr if the dimension does
4836        not exist.
4837        """
4838        return _pywrapcp.RoutingModel_GetMutableDimension(self, dimension_name)

Returns a dimension from its name. Returns nullptr if the dimension does not exist.

def SetPrimaryConstrainedDimension(self, dimension_name):
4840    def SetPrimaryConstrainedDimension(self, dimension_name):
4841        r"""
4842        Set the given dimension as "primary constrained". As of August 2013, this
4843        is only used by ArcIsMoreConstrainedThanArc().
4844        "dimension" must be the name of an existing dimension, or be empty, in
4845        which case there will not be a primary dimension after this call.
4846        """
4847        return _pywrapcp.RoutingModel_SetPrimaryConstrainedDimension(self, dimension_name)

Set the given dimension as "primary constrained". As of August 2013, this is only used by ArcIsMoreConstrainedThanArc(). "dimension" must be the name of an existing dimension, or be empty, in which case there will not be a primary dimension after this call.

def GetPrimaryConstrainedDimension(self):
4849    def GetPrimaryConstrainedDimension(self):
4850        r""" Get the primary constrained dimension, or an empty string if it is unset."""
4851        return _pywrapcp.RoutingModel_GetPrimaryConstrainedDimension(self)

Get the primary constrained dimension, or an empty string if it is unset.

def GetResourceGroup(self, rg_index):
4853    def GetResourceGroup(self, rg_index):
4854        return _pywrapcp.RoutingModel_GetResourceGroup(self, rg_index)
def GetDimensionResourceGroupIndices(self, dimension):
4856    def GetDimensionResourceGroupIndices(self, dimension):
4857        r"""
4858        Returns the indices of resource groups for this dimension. This method can
4859        only be called after the model has been closed.
4860        """
4861        return _pywrapcp.RoutingModel_GetDimensionResourceGroupIndices(self, dimension)

Returns the indices of resource groups for this dimension. This method can only be called after the model has been closed.

def GetDimensionResourceGroupIndex(self, dimension):
4863    def GetDimensionResourceGroupIndex(self, dimension):
4864        r"""
4865        Returns the index of the resource group attached to the dimension.
4866        DCHECKS that there's exactly one resource group for this dimension.
4867        """
4868        return _pywrapcp.RoutingModel_GetDimensionResourceGroupIndex(self, dimension)

Returns the index of the resource group attached to the dimension. DCHECKS that there's exactly one resource group for this dimension.

def AddDisjunction(self, *args):
4870    def AddDisjunction(self, *args):
4871        r"""
4872        Adds a disjunction constraint on the indices: exactly 'max_cardinality' of
4873        the indices are active. Start and end indices of any vehicle cannot be
4874        part of a disjunction.
4875
4876        If a penalty is given, at most 'max_cardinality' of the indices can be
4877        active, and if less are active, 'penalty' is payed per inactive index.
4878        This is equivalent to adding the constraint:
4879            p + Sum(i)active[i] == max_cardinality
4880        where p is an integer variable, and the following cost to the cost
4881        function:
4882            p * penalty.
4883        'penalty' must be positive to make the disjunction optional; a negative
4884        penalty will force 'max_cardinality' indices of the disjunction to be
4885        performed, and therefore p == 0.
4886        Note: passing a vector with a single index will model an optional index
4887        with a penalty cost if it is not visited.
4888        """
4889        return _pywrapcp.RoutingModel_AddDisjunction(self, *args)

Adds a disjunction constraint on the indices: exactly 'max_cardinality' of the indices are active. Start and end indices of any vehicle cannot be part of a disjunction.

If a penalty is given, at most 'max_cardinality' of the indices can be active, and if less are active, 'penalty' is payed per inactive index.

This is equivalent to adding the constraint:

p + Sum(i)active[i] == max_cardinality

where p is an integer variable, and the following cost to the cost function: p * penalty. 'penalty' must be positive to make the disjunction optional; a negative penalty will force 'max_cardinality' indices of the disjunction to be performed, and therefore p == 0. Note: passing a vector with a single index will model an optional index with a penalty cost if it is not visited.

def GetDisjunctionIndices(self, index):
4891    def GetDisjunctionIndices(self, index):
4892        r""" Returns the indices of the disjunctions to which an index belongs."""
4893        return _pywrapcp.RoutingModel_GetDisjunctionIndices(self, index)

Returns the indices of the disjunctions to which an index belongs.

def GetDisjunctionPenalty(self, index):
4895    def GetDisjunctionPenalty(self, index):
4896        r""" Returns the penalty of the node disjunction of index 'index'."""
4897        return _pywrapcp.RoutingModel_GetDisjunctionPenalty(self, index)

Returns the penalty of the node disjunction of index 'index'.

def GetDisjunctionMaxCardinality(self, index):
4899    def GetDisjunctionMaxCardinality(self, index):
4900        r"""
4901        Returns the maximum number of possible active nodes of the node
4902        disjunction of index 'index'.
4903        """
4904        return _pywrapcp.RoutingModel_GetDisjunctionMaxCardinality(self, index)

Returns the maximum number of possible active nodes of the node disjunction of index 'index'.

def GetNumberOfDisjunctions(self):
4906    def GetNumberOfDisjunctions(self):
4907        r""" Returns the number of node disjunctions in the model."""
4908        return _pywrapcp.RoutingModel_GetNumberOfDisjunctions(self)

Returns the number of node disjunctions in the model.

def HasMandatoryDisjunctions(self):
4910    def HasMandatoryDisjunctions(self):
4911        r"""
4912        Returns true if the model contains mandatory disjunctions (ones with
4913        kNoPenalty as penalty).
4914        """
4915        return _pywrapcp.RoutingModel_HasMandatoryDisjunctions(self)

Returns true if the model contains mandatory disjunctions (ones with kNoPenalty as penalty).

def HasMaxCardinalityConstrainedDisjunctions(self):
4917    def HasMaxCardinalityConstrainedDisjunctions(self):
4918        r"""
4919        Returns true if the model contains at least one disjunction which is
4920        constrained by its max_cardinality.
4921        """
4922        return _pywrapcp.RoutingModel_HasMaxCardinalityConstrainedDisjunctions(self)

Returns true if the model contains at least one disjunction which is constrained by its max_cardinality.

def GetPerfectBinaryDisjunctions(self):
4924    def GetPerfectBinaryDisjunctions(self):
4925        r"""
4926        Returns the list of all perfect binary disjunctions, as pairs of variable
4927        indices: a disjunction is "perfect" when its variables do not appear in
4928        any other disjunction. Each pair is sorted (lowest variable index first),
4929        and the output vector is also sorted (lowest pairs first).
4930        """
4931        return _pywrapcp.RoutingModel_GetPerfectBinaryDisjunctions(self)

Returns the list of all perfect binary disjunctions, as pairs of variable indices: a disjunction is "perfect" when its variables do not appear in any other disjunction. Each pair is sorted (lowest variable index first), and the output vector is also sorted (lowest pairs first).

def IgnoreDisjunctionsAlreadyForcedToZero(self):
4933    def IgnoreDisjunctionsAlreadyForcedToZero(self):
4934        r"""
4935        SPECIAL: Makes the solver ignore all the disjunctions whose active
4936        variables are all trivially zero (i.e. Max() == 0), by setting their
4937        max_cardinality to 0.
4938        This can be useful when using the BaseBinaryDisjunctionNeighborhood
4939        operators, in the context of arc-based routing.
4940        """
4941        return _pywrapcp.RoutingModel_IgnoreDisjunctionsAlreadyForcedToZero(self)

SPECIAL: Makes the solver ignore all the disjunctions whose active variables are all trivially zero (i.e. Max() == 0), by setting their max_cardinality to 0. This can be useful when using the BaseBinaryDisjunctionNeighborhood operators, in the context of arc-based routing.

def AddSoftSameVehicleConstraint(self, indices, cost):
4943    def AddSoftSameVehicleConstraint(self, indices, cost):
4944        r"""
4945        Adds a soft constraint to force a set of variable indices to be on the
4946        same vehicle. If all nodes are not on the same vehicle, each extra vehicle
4947        used adds 'cost' to the cost function.
4948        """
4949        return _pywrapcp.RoutingModel_AddSoftSameVehicleConstraint(self, indices, cost)

Adds a soft constraint to force a set of variable indices to be on the same vehicle. If all nodes are not on the same vehicle, each extra vehicle used adds 'cost' to the cost function.

def SetAllowedVehiclesForIndex(self, vehicles, index):
4951    def SetAllowedVehiclesForIndex(self, vehicles, index):
4952        r"""
4953        Sets the vehicles which can visit a given node. If the node is in a
4954        disjunction, this will not prevent it from being unperformed.
4955        Specifying an empty vector of vehicles has no effect (all vehicles
4956        will be allowed to visit the node).
4957        """
4958        return _pywrapcp.RoutingModel_SetAllowedVehiclesForIndex(self, vehicles, index)

Sets the vehicles which can visit a given node. If the node is in a disjunction, this will not prevent it from being unperformed. Specifying an empty vector of vehicles has no effect (all vehicles will be allowed to visit the node).

def IsVehicleAllowedForIndex(self, vehicle, index):
4960    def IsVehicleAllowedForIndex(self, vehicle, index):
4961        r""" Returns true if a vehicle is allowed to visit a given node."""
4962        return _pywrapcp.RoutingModel_IsVehicleAllowedForIndex(self, vehicle, index)

Returns true if a vehicle is allowed to visit a given node.

def AddPickupAndDelivery(self, pickup, delivery):
4964    def AddPickupAndDelivery(self, pickup, delivery):
4965        r"""
4966        Notifies that index1 and index2 form a pair of nodes which should belong
4967        to the same route. This methods helps the search find better solutions,
4968        especially in the local search phase.
4969        It should be called each time you have an equality constraint linking
4970        the vehicle variables of two node (including for instance pickup and
4971        delivery problems):
4972            Solver* const solver = routing.solver();
4973            int64_t index1 = manager.NodeToIndex(node1);
4974            int64_t index2 = manager.NodeToIndex(node2);
4975            solver->AddConstraint(solver->MakeEquality(
4976                routing.VehicleVar(index1),
4977                routing.VehicleVar(index2)));
4978            routing.AddPickupAndDelivery(index1, index2);
4979        """
4980        return _pywrapcp.RoutingModel_AddPickupAndDelivery(self, pickup, delivery)

Notifies that index1 and index2 form a pair of nodes which should belong to the same route. This methods helps the search find better solutions, especially in the local search phase. It should be called each time you have an equality constraint linking the vehicle variables of two node (including for instance pickup and delivery problems): Solver* const solver = routing.solver(); int64_t index1 = manager.NodeToIndex(node1); int64_t index2 = manager.NodeToIndex(node2); solver->AddConstraint(solver->MakeEquality( routing.VehicleVar(index1), routing.VehicleVar(index2))); routing.AddPickupAndDelivery(index1, index2);

def AddPickupAndDeliverySets(self, pickup_disjunction, delivery_disjunction):
4982    def AddPickupAndDeliverySets(self, pickup_disjunction, delivery_disjunction):
4983        r"""
4984        Same as AddPickupAndDelivery but notifying that the performed node from
4985        the disjunction of index 'pickup_disjunction' is on the same route as the
4986        performed node from the disjunction of index 'delivery_disjunction'.
4987        """
4988        return _pywrapcp.RoutingModel_AddPickupAndDeliverySets(self, pickup_disjunction, delivery_disjunction)

Same as AddPickupAndDelivery but notifying that the performed node from the disjunction of index 'pickup_disjunction' is on the same route as the performed node from the disjunction of index 'delivery_disjunction'.

def GetPickupPositions(self, node_index):
4990    def GetPickupPositions(self, node_index):
4991        r""" Returns the pickup and delivery positions where the node is a pickup."""
4992        return _pywrapcp.RoutingModel_GetPickupPositions(self, node_index)

Returns the pickup and delivery positions where the node is a pickup.

def GetDeliveryPositions(self, node_index):
4994    def GetDeliveryPositions(self, node_index):
4995        r""" Returns the pickup and delivery positions where the node is a delivery."""
4996        return _pywrapcp.RoutingModel_GetDeliveryPositions(self, node_index)

Returns the pickup and delivery positions where the node is a delivery.

def IsPickup(self, node_index):
4998    def IsPickup(self, node_index):
4999        r""" Returns whether the node is a pickup (resp. delivery)."""
5000        return _pywrapcp.RoutingModel_IsPickup(self, node_index)

Returns whether the node is a pickup (resp. delivery).

def IsDelivery(self, node_index):
5002    def IsDelivery(self, node_index):
5003        return _pywrapcp.RoutingModel_IsDelivery(self, node_index)
def SetPickupAndDeliveryPolicyOfAllVehicles(self, policy):
5005    def SetPickupAndDeliveryPolicyOfAllVehicles(self, policy):
5006        r"""
5007        Sets the Pickup and delivery policy of all vehicles. It is equivalent to
5008        calling SetPickupAndDeliveryPolicyOfVehicle on all vehicles.
5009        """
5010        return _pywrapcp.RoutingModel_SetPickupAndDeliveryPolicyOfAllVehicles(self, policy)

Sets the Pickup and delivery policy of all vehicles. It is equivalent to calling SetPickupAndDeliveryPolicyOfVehicle on all vehicles.

def SetPickupAndDeliveryPolicyOfVehicle(self, policy, vehicle):
5012    def SetPickupAndDeliveryPolicyOfVehicle(self, policy, vehicle):
5013        return _pywrapcp.RoutingModel_SetPickupAndDeliveryPolicyOfVehicle(self, policy, vehicle)
def GetPickupAndDeliveryPolicyOfVehicle(self, vehicle):
5015    def GetPickupAndDeliveryPolicyOfVehicle(self, vehicle):
5016        return _pywrapcp.RoutingModel_GetPickupAndDeliveryPolicyOfVehicle(self, vehicle)
def GetNumOfSingletonNodes(self):
5018    def GetNumOfSingletonNodes(self):
5019        r"""
5020        Returns the number of non-start/end nodes which do not appear in a
5021        pickup/delivery pair.
5022        """
5023        return _pywrapcp.RoutingModel_GetNumOfSingletonNodes(self)

Returns the number of non-start/end nodes which do not appear in a pickup/delivery pair.

TYPE_ADDED_TO_VEHICLE = 0

When visited, the number of types 'T' on the vehicle increases by one.

ADDED_TYPE_REMOVED_FROM_VEHICLE = 1

When visited, one instance of type 'T' previously added to the route (TYPE_ADDED_TO_VEHICLE), if any, is removed from the vehicle. If the type was not previously added to the route or all added instances have already been removed, this visit has no effect on the types.

TYPE_ON_VEHICLE_UP_TO_VISIT = 2

With the following policy, the visit enforces that type 'T' is considered on the route from its start until this node is visited.

TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED = 3

The visit doesn't have an impact on the number of types 'T' on the route, as it's (virtually) added and removed directly. This policy can be used for visits which are part of an incompatibility or requirement set without affecting the type count on the route.

def SetVisitType(self, index, type, type_policy):
5046    def SetVisitType(self, index, type, type_policy):
5047        return _pywrapcp.RoutingModel_SetVisitType(self, index, type, type_policy)
def GetVisitType(self, index):
5049    def GetVisitType(self, index):
5050        return _pywrapcp.RoutingModel_GetVisitType(self, index)
def GetSingleNodesOfType(self, type):
5052    def GetSingleNodesOfType(self, type):
5053        return _pywrapcp.RoutingModel_GetSingleNodesOfType(self, type)
def GetPairIndicesOfType(self, type):
5055    def GetPairIndicesOfType(self, type):
5056        return _pywrapcp.RoutingModel_GetPairIndicesOfType(self, type)
def GetVisitTypePolicy(self, index):
5058    def GetVisitTypePolicy(self, index):
5059        return _pywrapcp.RoutingModel_GetVisitTypePolicy(self, index)
def CloseVisitTypes(self):
5061    def CloseVisitTypes(self):
5062        r"""
5063        This function should be called once all node visit types have been set and
5064        prior to adding any incompatibilities/requirements.
5065        "close" types.
5066        """
5067        return _pywrapcp.RoutingModel_CloseVisitTypes(self)

This function should be called once all node visit types have been set and prior to adding any incompatibilities/requirements. "close" types.

def GetNumberOfVisitTypes(self):
5069    def GetNumberOfVisitTypes(self):
5070        return _pywrapcp.RoutingModel_GetNumberOfVisitTypes(self)
def AddHardTypeIncompatibility(self, type1, type2):
5072    def AddHardTypeIncompatibility(self, type1, type2):
5073        r"""
5074        Incompatibilities:
5075        Two nodes with "hard" incompatible types cannot share the same route at
5076        all, while with a "temporal" incompatibility they can't be on the same
5077        route at the same time.
5078        """
5079        return _pywrapcp.RoutingModel_AddHardTypeIncompatibility(self, type1, type2)

Incompatibilities: Two nodes with "hard" incompatible types cannot share the same route at all, while with a "temporal" incompatibility they can't be on the same route at the same time.

def AddTemporalTypeIncompatibility(self, type1, type2):
5081    def AddTemporalTypeIncompatibility(self, type1, type2):
5082        return _pywrapcp.RoutingModel_AddTemporalTypeIncompatibility(self, type1, type2)
def GetHardTypeIncompatibilitiesOfType(self, type):
5084    def GetHardTypeIncompatibilitiesOfType(self, type):
5085        r""" Returns visit types incompatible with a given type."""
5086        return _pywrapcp.RoutingModel_GetHardTypeIncompatibilitiesOfType(self, type)

Returns visit types incompatible with a given type.

def GetTemporalTypeIncompatibilitiesOfType(self, type):
5088    def GetTemporalTypeIncompatibilitiesOfType(self, type):
5089        return _pywrapcp.RoutingModel_GetTemporalTypeIncompatibilitiesOfType(self, type)
def HasHardTypeIncompatibilities(self):
5091    def HasHardTypeIncompatibilities(self):
5092        r"""
5093        Returns true iff any hard (resp. temporal) type incompatibilities have
5094        been added to the model.
5095        """
5096        return _pywrapcp.RoutingModel_HasHardTypeIncompatibilities(self)

Returns true iff any hard (resp. temporal) type incompatibilities have been added to the model.

def HasTemporalTypeIncompatibilities(self):
5098    def HasTemporalTypeIncompatibilities(self):
5099        return _pywrapcp.RoutingModel_HasTemporalTypeIncompatibilities(self)
def AddSameVehicleRequiredTypeAlternatives(self, dependent_type, required_type_alternatives):
5101    def AddSameVehicleRequiredTypeAlternatives(self, dependent_type, required_type_alternatives):
5102        r"""
5103        Requirements:
5104        NOTE: As of 2019-04, cycles in the requirement graph are not supported,
5105        and lead to the dependent nodes being skipped if possible (otherwise
5106        the model is considered infeasible).
5107        The following functions specify that "dependent_type" requires at least
5108        one of the types in "required_type_alternatives".
5109
5110        For same-vehicle requirements, a node of dependent type type_D requires at
5111        least one node of type type_R among the required alternatives on the same
5112        route.
5113        """
5114        return _pywrapcp.RoutingModel_AddSameVehicleRequiredTypeAlternatives(self, dependent_type, required_type_alternatives)

Requirements: NOTE: As of 2019-04, cycles in the requirement graph are not supported, and lead to the dependent nodes being skipped if possible (otherwise the model is considered infeasible). The following functions specify that "dependent_type" requires at least one of the types in "required_type_alternatives".

For same-vehicle requirements, a node of dependent type type_D requires at least one node of type type_R among the required alternatives on the same route.

def AddRequiredTypeAlternativesWhenAddingType(self, dependent_type, required_type_alternatives):
5116    def AddRequiredTypeAlternativesWhenAddingType(self, dependent_type, required_type_alternatives):
5117        r"""
5118        If type_D depends on type_R when adding type_D, any node_D of type_D and
5119        VisitTypePolicy TYPE_ADDED_TO_VEHICLE or
5120        TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED requires at least one type_R on its
5121        vehicle at the time node_D is visited.
5122        """
5123        return _pywrapcp.RoutingModel_AddRequiredTypeAlternativesWhenAddingType(self, dependent_type, required_type_alternatives)

If type_D depends on type_R when adding type_D, any node_D of type_D and VisitTypePolicy TYPE_ADDED_TO_VEHICLE or TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED requires at least one type_R on its vehicle at the time node_D is visited.

def AddRequiredTypeAlternativesWhenRemovingType(self, dependent_type, required_type_alternatives):
5125    def AddRequiredTypeAlternativesWhenRemovingType(self, dependent_type, required_type_alternatives):
5126        r"""
5127        The following requirements apply when visiting dependent nodes that remove
5128        their type from the route, i.e. type_R must be on the vehicle when type_D
5129        of VisitTypePolicy ADDED_TYPE_REMOVED_FROM_VEHICLE,
5130        TYPE_ON_VEHICLE_UP_TO_VISIT or TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED is
5131        visited.
5132        """
5133        return _pywrapcp.RoutingModel_AddRequiredTypeAlternativesWhenRemovingType(self, dependent_type, required_type_alternatives)

The following requirements apply when visiting dependent nodes that remove their type from the route, i.e. type_R must be on the vehicle when type_D of VisitTypePolicy ADDED_TYPE_REMOVED_FROM_VEHICLE, TYPE_ON_VEHICLE_UP_TO_VISIT or TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED is visited.

def GetSameVehicleRequiredTypeAlternativesOfType(self, type):
5135    def GetSameVehicleRequiredTypeAlternativesOfType(self, type):
5136        r"""
5137        Returns the set of same-vehicle requirement alternatives for the given
5138        type.
5139        """
5140        return _pywrapcp.RoutingModel_GetSameVehicleRequiredTypeAlternativesOfType(self, type)

Returns the set of same-vehicle requirement alternatives for the given type.

def GetRequiredTypeAlternativesWhenAddingType(self, type):
5142    def GetRequiredTypeAlternativesWhenAddingType(self, type):
5143        r""" Returns the set of requirement alternatives when adding the given type."""
5144        return _pywrapcp.RoutingModel_GetRequiredTypeAlternativesWhenAddingType(self, type)

Returns the set of requirement alternatives when adding the given type.

def GetRequiredTypeAlternativesWhenRemovingType(self, type):
5146    def GetRequiredTypeAlternativesWhenRemovingType(self, type):
5147        r""" Returns the set of requirement alternatives when removing the given type."""
5148        return _pywrapcp.RoutingModel_GetRequiredTypeAlternativesWhenRemovingType(self, type)

Returns the set of requirement alternatives when removing the given type.

def HasSameVehicleTypeRequirements(self):
5150    def HasSameVehicleTypeRequirements(self):
5151        r"""
5152        Returns true iff any same-route (resp. temporal) type requirements have
5153        been added to the model.
5154        """
5155        return _pywrapcp.RoutingModel_HasSameVehicleTypeRequirements(self)

Returns true iff any same-route (resp. temporal) type requirements have been added to the model.

def HasTemporalTypeRequirements(self):
5157    def HasTemporalTypeRequirements(self):
5158        return _pywrapcp.RoutingModel_HasTemporalTypeRequirements(self)
def HasTypeRegulations(self):
5160    def HasTypeRegulations(self):
5161        r"""
5162        Returns true iff the model has any incompatibilities or requirements set
5163        on node types.
5164        """
5165        return _pywrapcp.RoutingModel_HasTypeRegulations(self)

Returns true iff the model has any incompatibilities or requirements set on node types.

def UnperformedPenalty(self, var_index):
5167    def UnperformedPenalty(self, var_index):
5168        r"""
5169        Get the "unperformed" penalty of a node. This is only well defined if the
5170        node is only part of a single Disjunction, and that disjunction has a
5171        penalty. For forced active nodes returns max int64_t. In all other cases,
5172        this returns 0.
5173        """
5174        return _pywrapcp.RoutingModel_UnperformedPenalty(self, var_index)

Get the "unperformed" penalty of a node. This is only well defined if the node is only part of a single Disjunction, and that disjunction has a penalty. For forced active nodes returns max int64_t. In all other cases, this returns 0.

def UnperformedPenaltyOrValue(self, default_value, var_index):
5176    def UnperformedPenaltyOrValue(self, default_value, var_index):
5177        r"""
5178        Same as above except that it returns default_value instead of 0 when
5179        penalty is not well defined (default value is passed as first argument to
5180        simplify the usage of the method in a callback).
5181        """
5182        return _pywrapcp.RoutingModel_UnperformedPenaltyOrValue(self, default_value, var_index)

Same as above except that it returns default_value instead of 0 when penalty is not well defined (default value is passed as first argument to simplify the usage of the method in a callback).

def GetDepot(self):
5184    def GetDepot(self):
5185        r"""
5186        Returns the variable index of the first starting or ending node of all
5187        routes. If all routes start  and end at the same node (single depot), this
5188        is the node returned.
5189        """
5190        return _pywrapcp.RoutingModel_GetDepot(self)

Returns the variable index of the first starting or ending node of all routes. If all routes start and end at the same node (single depot), this is the node returned.

def SetMaximumNumberOfActiveVehicles(self, max_active_vehicles):
5192    def SetMaximumNumberOfActiveVehicles(self, max_active_vehicles):
5193        r"""
5194        Constrains the maximum number of active vehicles, aka the number of
5195        vehicles which do not have an empty route. For instance, this can be used
5196        to limit the number of routes in the case where there are fewer drivers
5197        than vehicles and that the fleet of vehicle is heterogeneous.
5198        """
5199        return _pywrapcp.RoutingModel_SetMaximumNumberOfActiveVehicles(self, max_active_vehicles)

Constrains the maximum number of active vehicles, aka the number of vehicles which do not have an empty route. For instance, this can be used to limit the number of routes in the case where there are fewer drivers than vehicles and that the fleet of vehicle is heterogeneous.

def GetMaximumNumberOfActiveVehicles(self):
5201    def GetMaximumNumberOfActiveVehicles(self):
5202        r""" Returns the maximum number of active vehicles."""
5203        return _pywrapcp.RoutingModel_GetMaximumNumberOfActiveVehicles(self)

Returns the maximum number of active vehicles.

def SetArcCostEvaluatorOfAllVehicles(self, evaluator_index):
5205    def SetArcCostEvaluatorOfAllVehicles(self, evaluator_index):
5206        r"""
5207        Sets the cost function of the model such that the cost of a segment of a
5208        route between node 'from' and 'to' is evaluator(from, to), whatever the
5209        route or vehicle performing the route.
5210        """
5211        return _pywrapcp.RoutingModel_SetArcCostEvaluatorOfAllVehicles(self, evaluator_index)

Sets the cost function of the model such that the cost of a segment of a route between node 'from' and 'to' is evaluator(from, to), whatever the route or vehicle performing the route.

def SetArcCostEvaluatorOfVehicle(self, evaluator_index, vehicle):
5213    def SetArcCostEvaluatorOfVehicle(self, evaluator_index, vehicle):
5214        r""" Sets the cost function for a given vehicle route."""
5215        return _pywrapcp.RoutingModel_SetArcCostEvaluatorOfVehicle(self, evaluator_index, vehicle)

Sets the cost function for a given vehicle route.

def SetFixedCostOfAllVehicles(self, cost):
5217    def SetFixedCostOfAllVehicles(self, cost):
5218        r"""
5219        Sets the fixed cost of all vehicle routes. It is equivalent to calling
5220        SetFixedCostOfVehicle on all vehicle routes.
5221        """
5222        return _pywrapcp.RoutingModel_SetFixedCostOfAllVehicles(self, cost)

Sets the fixed cost of all vehicle routes. It is equivalent to calling SetFixedCostOfVehicle on all vehicle routes.

def SetFixedCostOfVehicle(self, cost, vehicle):
5224    def SetFixedCostOfVehicle(self, cost, vehicle):
5225        r""" Sets the fixed cost of one vehicle route."""
5226        return _pywrapcp.RoutingModel_SetFixedCostOfVehicle(self, cost, vehicle)

Sets the fixed cost of one vehicle route.

def GetFixedCostOfVehicle(self, vehicle):
5228    def GetFixedCostOfVehicle(self, vehicle):
5229        r"""
5230        Returns the route fixed cost taken into account if the route of the
5231        vehicle is not empty, aka there's at least one node on the route other
5232        than the first and last nodes.
5233        """
5234        return _pywrapcp.RoutingModel_GetFixedCostOfVehicle(self, vehicle)

Returns the route fixed cost taken into account if the route of the vehicle is not empty, aka there's at least one node on the route other than the first and last nodes.

def SetPathEnergyCostOfVehicle(self, force, distance, unit_cost, vehicle):
5236    def SetPathEnergyCostOfVehicle(self, force, distance, unit_cost, vehicle):
5237        return _pywrapcp.RoutingModel_SetPathEnergyCostOfVehicle(self, force, distance, unit_cost, vehicle)
def SetAmortizedCostFactorsOfAllVehicles(self, linear_cost_factor, quadratic_cost_factor):
5239    def SetAmortizedCostFactorsOfAllVehicles(self, linear_cost_factor, quadratic_cost_factor):
5240        r"""
5241        The following methods set the linear and quadratic cost factors of
5242        vehicles (must be positive values). The default value of these parameters
5243        is zero for all vehicles.
5244
5245        When set, the cost_ of the model will contain terms aiming at reducing the
5246        number of vehicles used in the model, by adding the following to the
5247        objective for every vehicle v:
5248        INDICATOR(v used in the model) *
5249          [linear_cost_factor_of_vehicle_[v]
5250           - quadratic_cost_factor_of_vehicle_[v]*(square of length of route v)]
5251        i.e. for every used vehicle, we add the linear factor as fixed cost, and
5252        subtract the square of the route length multiplied by the quadratic
5253        factor. This second term aims at making the routes as dense as possible.
5254
5255        Sets the linear and quadratic cost factor of all vehicles.
5256        """
5257        return _pywrapcp.RoutingModel_SetAmortizedCostFactorsOfAllVehicles(self, linear_cost_factor, quadratic_cost_factor)

The following methods set the linear and quadratic cost factors of vehicles (must be positive values). The default value of these parameters is zero for all vehicles.

When set, the cost_ of the model will contain terms aiming at reducing the number of vehicles used in the model, by adding the following to the objective for every vehicle v: INDICATOR(v used in the model) * [linear_cost_factor_of_vehicle_[v]

  • quadratic_cost_factor_of_vehicle_[v]*(square of length of route v)] i.e. for every used vehicle, we add the linear factor as fixed cost, and subtract the square of the route length multiplied by the quadratic factor. This second term aims at making the routes as dense as possible.

Sets the linear and quadratic cost factor of all vehicles.

def SetAmortizedCostFactorsOfVehicle(self, linear_cost_factor, quadratic_cost_factor, vehicle):
5259    def SetAmortizedCostFactorsOfVehicle(self, linear_cost_factor, quadratic_cost_factor, vehicle):
5260        r""" Sets the linear and quadratic cost factor of the given vehicle."""
5261        return _pywrapcp.RoutingModel_SetAmortizedCostFactorsOfVehicle(self, linear_cost_factor, quadratic_cost_factor, vehicle)

Sets the linear and quadratic cost factor of the given vehicle.

def GetAmortizedLinearCostFactorOfVehicles(self):
5263    def GetAmortizedLinearCostFactorOfVehicles(self):
5264        return _pywrapcp.RoutingModel_GetAmortizedLinearCostFactorOfVehicles(self)
def GetAmortizedQuadraticCostFactorOfVehicles(self):
5266    def GetAmortizedQuadraticCostFactorOfVehicles(self):
5267        return _pywrapcp.RoutingModel_GetAmortizedQuadraticCostFactorOfVehicles(self)
def SetVehicleUsedWhenEmpty(self, is_used, vehicle):
5269    def SetVehicleUsedWhenEmpty(self, is_used, vehicle):
5270        return _pywrapcp.RoutingModel_SetVehicleUsedWhenEmpty(self, is_used, vehicle)
def IsVehicleUsedWhenEmpty(self, vehicle):
5272    def IsVehicleUsedWhenEmpty(self, vehicle):
5273        return _pywrapcp.RoutingModel_IsVehicleUsedWhenEmpty(self, vehicle)
def SetFirstSolutionEvaluator(self, evaluator):
5275    def SetFirstSolutionEvaluator(self, evaluator):
5276        r"""
5277        Gets/sets the evaluator used during the search. Only relevant when
5278        RoutingSearchParameters.first_solution_strategy = EVALUATOR_STRATEGY.
5279        Takes ownership of evaluator.
5280        """
5281        return _pywrapcp.RoutingModel_SetFirstSolutionEvaluator(self, evaluator)

Gets/sets the evaluator used during the search. Only relevant when RoutingSearchParameters.first_solution_strategy = EVALUATOR_STRATEGY. Takes ownership of evaluator.

def AddLocalSearchOperator(self, ls_operator):
5283    def AddLocalSearchOperator(self, ls_operator):
5284        r"""
5285        Adds a local search operator to the set of operators used to solve the
5286        vehicle routing problem.
5287        """
5288        return _pywrapcp.RoutingModel_AddLocalSearchOperator(self, ls_operator)

Adds a local search operator to the set of operators used to solve the vehicle routing problem.

def AddSearchMonitor(self, monitor):
5290    def AddSearchMonitor(self, monitor):
5291        r""" Adds a search monitor to the search used to solve the routing model."""
5292        return _pywrapcp.RoutingModel_AddSearchMonitor(self, monitor)

Adds a search monitor to the search used to solve the routing model.

def AddAtSolutionCallback(self, callback, track_unchecked_neighbors=False):
5294    def AddAtSolutionCallback(self, callback, track_unchecked_neighbors=False):
5295        r"""
5296        Adds a callback called each time a solution is found during the search.
5297        This is a shortcut to creating a monitor to call the callback on
5298        AtSolution() and adding it with AddSearchMonitor.
5299        If track_unchecked_neighbors is true, the callback will also be called on
5300        AcceptUncheckedNeighbor() events, which is useful to grab solutions
5301        obtained when solver_parameters.check_solution_period > 1 (aka fastLS).
5302        """
5303        return _pywrapcp.RoutingModel_AddAtSolutionCallback(self, callback, track_unchecked_neighbors)

Adds a callback called each time a solution is found during the search. This is a shortcut to creating a monitor to call the callback on AtSolution() and adding it with AddSearchMonitor. If track_unchecked_neighbors is true, the callback will also be called on AcceptUncheckedNeighbor() events, which is useful to grab solutions obtained when solver_parameters.check_solution_period > 1 (aka fastLS).

def AddVariableMinimizedByFinalizer(self, var):
5305    def AddVariableMinimizedByFinalizer(self, var):
5306        r"""
5307        Adds a variable to minimize in the solution finalizer. The solution
5308        finalizer is called each time a solution is found during the search and
5309        allows to instantiate secondary variables (such as dimension cumul
5310        variables).
5311        """
5312        return _pywrapcp.RoutingModel_AddVariableMinimizedByFinalizer(self, var)

Adds a variable to minimize in the solution finalizer. The solution finalizer is called each time a solution is found during the search and allows to instantiate secondary variables (such as dimension cumul variables).

def AddVariableMaximizedByFinalizer(self, var):
5314    def AddVariableMaximizedByFinalizer(self, var):
5315        r"""
5316        Adds a variable to maximize in the solution finalizer (see above for
5317        information on the solution finalizer).
5318        """
5319        return _pywrapcp.RoutingModel_AddVariableMaximizedByFinalizer(self, var)

Adds a variable to maximize in the solution finalizer (see above for information on the solution finalizer).

def AddWeightedVariableMinimizedByFinalizer(self, var, cost):
5321    def AddWeightedVariableMinimizedByFinalizer(self, var, cost):
5322        r"""
5323        Adds a variable to minimize in the solution finalizer, with a weighted
5324        priority: the higher the more priority it has.
5325        """
5326        return _pywrapcp.RoutingModel_AddWeightedVariableMinimizedByFinalizer(self, var, cost)

Adds a variable to minimize in the solution finalizer, with a weighted priority: the higher the more priority it has.

def AddWeightedVariableMaximizedByFinalizer(self, var, cost):
5328    def AddWeightedVariableMaximizedByFinalizer(self, var, cost):
5329        r"""
5330        Adds a variable to maximize in the solution finalizer, with a weighted
5331        priority: the higher the more priority it has.
5332        """
5333        return _pywrapcp.RoutingModel_AddWeightedVariableMaximizedByFinalizer(self, var, cost)

Adds a variable to maximize in the solution finalizer, with a weighted priority: the higher the more priority it has.

def AddVariableTargetToFinalizer(self, var, target):
5335    def AddVariableTargetToFinalizer(self, var, target):
5336        r"""
5337        Add a variable to set the closest possible to the target value in the
5338        solution finalizer.
5339        """
5340        return _pywrapcp.RoutingModel_AddVariableTargetToFinalizer(self, var, target)

Add a variable to set the closest possible to the target value in the solution finalizer.

def AddWeightedVariableTargetToFinalizer(self, var, target, cost):
5342    def AddWeightedVariableTargetToFinalizer(self, var, target, cost):
5343        r"""
5344        Same as above with a weighted priority: the higher the cost, the more
5345        priority it has to be set close to the target value.
5346        """
5347        return _pywrapcp.RoutingModel_AddWeightedVariableTargetToFinalizer(self, var, target, cost)

Same as above with a weighted priority: the higher the cost, the more priority it has to be set close to the target value.

def CloseModel(self):
5349    def CloseModel(self):
5350        r"""
5351        Closes the current routing model; after this method is called, no
5352        modification to the model can be done, but RoutesToAssignment becomes
5353        available. Note that CloseModel() is automatically called by Solve() and
5354        other methods that produce solution.
5355        This is equivalent to calling
5356        CloseModelWithParameters(DefaultRoutingSearchParameters()).
5357        """
5358        return _pywrapcp.RoutingModel_CloseModel(self)

Closes the current routing model; after this method is called, no modification to the model can be done, but RoutesToAssignment becomes available. Note that CloseModel() is automatically called by Solve() and other methods that produce solution. This is equivalent to calling CloseModelWithParameters(DefaultRoutingSearchParameters()).

def CloseModelWithParameters(self, search_parameters):
5360    def CloseModelWithParameters(self, search_parameters):
5361        r"""
5362        Same as above taking search parameters (as of 10/2015 some the parameters
5363        have to be set when closing the model).
5364        """
5365        return _pywrapcp.RoutingModel_CloseModelWithParameters(self, search_parameters)

Same as above taking search parameters (as of 10/2015 some the parameters have to be set when closing the model).

def Solve(self, assignment=None):
5367    def Solve(self, assignment=None):
5368        r"""
5369        Solves the current routing model; closes the current model.
5370        This is equivalent to calling
5371        SolveWithParameters(DefaultRoutingSearchParameters())
5372        or
5373        SolveFromAssignmentWithParameters(assignment,
5374                                          DefaultRoutingSearchParameters()).
5375        """
5376        return _pywrapcp.RoutingModel_Solve(self, assignment)

Solves the current routing model; closes the current model. This is equivalent to calling SolveWithParameters(DefaultRoutingSearchParameters()) or SolveFromAssignmentWithParameters(assignment, DefaultRoutingSearchParameters()).

def SolveWithParameters(self, search_parameters, solutions=None):
5378    def SolveWithParameters(self, search_parameters, solutions=None):
5379        r"""
5380        Solves the current routing model with the given parameters. If 'solutions'
5381        is specified, it will contain the k best solutions found during the search
5382        (from worst to best, including the one returned by this method), where k
5383        corresponds to the 'number_of_solutions_to_collect' in
5384        'search_parameters'. Note that the Assignment returned by the method and
5385        the ones in solutions are owned by the underlying solver and should not be
5386        deleted.
5387        """
5388        return _pywrapcp.RoutingModel_SolveWithParameters(self, search_parameters, solutions)

Solves the current routing model with the given parameters. If 'solutions' is specified, it will contain the k best solutions found during the search (from worst to best, including the one returned by this method), where k corresponds to the 'number_of_solutions_to_collect' in 'search_parameters'. Note that the Assignment returned by the method and the ones in solutions are owned by the underlying solver and should not be deleted.

def SolveFromAssignmentWithParameters(self, assignment, search_parameters, solutions=None):
5390    def SolveFromAssignmentWithParameters(self, assignment, search_parameters, solutions=None):
5391        r"""
5392        Same as above, except that if assignment is not null, it will be used as
5393        the initial solution.
5394        """
5395        return _pywrapcp.RoutingModel_SolveFromAssignmentWithParameters(self, assignment, search_parameters, solutions)

Same as above, except that if assignment is not null, it will be used as the initial solution.

def FastSolveFromAssignmentWithParameters( self, assignment, search_parameters, check_solution_in_cp, touched=None):
5397    def FastSolveFromAssignmentWithParameters(self, assignment, search_parameters, check_solution_in_cp, touched=None):
5398        r"""
5399        Improves a given assignment using unchecked local search.
5400        If check_solution_in_cp is true the final solution will be checked with
5401        the CP solver.
5402        As of 11/2023, only works with greedy descent.
5403        """
5404        return _pywrapcp.RoutingModel_FastSolveFromAssignmentWithParameters(self, assignment, search_parameters, check_solution_in_cp, touched)

Improves a given assignment using unchecked local search. If check_solution_in_cp is true the final solution will be checked with the CP solver. As of 11/2023, only works with greedy descent.

def SolveFromAssignmentsWithParameters(self, assignments, search_parameters, solutions=None):
5406    def SolveFromAssignmentsWithParameters(self, assignments, search_parameters, solutions=None):
5407        r"""
5408        Same as above but will try all assignments in order as first solutions
5409        until one succeeds.
5410        """
5411        return _pywrapcp.RoutingModel_SolveFromAssignmentsWithParameters(self, assignments, search_parameters, solutions)

Same as above but will try all assignments in order as first solutions until one succeeds.

def SolveWithIteratedLocalSearch(self, search_parameters):
5413    def SolveWithIteratedLocalSearch(self, search_parameters):
5414        r"""
5415        Solves the current routing model by using an Iterated Local Search
5416        approach.
5417        """
5418        return _pywrapcp.RoutingModel_SolveWithIteratedLocalSearch(self, search_parameters)

Solves the current routing model by using an Iterated Local Search approach.

def SetAssignmentFromOtherModelAssignment(self, target_assignment, source_model, source_assignment):
5420    def SetAssignmentFromOtherModelAssignment(self, target_assignment, source_model, source_assignment):
5421        r"""
5422        Given a "source_model" and its "source_assignment", resets
5423        "target_assignment" with the IntVar variables (nexts_, and vehicle_vars_
5424        if costs aren't homogeneous across vehicles) of "this" model, with the
5425        values set according to those in "other_assignment".
5426        The objective_element of target_assignment is set to this->cost_.
5427        """
5428        return _pywrapcp.RoutingModel_SetAssignmentFromOtherModelAssignment(self, target_assignment, source_model, source_assignment)

Given a "source_model" and its "source_assignment", resets "target_assignment" with the IntVar variables (nexts_, and vehicle_vars_ if costs aren't homogeneous across vehicles) of "this" model, with the values set according to those in "other_assignment". The objective_element of target_assignment is set to this->cost_.

def ComputeLowerBound(self):
5430    def ComputeLowerBound(self):
5431        r"""
5432        Computes a lower bound to the routing problem solving a linear assignment
5433        problem. The routing model must be closed before calling this method.
5434        Note that problems with node disjunction constraints (including optional
5435        nodes) and non-homogenous costs are not supported (the method returns 0 in
5436        these cases).
5437        """
5438        return _pywrapcp.RoutingModel_ComputeLowerBound(self)

Computes a lower bound to the routing problem solving a linear assignment problem. The routing model must be closed before calling this method. Note that problems with node disjunction constraints (including optional nodes) and non-homogenous costs are not supported (the method returns 0 in these cases).

def objective_lower_bound(self):
5440    def objective_lower_bound(self):
5441        r"""
5442        Returns the current lower bound found by internal solvers during the
5443        search.
5444        """
5445        return _pywrapcp.RoutingModel_objective_lower_bound(self)

Returns the current lower bound found by internal solvers during the search.

def status(self):
5447    def status(self):
5448        r""" Returns the current status of the routing model."""
5449        return _pywrapcp.RoutingModel_status(self)

Returns the current status of the routing model.

def enable_deep_serialization(self):
5451    def enable_deep_serialization(self):
5452        r""" Returns the value of the internal enable_deep_serialization_ parameter."""
5453        return _pywrapcp.RoutingModel_enable_deep_serialization(self)

Returns the value of the internal enable_deep_serialization_ parameter.

def ApplyLocks(self, locks):
5455    def ApplyLocks(self, locks):
5456        r"""
5457        Applies a lock chain to the next search. 'locks' represents an ordered
5458        vector of nodes representing a partial route which will be fixed during
5459        the next search; it will constrain next variables such that:
5460        next[locks[i]] == locks[i+1].
5461
5462        Returns the next variable at the end of the locked chain; this variable is
5463        not locked. An assignment containing the locks can be obtained by calling
5464        PreAssignment().
5465        """
5466        return _pywrapcp.RoutingModel_ApplyLocks(self, locks)

Applies a lock chain to the next search. 'locks' represents an ordered vector of nodes representing a partial route which will be fixed during the next search; it will constrain next variables such that: next[locks[i]] == locks[i+1].

Returns the next variable at the end of the locked chain; this variable is not locked. An assignment containing the locks can be obtained by calling PreAssignment().

def ApplyLocksToAllVehicles(self, locks, close_routes):
5468    def ApplyLocksToAllVehicles(self, locks, close_routes):
5469        r"""
5470        Applies lock chains to all vehicles to the next search, such that locks[p]
5471        is the lock chain for route p. Returns false if the locks do not contain
5472        valid routes; expects that the routes do not contain the depots,
5473        i.e. there are empty vectors in place of empty routes.
5474        If close_routes is set to true, adds the end nodes to the route of each
5475        vehicle and deactivates other nodes.
5476        An assignment containing the locks can be obtained by calling
5477        PreAssignment().
5478        """
5479        return _pywrapcp.RoutingModel_ApplyLocksToAllVehicles(self, locks, close_routes)

Applies lock chains to all vehicles to the next search, such that locks[p] is the lock chain for route p. Returns false if the locks do not contain valid routes; expects that the routes do not contain the depots, i.e. there are empty vectors in place of empty routes. If close_routes is set to true, adds the end nodes to the route of each vehicle and deactivates other nodes. An assignment containing the locks can be obtained by calling PreAssignment().

def PreAssignment(self):
5481    def PreAssignment(self):
5482        r"""
5483        Returns an assignment used to fix some of the variables of the problem.
5484        In practice, this assignment locks partial routes of the problem. This
5485        can be used in the context of locking the parts of the routes which have
5486        already been driven in online routing problems.
5487        """
5488        return _pywrapcp.RoutingModel_PreAssignment(self)

Returns an assignment used to fix some of the variables of the problem. In practice, this assignment locks partial routes of the problem. This can be used in the context of locking the parts of the routes which have already been driven in online routing problems.

def MutablePreAssignment(self):
5490    def MutablePreAssignment(self):
5491        return _pywrapcp.RoutingModel_MutablePreAssignment(self)
def WriteAssignment(self, file_name):
5493    def WriteAssignment(self, file_name):
5494        r"""
5495        Writes the current solution to a file containing an AssignmentProto.
5496        Returns false if the file cannot be opened or if there is no current
5497        solution.
5498        """
5499        return _pywrapcp.RoutingModel_WriteAssignment(self, file_name)

Writes the current solution to a file containing an AssignmentProto. Returns false if the file cannot be opened or if there is no current solution.

def ReadAssignment(self, file_name):
5501    def ReadAssignment(self, file_name):
5502        r"""
5503        Reads an assignment from a file and returns the current solution.
5504        Returns nullptr if the file cannot be opened or if the assignment is not
5505        valid.
5506        """
5507        return _pywrapcp.RoutingModel_ReadAssignment(self, file_name)

Reads an assignment from a file and returns the current solution. Returns nullptr if the file cannot be opened or if the assignment is not valid.

def RestoreAssignment(self, solution):
5509    def RestoreAssignment(self, solution):
5510        r"""
5511        Restores an assignment as a solution in the routing model and returns the
5512        new solution. Returns nullptr if the assignment is not valid.
5513        """
5514        return _pywrapcp.RoutingModel_RestoreAssignment(self, solution)

Restores an assignment as a solution in the routing model and returns the new solution. Returns nullptr if the assignment is not valid.

def ReadAssignmentFromRoutes(self, routes, ignore_inactive_indices):
5516    def ReadAssignmentFromRoutes(self, routes, ignore_inactive_indices):
5517        r"""
5518        Restores the routes as the current solution. Returns nullptr if the
5519        solution cannot be restored (routes do not contain a valid solution). Note
5520        that calling this method will run the solver to assign values to the
5521        dimension variables; this may take considerable amount of time, especially
5522        when using dimensions with slack.
5523        """
5524        return _pywrapcp.RoutingModel_ReadAssignmentFromRoutes(self, routes, ignore_inactive_indices)

Restores the routes as the current solution. Returns nullptr if the solution cannot be restored (routes do not contain a valid solution). Note that calling this method will run the solver to assign values to the dimension variables; this may take considerable amount of time, especially when using dimensions with slack.

def RoutesToAssignment(self, routes, ignore_inactive_indices, close_routes, assignment):
5526    def RoutesToAssignment(self, routes, ignore_inactive_indices, close_routes, assignment):
5527        r"""
5528        Fills an assignment from a specification of the routes of the
5529        vehicles. The routes are specified as lists of variable indices that
5530        appear on the routes of the vehicles. The indices of the outer vector in
5531        'routes' correspond to vehicles IDs, the inner vector contains the
5532        variable indices on the routes for the given vehicle. The inner vectors
5533        must not contain the start and end indices, as these are determined by the
5534        routing model.  Sets the value of NextVars in the assignment, adding the
5535        variables to the assignment if necessary. The method does not touch other
5536        variables in the assignment. The method can only be called after the model
5537        is closed.  With ignore_inactive_indices set to false, this method will
5538        fail (return nullptr) in case some of the route contain indices that are
5539        deactivated in the model; when set to true, these indices will be
5540        skipped.  Returns true if routes were successfully
5541        loaded. However, such assignment still might not be a valid
5542        solution to the routing problem due to more complex constraints;
5543        it is advisible to call solver()->CheckSolution() afterwards.
5544        """
5545        return _pywrapcp.RoutingModel_RoutesToAssignment(self, routes, ignore_inactive_indices, close_routes, assignment)

Fills an assignment from a specification of the routes of the vehicles. The routes are specified as lists of variable indices that appear on the routes of the vehicles. The indices of the outer vector in 'routes' correspond to vehicles IDs, the inner vector contains the variable indices on the routes for the given vehicle. The inner vectors must not contain the start and end indices, as these are determined by the routing model. Sets the value of NextVars in the assignment, adding the variables to the assignment if necessary. The method does not touch other variables in the assignment. The method can only be called after the model is closed. With ignore_inactive_indices set to false, this method will fail (return nullptr) in case some of the route contain indices that are deactivated in the model; when set to true, these indices will be skipped. Returns true if routes were successfully loaded. However, such assignment still might not be a valid solution to the routing problem due to more complex constraints; it is advisible to call solver()->CheckSolution() afterwards.

def AssignmentToRoutes(self, assignment, routes):
5547    def AssignmentToRoutes(self, assignment, routes):
5548        r"""
5549        Converts the solution in the given assignment to routes for all vehicles.
5550        Expects that assignment contains a valid solution (i.e. routes for all
5551        vehicles end with an end index for that vehicle).
5552        """
5553        return _pywrapcp.RoutingModel_AssignmentToRoutes(self, assignment, routes)

Converts the solution in the given assignment to routes for all vehicles. Expects that assignment contains a valid solution (i.e. routes for all vehicles end with an end index for that vehicle).

def CompactAssignment(self, assignment):
5555    def CompactAssignment(self, assignment):
5556        r"""
5557        Converts the solution in the given assignment to routes for all vehicles.
5558        If the returned vector is route_indices, route_indices[i][j] is the index
5559        for jth location visited on route i. Note that contrary to
5560        AssignmentToRoutes, the vectors do include start and end locations.
5561        Returns a compacted version of the given assignment, in which all vehicles
5562        with id lower or equal to some N have non-empty routes, and all vehicles
5563        with id greater than N have empty routes. Does not take ownership of the
5564        returned object.
5565        If found, the cost of the compact assignment is the same as in the
5566        original assignment and it preserves the values of 'active' variables.
5567        Returns nullptr if a compact assignment was not found.
5568        This method only works in homogenous mode, and it only swaps equivalent
5569        vehicles (vehicles with the same start and end nodes). When creating the
5570        compact assignment, the empty plan is replaced by the route assigned to
5571        the compatible vehicle with the highest id. Note that with more complex
5572        constraints on vehicle variables, this method might fail even if a compact
5573        solution exists.
5574        This method changes the vehicle and dimension variables as necessary.
5575        While compacting the solution, only basic checks on vehicle variables are
5576        performed; if one of these checks fails no attempts to repair it are made
5577        (instead, the method returns nullptr).
5578        """
5579        return _pywrapcp.RoutingModel_CompactAssignment(self, assignment)

Converts the solution in the given assignment to routes for all vehicles. If the returned vector is route_indices, route_indices[i][j] is the index for jth location visited on route i. Note that contrary to AssignmentToRoutes, the vectors do include start and end locations. Returns a compacted version of the given assignment, in which all vehicles with id lower or equal to some N have non-empty routes, and all vehicles with id greater than N have empty routes. Does not take ownership of the returned object. If found, the cost of the compact assignment is the same as in the original assignment and it preserves the values of 'active' variables. Returns nullptr if a compact assignment was not found. This method only works in homogenous mode, and it only swaps equivalent vehicles (vehicles with the same start and end nodes). When creating the compact assignment, the empty plan is replaced by the route assigned to the compatible vehicle with the highest id. Note that with more complex constraints on vehicle variables, this method might fail even if a compact solution exists. This method changes the vehicle and dimension variables as necessary. While compacting the solution, only basic checks on vehicle variables are performed; if one of these checks fails no attempts to repair it are made (instead, the method returns nullptr).

def CompactAndCheckAssignment(self, assignment):
5581    def CompactAndCheckAssignment(self, assignment):
5582        r"""
5583        Same as CompactAssignment() but also checks the validity of the final
5584        compact solution; if it is not valid, no attempts to repair it are made
5585        (instead, the method returns nullptr).
5586        """
5587        return _pywrapcp.RoutingModel_CompactAndCheckAssignment(self, assignment)

Same as CompactAssignment() but also checks the validity of the final compact solution; if it is not valid, no attempts to repair it are made (instead, the method returns nullptr).

def AddToAssignment(self, var):
5589    def AddToAssignment(self, var):
5590        r""" Adds an extra variable to the vehicle routing assignment."""
5591        return _pywrapcp.RoutingModel_AddToAssignment(self, var)

Adds an extra variable to the vehicle routing assignment.

def AddIntervalToAssignment(self, interval):
5593    def AddIntervalToAssignment(self, interval):
5594        return _pywrapcp.RoutingModel_AddIntervalToAssignment(self, interval)
def PackCumulsOfOptimizerDimensionsFromAssignment( self, original_assignment, duration_limit, time_limit_was_reached=None):
5596    def PackCumulsOfOptimizerDimensionsFromAssignment(self, original_assignment, duration_limit, time_limit_was_reached=None):
5597        r"""
5598        For every dimension in the model with an optimizer in
5599        local/global_dimension_optimizers_, this method tries to pack the cumul
5600        values of the dimension, such that:
5601        - The cumul costs (span costs, soft lower and upper bound costs, etc) are
5602          minimized.
5603        - The cumuls of the ends of the routes are minimized for this given
5604          minimal cumul cost.
5605        - Given these minimal end cumuls, the route start cumuls are maximized.
5606        Returns the assignment resulting from allocating these packed cumuls with
5607        the solver, and nullptr if these cumuls could not be set by the solver.
5608        """
5609        return _pywrapcp.RoutingModel_PackCumulsOfOptimizerDimensionsFromAssignment(self, original_assignment, duration_limit, time_limit_was_reached)

For every dimension in the model with an optimizer in local/global_dimension_optimizers_, this method tries to pack the cumul values of the dimension, such that:

  • The cumul costs (span costs, soft lower and upper bound costs, etc) are minimized.
  • The cumuls of the ends of the routes are minimized for this given minimal cumul cost.
  • Given these minimal end cumuls, the route start cumuls are maximized. Returns the assignment resulting from allocating these packed cumuls with the solver, and nullptr if these cumuls could not be set by the solver.
def GetOrCreateNodeNeighborsByCostClass(self, *args):
5611    def GetOrCreateNodeNeighborsByCostClass(self, *args):
5612        r"""
5613        *Overload 1:*
5614        Returns neighbors of all nodes for every cost class. The result is cached
5615        and is computed once. The number of neighbors considered is based on a
5616        ratio of non-vehicle nodes, specified by neighbors_ratio, with a minimum
5617        of min-neighbors node considered.
5618
5619        |
5620
5621        *Overload 2:*
5622        Returns parameters.num_neighbors neighbors of all nodes for every cost
5623        class. The result is cached and is computed once.
5624
5625        |
5626
5627        *Overload 3:*
5628        Returns parameters.num_neighbors neighbors of all nodes for every cost
5629        class. The result is cached and is computed once.
5630        """
5631        return _pywrapcp.RoutingModel_GetOrCreateNodeNeighborsByCostClass(self, *args)

Overload 1: Returns neighbors of all nodes for every cost class. The result is cached and is computed once. The number of neighbors considered is based on a ratio of non-vehicle nodes, specified by neighbors_ratio, with a minimum of min-neighbors node considered.

|

Overload 2: Returns parameters.num_neighbors neighbors of all nodes for every cost class. The result is cached and is computed once.

|

Overload 3: Returns parameters.num_neighbors neighbors of all nodes for every cost class. The result is cached and is computed once.

def AddLocalSearchFilter(self, filter):
5633    def AddLocalSearchFilter(self, filter):
5634        r"""
5635        Adds a custom local search filter to the list of filters used to speed up
5636        local search by pruning unfeasible variable assignments.
5637        Calling this method after the routing model has been closed (CloseModel()
5638        or Solve() has been called) has no effect.
5639        The routing model does not take ownership of the filter.
5640        """
5641        return _pywrapcp.RoutingModel_AddLocalSearchFilter(self, filter)

Adds a custom local search filter to the list of filters used to speed up local search by pruning unfeasible variable assignments. Calling this method after the routing model has been closed (CloseModel() or Solve() has been called) has no effect. The routing model does not take ownership of the filter.

def Start(self, vehicle):
5643    def Start(self, vehicle):
5644        r"""
5645        Model inspection.
5646        Returns the variable index of the starting node of a vehicle route.
5647        """
5648        return _pywrapcp.RoutingModel_Start(self, vehicle)

Model inspection. Returns the variable index of the starting node of a vehicle route.

def End(self, vehicle):
5650    def End(self, vehicle):
5651        r""" Returns the variable index of the ending node of a vehicle route."""
5652        return _pywrapcp.RoutingModel_End(self, vehicle)

Returns the variable index of the ending node of a vehicle route.

def IsStart(self, index):
5654    def IsStart(self, index):
5655        r""" Returns true if 'index' represents the first node of a route."""
5656        return _pywrapcp.RoutingModel_IsStart(self, index)

Returns true if 'index' represents the first node of a route.

def IsEnd(self, index):
5658    def IsEnd(self, index):
5659        r""" Returns true if 'index' represents the last node of a route."""
5660        return _pywrapcp.RoutingModel_IsEnd(self, index)

Returns true if 'index' represents the last node of a route.

def VehicleIndex(self, index):
5662    def VehicleIndex(self, index):
5663        r"""
5664        Returns the vehicle of the given start/end index, and -1 if the given
5665        index is not a vehicle start/end.
5666        """
5667        return _pywrapcp.RoutingModel_VehicleIndex(self, index)

Returns the vehicle of the given start/end index, and -1 if the given index is not a vehicle start/end.

def Next(self, assignment, index):
5669    def Next(self, assignment, index):
5670        r"""
5671        Assignment inspection
5672        Returns the variable index of the node directly after the node
5673        corresponding to 'index' in 'assignment'.
5674        """
5675        return _pywrapcp.RoutingModel_Next(self, assignment, index)

Assignment inspection Returns the variable index of the node directly after the node corresponding to 'index' in 'assignment'.

def IsVehicleUsed(self, assignment, vehicle):
5677    def IsVehicleUsed(self, assignment, vehicle):
5678        r""" Returns true if the route of 'vehicle' is non empty in 'assignment'."""
5679        return _pywrapcp.RoutingModel_IsVehicleUsed(self, assignment, vehicle)

Returns true if the route of 'vehicle' is non empty in 'assignment'.

def NextVar(self, index):
5681    def NextVar(self, index):
5682        r"""
5683        Returns the next variable of the node corresponding to index. Note that
5684        NextVar(index) == index is equivalent to ActiveVar(index) == 0.
5685        """
5686        return _pywrapcp.RoutingModel_NextVar(self, index)

Returns the next variable of the node corresponding to index. Note that NextVar(index) == index is equivalent to ActiveVar(index) == 0.

def ActiveVar(self, index):
5688    def ActiveVar(self, index):
5689        r""" Returns the active variable of the node corresponding to index."""
5690        return _pywrapcp.RoutingModel_ActiveVar(self, index)

Returns the active variable of the node corresponding to index.

def ActiveVehicleVar(self, vehicle):
5692    def ActiveVehicleVar(self, vehicle):
5693        r"""
5694        Returns the active variable of the vehicle. It will be equal to 1 iff the
5695        route of the vehicle is not empty, 0 otherwise.
5696        """
5697        return _pywrapcp.RoutingModel_ActiveVehicleVar(self, vehicle)

Returns the active variable of the vehicle. It will be equal to 1 iff the route of the vehicle is not empty, 0 otherwise.

def VehicleRouteConsideredVar(self, vehicle):
5699    def VehicleRouteConsideredVar(self, vehicle):
5700        r"""
5701        Returns the variable specifying whether or not the given vehicle route is
5702        considered for costs and constraints. It will be equal to 1 iff the route
5703        of the vehicle is not empty OR vehicle_used_when_empty_[vehicle] is true.
5704        """
5705        return _pywrapcp.RoutingModel_VehicleRouteConsideredVar(self, vehicle)

Returns the variable specifying whether or not the given vehicle route is considered for costs and constraints. It will be equal to 1 iff the route of the vehicle is not empty OR vehicle_used_when_empty_[vehicle] is true.

def VehicleVar(self, index):
5707    def VehicleVar(self, index):
5708        r"""
5709        Returns the vehicle variable of the node corresponding to index. Note that
5710        VehicleVar(index) == -1 is equivalent to ActiveVar(index) == 0.
5711        """
5712        return _pywrapcp.RoutingModel_VehicleVar(self, index)

Returns the vehicle variable of the node corresponding to index. Note that VehicleVar(index) == -1 is equivalent to ActiveVar(index) == 0.

def ResourceVar(self, vehicle, resource_group):
5714    def ResourceVar(self, vehicle, resource_group):
5715        r"""
5716        Returns the resource variable for the given vehicle index in the given
5717        resource group. If a vehicle doesn't require a resource from the
5718        corresponding resource group, then ResourceVar(v, r_g) == -1.
5719        """
5720        return _pywrapcp.RoutingModel_ResourceVar(self, vehicle, resource_group)

Returns the resource variable for the given vehicle index in the given resource group. If a vehicle doesn't require a resource from the corresponding resource group, then ResourceVar(v, r_g) == -1.

def CostVar(self):
5722    def CostVar(self):
5723        r""" Returns the global cost variable which is being minimized."""
5724        return _pywrapcp.RoutingModel_CostVar(self)

Returns the global cost variable which is being minimized.

def GetArcCostForVehicle(self, from_index, to_index, vehicle):
5726    def GetArcCostForVehicle(self, from_index, to_index, vehicle):
5727        r"""
5728        Returns the cost of the transit arc between two nodes for a given vehicle.
5729        Input are variable indices of node. This returns 0 if vehicle < 0.
5730        """
5731        return _pywrapcp.RoutingModel_GetArcCostForVehicle(self, from_index, to_index, vehicle)

Returns the cost of the transit arc between two nodes for a given vehicle. Input are variable indices of node. This returns 0 if vehicle < 0.

def CostsAreHomogeneousAcrossVehicles(self):
5733    def CostsAreHomogeneousAcrossVehicles(self):
5734        r""" Whether costs are homogeneous across all vehicles."""
5735        return _pywrapcp.RoutingModel_CostsAreHomogeneousAcrossVehicles(self)

Whether costs are homogeneous across all vehicles.

def GetHomogeneousCost(self, from_index, to_index):
5737    def GetHomogeneousCost(self, from_index, to_index):
5738        r"""
5739        Returns the cost of the segment between two nodes supposing all vehicle
5740        costs are the same (returns the cost for the first vehicle otherwise).
5741        """
5742        return _pywrapcp.RoutingModel_GetHomogeneousCost(self, from_index, to_index)

Returns the cost of the segment between two nodes supposing all vehicle costs are the same (returns the cost for the first vehicle otherwise).

def GetArcCostForFirstSolution(self, from_index, to_index):
5744    def GetArcCostForFirstSolution(self, from_index, to_index):
5745        r"""
5746        Returns the cost of the arc in the context of the first solution strategy.
5747        This is typically a simplification of the actual cost; see the .cc.
5748        """
5749        return _pywrapcp.RoutingModel_GetArcCostForFirstSolution(self, from_index, to_index)

Returns the cost of the arc in the context of the first solution strategy. This is typically a simplification of the actual cost; see the .cc.

def GetArcCostForClass(self, from_index, to_index, cost_class_index):
5751    def GetArcCostForClass(self, from_index, to_index, cost_class_index):
5752        r"""
5753        Returns the cost of the segment between two nodes for a given cost
5754        class. Input are variable indices of nodes and the cost class.
5755        Unlike GetArcCostForVehicle(), if cost_class is kNoCost, then the
5756        returned cost won't necessarily be zero: only some of the components
5757        of the cost that depend on the cost class will be omited. See the code
5758        for details.
5759        """
5760        return _pywrapcp.RoutingModel_GetArcCostForClass(self, from_index, to_index, cost_class_index)

Returns the cost of the segment between two nodes for a given cost class. Input are variable indices of nodes and the cost class. Unlike GetArcCostForVehicle(), if cost_class is kNoCost, then the returned cost won't necessarily be zero: only some of the components of the cost that depend on the cost class will be omited. See the code for details.

def GetCostClassIndexOfVehicle(self, vehicle):
5762    def GetCostClassIndexOfVehicle(self, vehicle):
5763        r""" Get the cost class index of the given vehicle."""
5764        return _pywrapcp.RoutingModel_GetCostClassIndexOfVehicle(self, vehicle)

Get the cost class index of the given vehicle.

def HasVehicleWithCostClassIndex(self, cost_class_index):
5766    def HasVehicleWithCostClassIndex(self, cost_class_index):
5767        r"""
5768        Returns true iff the model contains a vehicle with the given
5769        cost_class_index.
5770        """
5771        return _pywrapcp.RoutingModel_HasVehicleWithCostClassIndex(self, cost_class_index)

Returns true iff the model contains a vehicle with the given cost_class_index.

def GetCostClassesCount(self):
5773    def GetCostClassesCount(self):
5774        r""" Returns the number of different cost classes in the model."""
5775        return _pywrapcp.RoutingModel_GetCostClassesCount(self)

Returns the number of different cost classes in the model.

def GetNonZeroCostClassesCount(self):
5777    def GetNonZeroCostClassesCount(self):
5778        r""" Ditto, minus the 'always zero', built-in cost class."""
5779        return _pywrapcp.RoutingModel_GetNonZeroCostClassesCount(self)

Ditto, minus the 'always zero', built-in cost class.

def GetVehicleClassIndexOfVehicle(self, vehicle):
5781    def GetVehicleClassIndexOfVehicle(self, vehicle):
5782        return _pywrapcp.RoutingModel_GetVehicleClassIndexOfVehicle(self, vehicle)
def GetVehicleOfClass(self, vehicle_class):
5784    def GetVehicleOfClass(self, vehicle_class):
5785        r"""
5786        Returns a vehicle of the given vehicle class, and -1 if there are no
5787        vehicles for this class.
5788        """
5789        return _pywrapcp.RoutingModel_GetVehicleOfClass(self, vehicle_class)

Returns a vehicle of the given vehicle class, and -1 if there are no vehicles for this class.

def GetVehicleClassesCount(self):
5791    def GetVehicleClassesCount(self):
5792        r""" Returns the number of different vehicle classes in the model."""
5793        return _pywrapcp.RoutingModel_GetVehicleClassesCount(self)

Returns the number of different vehicle classes in the model.

def GetSameVehicleIndicesOfIndex(self, node):
5795    def GetSameVehicleIndicesOfIndex(self, node):
5796        r""" Returns variable indices of nodes constrained to be on the same route."""
5797        return _pywrapcp.RoutingModel_GetSameVehicleIndicesOfIndex(self, node)

Returns variable indices of nodes constrained to be on the same route.

def GetVehicleTypeContainer(self):
5799    def GetVehicleTypeContainer(self):
5800        return _pywrapcp.RoutingModel_GetVehicleTypeContainer(self)
def ArcIsMoreConstrainedThanArc(self, _from, to1, to2):
5802    def ArcIsMoreConstrainedThanArc(self, _from, to1, to2):
5803        r"""
5804        Returns whether the arc from->to1 is more constrained than from->to2,
5805        taking into account, in order:
5806        - whether the destination node isn't an end node
5807        - whether the destination node is mandatory
5808        - whether the destination node is bound to the same vehicle as the source
5809        - the "primary constrained" dimension (see SetPrimaryConstrainedDimension)
5810        It then breaks ties using, in order:
5811        - the arc cost (taking unperformed penalties into account)
5812        - the size of the vehicle vars of "to1" and "to2" (lowest size wins)
5813        - the value: the lowest value of the indices to1 and to2 wins.
5814        See the .cc for details.
5815        The more constrained arc is typically preferable when building a
5816        first solution. This method is intended to be used as a callback for the
5817        BestValueByComparisonSelector value selector.
5818        Args:
5819          from: the variable index of the source node
5820          to1: the variable index of the first candidate destination node.
5821          to2: the variable index of the second candidate destination node.
5822        """
5823        return _pywrapcp.RoutingModel_ArcIsMoreConstrainedThanArc(self, _from, to1, to2)

Returns whether the arc from->to1 is more constrained than from->to2, taking into account, in order:

  • whether the destination node isn't an end node
  • whether the destination node is mandatory
  • whether the destination node is bound to the same vehicle as the source
  • the "primary constrained" dimension (see SetPrimaryConstrainedDimension) It then breaks ties using, in order:
  • the arc cost (taking unperformed penalties into account)
  • the size of the vehicle vars of "to1" and "to2" (lowest size wins)
  • the value: the lowest value of the indices to1 and to2 wins. See the .cc for details. The more constrained arc is typically preferable when building a first solution. This method is intended to be used as a callback for the BestValueByComparisonSelector value selector.
Arguments:
  • from: the variable index of the source node
  • to1: the variable index of the first candidate destination node.
  • to2: the variable index of the second candidate destination node.
def DebugOutputAssignment(self, solution_assignment, dimension_to_print):
5825    def DebugOutputAssignment(self, solution_assignment, dimension_to_print):
5826        r"""
5827        Print some debugging information about an assignment, including the
5828        feasible intervals of the CumulVar for dimension "dimension_to_print"
5829        at each step of the routes.
5830        If "dimension_to_print" is omitted, all dimensions will be printed.
5831        """
5832        return _pywrapcp.RoutingModel_DebugOutputAssignment(self, solution_assignment, dimension_to_print)

Print some debugging information about an assignment, including the feasible intervals of the CumulVar for dimension "dimension_to_print" at each step of the routes. If "dimension_to_print" is omitted, all dimensions will be printed.

def CheckIfAssignmentIsFeasible(self, assignment, call_at_solution_monitors):
5834    def CheckIfAssignmentIsFeasible(self, assignment, call_at_solution_monitors):
5835        r"""
5836        Returns a vector cumul_bounds, for which cumul_bounds[i][j] is a pair
5837        containing the minimum and maximum of the CumulVar of the jth node on
5838        route i.
5839        - cumul_bounds[i][j].first is the minimum.
5840        - cumul_bounds[i][j].second is the maximum.
5841        Checks if an assignment is feasible.
5842        """
5843        return _pywrapcp.RoutingModel_CheckIfAssignmentIsFeasible(self, assignment, call_at_solution_monitors)

Returns a vector cumul_bounds, for which cumul_bounds[i][j] is a pair containing the minimum and maximum of the CumulVar of the jth node on route i.

  • cumul_bounds[i][j].first is the minimum.
  • cumul_bounds[i][j].second is the maximum. Checks if an assignment is feasible.
def solver(self):
5845    def solver(self):
5846        r"""
5847        Returns the underlying constraint solver. Can be used to add extra
5848        constraints and/or modify search algorithms.
5849        """
5850        return _pywrapcp.RoutingModel_solver(self)

Returns the underlying constraint solver. Can be used to add extra constraints and/or modify search algorithms.

def CheckLimit(self, *args):
5852    def CheckLimit(self, *args):
5853        r"""
5854        Returns true if the search limit has been crossed with the given time
5855        offset.
5856        """
5857        return _pywrapcp.RoutingModel_CheckLimit(self, *args)

Returns true if the search limit has been crossed with the given time offset.

def RemainingTime(self):
5859    def RemainingTime(self):
5860        r""" Returns the time left in the search limit."""
5861        return _pywrapcp.RoutingModel_RemainingTime(self)

Returns the time left in the search limit.

def UpdateTimeLimit(self, time_limit):
5863    def UpdateTimeLimit(self, time_limit):
5864        r""" Updates the time limit of the search limit."""
5865        return _pywrapcp.RoutingModel_UpdateTimeLimit(self, time_limit)

Updates the time limit of the search limit.

def TimeBuffer(self):
5867    def TimeBuffer(self):
5868        r""" Returns the time buffer to safely return a solution."""
5869        return _pywrapcp.RoutingModel_TimeBuffer(self)

Returns the time buffer to safely return a solution.

def GetMutableCPSatInterrupt(self):
5871    def GetMutableCPSatInterrupt(self):
5872        r""" Returns the atomic<bool> to stop the CP-SAT solver."""
5873        return _pywrapcp.RoutingModel_GetMutableCPSatInterrupt(self)

Returns the atomic to stop the CP-SAT solver.

def GetMutableCPInterrupt(self):
5875    def GetMutableCPInterrupt(self):
5876        r""" Returns the atomic<bool> to stop the CP solver."""
5877        return _pywrapcp.RoutingModel_GetMutableCPInterrupt(self)

Returns the atomic to stop the CP solver.

def CancelSearch(self):
5879    def CancelSearch(self):
5880        r""" Cancels the current search."""
5881        return _pywrapcp.RoutingModel_CancelSearch(self)

Cancels the current search.

def nodes(self):
5883    def nodes(self):
5884        r"""
5885        Sizes and indices
5886        Returns the number of nodes in the model.
5887        """
5888        return _pywrapcp.RoutingModel_nodes(self)

Sizes and indices Returns the number of nodes in the model.

def vehicles(self):
5890    def vehicles(self):
5891        r""" Returns the number of vehicle routes in the model."""
5892        return _pywrapcp.RoutingModel_vehicles(self)

Returns the number of vehicle routes in the model.

def Size(self):
5894    def Size(self):
5895        r""" Returns the number of next variables in the model."""
5896        return _pywrapcp.RoutingModel_Size(self)

Returns the number of next variables in the model.

def GetNumberOfDecisionsInFirstSolution(self, search_parameters):
5898    def GetNumberOfDecisionsInFirstSolution(self, search_parameters):
5899        r"""
5900        Returns statistics on first solution search, number of decisions sent to
5901        filters, number of decisions rejected by filters.
5902        """
5903        return _pywrapcp.RoutingModel_GetNumberOfDecisionsInFirstSolution(self, search_parameters)

Returns statistics on first solution search, number of decisions sent to filters, number of decisions rejected by filters.

def GetNumberOfRejectsInFirstSolution(self, search_parameters):
5905    def GetNumberOfRejectsInFirstSolution(self, search_parameters):
5906        return _pywrapcp.RoutingModel_GetNumberOfRejectsInFirstSolution(self, search_parameters)
def GetAutomaticFirstSolutionStrategy(self):
5908    def GetAutomaticFirstSolutionStrategy(self):
5909        r""" Returns the automatic first solution strategy selected."""
5910        return _pywrapcp.RoutingModel_GetAutomaticFirstSolutionStrategy(self)

Returns the automatic first solution strategy selected.

def IsMatchingModel(self):
5912    def IsMatchingModel(self):
5913        r""" Returns true if a vehicle/node matching problem is detected."""
5914        return _pywrapcp.RoutingModel_IsMatchingModel(self)

Returns true if a vehicle/node matching problem is detected.

def AreRoutesInterdependent(self, parameters):
5916    def AreRoutesInterdependent(self, parameters):
5917        r"""
5918        Returns true if routes are interdependent. This means that any
5919        modification to a route might impact another.
5920        """
5921        return _pywrapcp.RoutingModel_AreRoutesInterdependent(self, parameters)

Returns true if routes are interdependent. This means that any modification to a route might impact another.

def MakeGuidedSlackFinalizer(self, dimension, initializer):
5923    def MakeGuidedSlackFinalizer(self, dimension, initializer):
5924        r"""
5925        The next few members are in the public section only for testing purposes.
5926
5927        MakeGuidedSlackFinalizer creates a DecisionBuilder for the slacks of a
5928        dimension using a callback to choose which values to start with.
5929        The finalizer works only when all next variables in the model have
5930        been fixed. It has the following two characteristics:
5931        1. It follows the routes defined by the nexts variables when choosing a
5932           variable to make a decision on.
5933        2. When it comes to choose a value for the slack of node i, the decision
5934           builder first calls the callback with argument i, and supposingly the
5935           returned value is x it creates decisions slack[i] = x, slack[i] = x +
5936           1, slack[i] = x - 1, slack[i] = x + 2, etc.
5937        """
5938        return _pywrapcp.RoutingModel_MakeGuidedSlackFinalizer(self, dimension, initializer)

The next few members are in the public section only for testing purposes.

MakeGuidedSlackFinalizer creates a DecisionBuilder for the slacks of a dimension using a callback to choose which values to start with. The finalizer works only when all next variables in the model have been fixed. It has the following two characteristics:

  1. It follows the routes defined by the nexts variables when choosing a variable to make a decision on.
  2. When it comes to choose a value for the slack of node i, the decision builder first calls the callback with argument i, and supposingly the returned value is x it creates decisions slack[i] = x, slack[i] = x + 1, slack[i] = x - 1, slack[i] = x + 2, etc.
def MakeSelfDependentDimensionFinalizer(self, dimension):
5940    def MakeSelfDependentDimensionFinalizer(self, dimension):
5941        r"""
5942        MakeSelfDependentDimensionFinalizer is a finalizer for the slacks of a
5943        self-dependent dimension. It makes an extensive use of the caches of the
5944        state dependent transits.
5945        In detail, MakeSelfDependentDimensionFinalizer returns a composition of a
5946        local search decision builder with a greedy descent operator for the cumul
5947        of the start of each route and a guided slack finalizer. Provided there
5948        are no time windows and the maximum slacks are large enough, once the
5949        cumul of the start of route is fixed, the guided finalizer can find
5950        optimal values of the slacks for the rest of the route in time
5951        proportional to the length of the route. Therefore the composed finalizer
5952        generally works in time O(log(t)*n*m), where t is the latest possible
5953        departute time, n is the number of nodes in the network and m is the
5954        number of vehicles.
5955        """
5956        return _pywrapcp.RoutingModel_MakeSelfDependentDimensionFinalizer(self, dimension)

MakeSelfDependentDimensionFinalizer is a finalizer for the slacks of a self-dependent dimension. It makes an extensive use of the caches of the state dependent transits. In detail, MakeSelfDependentDimensionFinalizer returns a composition of a local search decision builder with a greedy descent operator for the cumul of the start of each route and a guided slack finalizer. Provided there are no time windows and the maximum slacks are large enough, once the cumul of the start of route is fixed, the guided finalizer can find optimal values of the slacks for the rest of the route in time proportional to the length of the route. Therefore the composed finalizer generally works in time O(log(t)nm), where t is the latest possible departute time, n is the number of nodes in the network and m is the number of vehicles.

def GetPathsMetadata(self):
5958    def GetPathsMetadata(self):
5959        return _pywrapcp.RoutingModel_GetPathsMetadata(self)
kNoPenalty = -1
kNoDisjunction = <Swig Object of type 'RoutingDisjunctionIndex *'>
kNoDimension = <Swig Object of type 'RoutingDimensionIndex *'>
cvar = <Swig global variables>
class RoutingModelVisitor(BaseObject):
5968class RoutingModelVisitor(BaseObject):
5969    r""" Routing model visitor."""
5970
5971    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
5972    __repr__ = _swig_repr
5973
5974    def __init__(self):
5975        _pywrapcp.RoutingModelVisitor_swiginit(self, _pywrapcp.new_RoutingModelVisitor())
5976    __swig_destroy__ = _pywrapcp.delete_RoutingModelVisitor

Routing model visitor.

thisown
5971    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

kLightElement = 'LightElement'
kLightElement2 = 'LightElement2'
kRemoveValues = 'RemoveValues'
Inherited Members
BaseObject
DebugString
class GlobalVehicleBreaksConstraint(Constraint):
5984class GlobalVehicleBreaksConstraint(Constraint):
5985    r"""
5986    GlobalVehicleBreaksConstraint ensures breaks constraints are enforced on
5987    all vehicles in the dimension passed to its constructor.
5988    It is intended to be used for dimensions representing time.
5989    A break constraint ensures break intervals fit on the route of a vehicle.
5990    For a given vehicle, it forces break intervals to be disjoint from visit
5991    intervals, where visit intervals start at CumulVar(node) and last for
5992    node_visit_transit[node]. Moreover, it ensures that there is enough time
5993    between two consecutive nodes of a route to do transit and vehicle breaks,
5994    i.e. if Next(nodeA) = nodeB, CumulVar(nodeA) = tA and CumulVar(nodeB) = tB,
5995    then SlackVar(nodeA) >= sum_{breaks [tA, tB)} duration(break).
5996    """
5997
5998    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
5999    __repr__ = _swig_repr
6000
6001    def __init__(self, dimension):
6002        _pywrapcp.GlobalVehicleBreaksConstraint_swiginit(self, _pywrapcp.new_GlobalVehicleBreaksConstraint(dimension))
6003
6004    def DebugString(self):
6005        return _pywrapcp.GlobalVehicleBreaksConstraint_DebugString(self)
6006
6007    def Post(self):
6008        return _pywrapcp.GlobalVehicleBreaksConstraint_Post(self)
6009
6010    def InitialPropagateWrapper(self):
6011        return _pywrapcp.GlobalVehicleBreaksConstraint_InitialPropagateWrapper(self)
6012    __swig_destroy__ = _pywrapcp.delete_GlobalVehicleBreaksConstraint

GlobalVehicleBreaksConstraint ensures breaks constraints are enforced on all vehicles in the dimension passed to its constructor. It is intended to be used for dimensions representing time. A break constraint ensures break intervals fit on the route of a vehicle. For a given vehicle, it forces break intervals to be disjoint from visit intervals, where visit intervals start at CumulVar(node) and last for node_visit_transit[node]. Moreover, it ensures that there is enough time between two consecutive nodes of a route to do transit and vehicle breaks, i.e. if Next(nodeA) = nodeB, CumulVar(nodeA) = tA and CumulVar(nodeB) = tB, then SlackVar(nodeA) >= sum_{breaks [tA, tB)} duration(break).

GlobalVehicleBreaksConstraint(dimension)
6001    def __init__(self, dimension):
6002        _pywrapcp.GlobalVehicleBreaksConstraint_swiginit(self, _pywrapcp.new_GlobalVehicleBreaksConstraint(dimension))
thisown
5998    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def DebugString(self):
6004    def DebugString(self):
6005        return _pywrapcp.GlobalVehicleBreaksConstraint_DebugString(self)
def Post(self):
6007    def Post(self):
6008        return _pywrapcp.GlobalVehicleBreaksConstraint_Post(self)

This method is called when the constraint is processed by the solver. Its main usage is to attach demons to variables.

def InitialPropagateWrapper(self):
6010    def InitialPropagateWrapper(self):
6011        return _pywrapcp.GlobalVehicleBreaksConstraint_InitialPropagateWrapper(self)

This method performs the initial propagation of the constraint. It is called just after the post.

class TypeRegulationsChecker:
6016class TypeRegulationsChecker(object):
6017    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6018
6019    def __init__(self, *args, **kwargs):
6020        raise AttributeError("No constructor defined - class is abstract")
6021    __repr__ = _swig_repr
6022    __swig_destroy__ = _pywrapcp.delete_TypeRegulationsChecker
6023
6024    def CheckVehicle(self, vehicle, next_accessor):
6025        return _pywrapcp.TypeRegulationsChecker_CheckVehicle(self, vehicle, next_accessor)
TypeRegulationsChecker(*args, **kwargs)
6019    def __init__(self, *args, **kwargs):
6020        raise AttributeError("No constructor defined - class is abstract")
thisown
6017    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def CheckVehicle(self, vehicle, next_accessor):
6024    def CheckVehicle(self, vehicle, next_accessor):
6025        return _pywrapcp.TypeRegulationsChecker_CheckVehicle(self, vehicle, next_accessor)
class TypeIncompatibilityChecker(TypeRegulationsChecker):
6029class TypeIncompatibilityChecker(TypeRegulationsChecker):
6030    r""" Checker for type incompatibilities."""
6031
6032    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6033    __repr__ = _swig_repr
6034
6035    def __init__(self, model, check_hard_incompatibilities):
6036        _pywrapcp.TypeIncompatibilityChecker_swiginit(self, _pywrapcp.new_TypeIncompatibilityChecker(model, check_hard_incompatibilities))
6037    __swig_destroy__ = _pywrapcp.delete_TypeIncompatibilityChecker

Checker for type incompatibilities.

TypeIncompatibilityChecker(model, check_hard_incompatibilities)
6035    def __init__(self, model, check_hard_incompatibilities):
6036        _pywrapcp.TypeIncompatibilityChecker_swiginit(self, _pywrapcp.new_TypeIncompatibilityChecker(model, check_hard_incompatibilities))
thisown
6032    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

class TypeRequirementChecker(TypeRegulationsChecker):
6041class TypeRequirementChecker(TypeRegulationsChecker):
6042    r""" Checker for type requirements."""
6043
6044    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6045    __repr__ = _swig_repr
6046
6047    def __init__(self, model):
6048        _pywrapcp.TypeRequirementChecker_swiginit(self, _pywrapcp.new_TypeRequirementChecker(model))
6049    __swig_destroy__ = _pywrapcp.delete_TypeRequirementChecker

Checker for type requirements.

TypeRequirementChecker(model)
6047    def __init__(self, model):
6048        _pywrapcp.TypeRequirementChecker_swiginit(self, _pywrapcp.new_TypeRequirementChecker(model))
thisown
6044    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

class TypeRegulationsConstraint(Constraint):
6053class TypeRegulationsConstraint(Constraint):
6054    r"""
6055    The following constraint ensures that incompatibilities and requirements
6056    between types are respected.
6057
6058    It verifies both "hard" and "temporal" incompatibilities.
6059    Two nodes with hard incompatible types cannot be served by the same vehicle
6060    at all, while with a temporal incompatibility they can't be on the same
6061    route at the same time.
6062    The VisitTypePolicy of a node determines how visiting it impacts the type
6063    count on the route.
6064
6065    For example, for
6066    - three temporally incompatible types T1 T2 and T3
6067    - 2 pairs of nodes a1/r1 and a2/r2 of type T1 and T2 respectively, with
6068        - a1 and a2 of VisitTypePolicy TYPE_ADDED_TO_VEHICLE
6069        - r1 and r2 of policy ADDED_TYPE_REMOVED_FROM_VEHICLE
6070    - 3 nodes A, UV and AR of type T3, respectively with type policies
6071      TYPE_ADDED_TO_VEHICLE, TYPE_ON_VEHICLE_UP_TO_VISIT and
6072      TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED
6073    the configurations
6074    UV --> a1 --> r1 --> a2 --> r2,   a1 --> r1 --> a2 --> r2 --> A and
6075    a1 --> r1 --> AR --> a2 --> r2 are acceptable, whereas the configurations
6076    a1 --> a2 --> r1 --> ..., or A --> a1 --> r1 --> ..., or
6077    a1 --> r1 --> UV --> ... are not feasible.
6078
6079    It also verifies same-vehicle and temporal type requirements.
6080    A node of type T_d with a same-vehicle requirement for type T_r needs to be
6081    served by the same vehicle as a node of type T_r.
6082    Temporal requirements, on the other hand, can take effect either when the
6083    dependent type is being added to the route or when it's removed from it,
6084    which is determined by the dependent node's VisitTypePolicy.
6085    In the above example:
6086    - If T3 is required on the same vehicle as T1, A, AR or UV must be on the
6087      same vehicle as a1.
6088    - If T2 is required when adding T1, a2 must be visited *before* a1, and if
6089      r2 is also visited on the route, it must be *after* a1, i.e. T2 must be on
6090      the vehicle when a1 is visited:
6091      ... --> a2 --> ... --> a1 --> ... --> r2 --> ...
6092    - If T3 is required when removing T1, T3 needs to be on the vehicle when
6093      r1 is visited:
6094      ... --> A --> ... --> r1 --> ...   OR   ... --> r1 --> ... --> UV --> ...
6095    """
6096
6097    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6098    __repr__ = _swig_repr
6099
6100    def __init__(self, model):
6101        _pywrapcp.TypeRegulationsConstraint_swiginit(self, _pywrapcp.new_TypeRegulationsConstraint(model))
6102
6103    def Post(self):
6104        return _pywrapcp.TypeRegulationsConstraint_Post(self)
6105
6106    def InitialPropagateWrapper(self):
6107        return _pywrapcp.TypeRegulationsConstraint_InitialPropagateWrapper(self)
6108    __swig_destroy__ = _pywrapcp.delete_TypeRegulationsConstraint

The following constraint ensures that incompatibilities and requirements between types are respected.

It verifies both "hard" and "temporal" incompatibilities. Two nodes with hard incompatible types cannot be served by the same vehicle at all, while with a temporal incompatibility they can't be on the same route at the same time. The VisitTypePolicy of a node determines how visiting it impacts the type count on the route.

For example, for

  • three temporally incompatible types T1 T2 and T3
  • 2 pairs of nodes a1/r1 and a2/r2 of type T1 and T2 respectively, with
    • a1 and a2 of VisitTypePolicy TYPE_ADDED_TO_VEHICLE
    • r1 and r2 of policy ADDED_TYPE_REMOVED_FROM_VEHICLE
  • 3 nodes A, UV and AR of type T3, respectively with type policies TYPE_ADDED_TO_VEHICLE, TYPE_ON_VEHICLE_UP_TO_VISIT and TYPE_SIMULTANEOUSLY_ADDED_AND_REMOVED the configurations UV --> a1 --> r1 --> a2 --> r2, a1 --> r1 --> a2 --> r2 --> A and a1 --> r1 --> AR --> a2 --> r2 are acceptable, whereas the configurations a1 --> a2 --> r1 --> ..., or A --> a1 --> r1 --> ..., or a1 --> r1 --> UV --> ... are not feasible.

It also verifies same-vehicle and temporal type requirements. A node of type T_d with a same-vehicle requirement for type T_r needs to be served by the same vehicle as a node of type T_r. Temporal requirements, on the other hand, can take effect either when the dependent type is being added to the route or when it's removed from it, which is determined by the dependent node's VisitTypePolicy. In the above example:

  • If T3 is required on the same vehicle as T1, A, AR or UV must be on the same vehicle as a1.
  • If T2 is required when adding T1, a2 must be visited before a1, and if r2 is also visited on the route, it must be after a1, i.e. T2 must be on the vehicle when a1 is visited: ... --> a2 --> ... --> a1 --> ... --> r2 --> ...
  • If T3 is required when removing T1, T3 needs to be on the vehicle when r1 is visited: ... --> A --> ... --> r1 --> ... OR ... --> r1 --> ... --> UV --> ...
TypeRegulationsConstraint(model)
6100    def __init__(self, model):
6101        _pywrapcp.TypeRegulationsConstraint_swiginit(self, _pywrapcp.new_TypeRegulationsConstraint(model))
thisown
6097    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def Post(self):
6103    def Post(self):
6104        return _pywrapcp.TypeRegulationsConstraint_Post(self)

This method is called when the constraint is processed by the solver. Its main usage is to attach demons to variables.

def InitialPropagateWrapper(self):
6106    def InitialPropagateWrapper(self):
6107        return _pywrapcp.TypeRegulationsConstraint_InitialPropagateWrapper(self)

This method performs the initial propagation of the constraint. It is called just after the post.

class BoundCost:
6112class BoundCost(object):
6113    r"""
6114    A structure meant to store soft bounds and associated violation constants.
6115    It is 'Simple' because it has one BoundCost per element,
6116    in contrast to 'Multiple'. Design notes:
6117    - it is meant to store model information to be shared through pointers,
6118      so it disallows copy and assign to avoid accidental duplication.
6119    - it keeps soft bounds as an array of structs to help cache,
6120      because code that uses such bounds typically use both bound and cost.
6121    - soft bounds are named pairs, prevents some mistakes.
6122    - using operator[] to access elements is not interesting,
6123      because the structure will be accessed through pointers, moreover having
6124      to type bound_cost reminds the user of the order if they do a copy
6125      assignment of the element.
6126    """
6127
6128    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6129    __repr__ = _swig_repr
6130    bound = property(_pywrapcp.BoundCost_bound_get, _pywrapcp.BoundCost_bound_set)
6131    cost = property(_pywrapcp.BoundCost_cost_get, _pywrapcp.BoundCost_cost_set)
6132
6133    def __init__(self, *args):
6134        _pywrapcp.BoundCost_swiginit(self, _pywrapcp.new_BoundCost(*args))
6135    __swig_destroy__ = _pywrapcp.delete_BoundCost

A structure meant to store soft bounds and associated violation constants. It is 'Simple' because it has one BoundCost per element, in contrast to 'Multiple'. Design notes:

  • it is meant to store model information to be shared through pointers, so it disallows copy and assign to avoid accidental duplication.
  • it keeps soft bounds as an array of structs to help cache, because code that uses such bounds typically use both bound and cost.
  • soft bounds are named pairs, prevents some mistakes.
  • using operator[] to access elements is not interesting, because the structure will be accessed through pointers, moreover having to type bound_cost reminds the user of the order if they do a copy assignment of the element.
BoundCost(*args)
6133    def __init__(self, *args):
6134        _pywrapcp.BoundCost_swiginit(self, _pywrapcp.new_BoundCost(*args))
thisown
6128    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

bound
cost
class SimpleBoundCosts:
6139class SimpleBoundCosts(object):
6140    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6141    __repr__ = _swig_repr
6142
6143    def __init__(self, num_bounds, default_bound_cost):
6144        _pywrapcp.SimpleBoundCosts_swiginit(self, _pywrapcp.new_SimpleBoundCosts(num_bounds, default_bound_cost))
6145
6146    def bound_cost(self, element):
6147        return _pywrapcp.SimpleBoundCosts_bound_cost(self, element)
6148
6149    def size(self):
6150        return _pywrapcp.SimpleBoundCosts_size(self)
6151    __swig_destroy__ = _pywrapcp.delete_SimpleBoundCosts
SimpleBoundCosts(num_bounds, default_bound_cost)
6143    def __init__(self, num_bounds, default_bound_cost):
6144        _pywrapcp.SimpleBoundCosts_swiginit(self, _pywrapcp.new_SimpleBoundCosts(num_bounds, default_bound_cost))
thisown
6140    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def bound_cost(self, element):
6146    def bound_cost(self, element):
6147        return _pywrapcp.SimpleBoundCosts_bound_cost(self, element)
def size(self):
6149    def size(self):
6150        return _pywrapcp.SimpleBoundCosts_size(self)
class RoutingDimension:
6155class RoutingDimension(object):
6156    r"""
6157    Dimensions represent quantities accumulated at nodes along the routes. They
6158    represent quantities such as weights or volumes carried along the route, or
6159    distance or times.
6160
6161    Quantities at a node are represented by "cumul" variables and the increase
6162    or decrease of quantities between nodes are represented by "transit"
6163    variables. These variables are linked as follows:
6164
6165    if j == next(i),
6166    cumuls(j) = cumuls(i) + transits(i) + slacks(i) +
6167                state_dependent_transits(i)
6168
6169    where slack is a positive slack variable (can represent waiting times for
6170    a time dimension), and state_dependent_transits is a non-purely functional
6171    version of transits_. Favour transits over state_dependent_transits when
6172    possible, because purely functional callbacks allow more optimisations and
6173    make the model faster and easier to solve.
6174    for a given vehicle, it is passed as an external vector, it would be better
6175    to have this information here.
6176    """
6177
6178    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")
6179
6180    def __init__(self, *args, **kwargs):
6181        raise AttributeError("No constructor defined")
6182    __repr__ = _swig_repr
6183    __swig_destroy__ = _pywrapcp.delete_RoutingDimension
6184
6185    def model(self):
6186        r""" Returns the model on which the dimension was created."""
6187        return _pywrapcp.RoutingDimension_model(self)
6188
6189    def GetTransitValue(self, from_index, to_index, vehicle):
6190        r"""
6191        Returns the transition value for a given pair of nodes (as var index);
6192        this value is the one taken by the corresponding transit variable when
6193        the 'next' variable for 'from_index' is bound to 'to_index'.
6194        """
6195        return _pywrapcp.RoutingDimension_GetTransitValue(self, from_index, to_index, vehicle)
6196
6197    def GetTransitValueFromClass(self, from_index, to_index, vehicle_class):
6198        r"""
6199        Same as above but taking a vehicle class of the dimension instead of a
6200        vehicle (the class of a vehicle can be obtained with vehicle_to_class()).
6201        """
6202        return _pywrapcp.RoutingDimension_GetTransitValueFromClass(self, from_index, to_index, vehicle_class)
6203
6204    def CumulVar(self, index):
6205        r"""
6206        Get the cumul, transit and slack variables for the given node (given as
6207        int64_t var index).
6208        """
6209        return _pywrapcp.RoutingDimension_CumulVar(self, index)
6210
6211    def TransitVar(self, index):
6212        return _pywrapcp.RoutingDimension_TransitVar(self, index)
6213
6214    def FixedTransitVar(self, index):
6215        return _pywrapcp.RoutingDimension_FixedTransitVar(self, index)
6216
6217    def SlackVar(self, index):
6218        return _pywrapcp.RoutingDimension_SlackVar(self, index)
6219
6220    def SetSpanUpperBoundForVehicle(self, upper_bound, vehicle):
6221        r"""
6222        Sets an upper bound on the dimension span on a given vehicle. This is the
6223        preferred way to limit the "length" of the route of a vehicle according to
6224        a dimension.
6225        """
6226        return _pywrapcp.RoutingDimension_SetSpanUpperBoundForVehicle(self, upper_bound, vehicle)
6227
6228    def SetSpanCostCoefficientForVehicle(self, coefficient, vehicle):
6229        r"""
6230        Sets a cost proportional to the dimension span on a given vehicle,
6231        or on all vehicles at once. "coefficient" must be nonnegative.
6232        This is handy to model costs proportional to idle time when the dimension
6233        represents time.
6234        The cost for a vehicle is
6235          span_cost = coefficient * (dimension end value - dimension start value).
6236        """
6237        return _pywrapcp.RoutingDimension_SetSpanCostCoefficientForVehicle(self, coefficient, vehicle)
6238
6239    def SetSpanCostCoefficientForAllVehicles(self, coefficient):
6240        return _pywrapcp.RoutingDimension_SetSpanCostCoefficientForAllVehicles(self, coefficient)
6241
6242    def SetSlackCostCoefficientForVehicle(self, coefficient, vehicle):
6243        r"""
6244        Sets a cost proportional to the dimension total slack on a given vehicle,
6245        or on all vehicles at once. "coefficient" must be nonnegative.
6246        This is handy to model costs only proportional to idle time when the
6247        dimension represents time.
6248        The cost for a vehicle is
6249          slack_cost = coefficient *
6250                (dimension end value - dimension start value - total_transit).
6251        """
6252        return _pywrapcp.RoutingDimension_SetSlackCostCoefficientForVehicle(self, coefficient, vehicle)
6253
6254    def SetSlackCostCoefficientForAllVehicles(self, coefficient):
6255        return _pywrapcp.RoutingDimension_SetSlackCostCoefficientForAllVehicles(self, coefficient)
6256
6257    def SetGlobalSpanCostCoefficient(self, coefficient):
6258        r"""
6259        Sets a cost proportional to the *global* dimension span, that is the
6260        difference between the largest value of route end cumul variables and
6261        the smallest value of route start cumul variables.
6262        In other words:
6263        global_span_cost =
6264          coefficient * (Max(dimension end value) - Min(dimension start value)).
6265        """
6266        return _pywrapcp.RoutingDimension_SetGlobalSpanCostCoefficient(self, coefficient)
6267
6268    def SetCumulVarSoftUpperBound(self, index, upper_bound, coefficient):
6269        r"""
6270        Sets a soft upper bound to the cumul variable of a given variable index.
6271        If the value of the cumul variable is greater than the bound, a cost
6272        proportional to the difference between this value and the bound is added
6273        to the cost function of the model:
6274          cumulVar <= upper_bound -> cost = 0
6275           cumulVar > upper_bound -> cost = coefficient * (cumulVar - upper_bound)
6276        This is also handy to model tardiness costs when the dimension represents
6277        time.
6278        """
6279        return _pywrapcp.RoutingDimension_SetCumulVarSoftUpperBound(self, index, upper_bound, coefficient)
6280
6281    def HasCumulVarSoftUpperBound(self, index):
6282        r"""
6283        Returns true if a soft upper bound has been set for a given variable
6284        index.
6285        """
6286        return _pywrapcp.RoutingDimension_HasCumulVarSoftUpperBound(self, index)
6287
6288    def GetCumulVarSoftUpperBound(self, index):
6289        r"""
6290        Returns the soft upper bound of a cumul variable for a given variable
6291        index. The "hard" upper bound of the variable is returned if no soft upper
6292        bound has been set.
6293        """
6294        return _pywrapcp.RoutingDimension_GetCumulVarSoftUpperBound(self, index)
6295
6296    def GetCumulVarSoftUpperBoundCoefficient(self, index):
6297        r"""
6298        Returns the cost coefficient of the soft upper bound of a cumul variable
6299        for a given variable index. If no soft upper bound has been set, 0 is
6300        returned.
6301        """
6302        return _pywrapcp.RoutingDimension_GetCumulVarSoftUpperBoundCoefficient(self, index)
6303
6304    def SetCumulVarSoftLowerBound(self, index, lower_bound, coefficient):
6305        r"""
6306        Sets a soft lower bound to the cumul variable of a given variable index.
6307        If the value of the cumul variable is less than the bound, a cost
6308        proportional to the difference between this value and the bound is added
6309        to the cost function of the model:
6310          cumulVar > lower_bound -> cost = 0
6311          cumulVar <= lower_bound -> cost = coefficient * (lower_bound -
6312                      cumulVar).
6313        This is also handy to model earliness costs when the dimension represents
6314        time.
6315        """
6316        return _pywrapcp.RoutingDimension_SetCumulVarSoftLowerBound(self, index, lower_bound, coefficient)
6317
6318    def HasCumulVarSoftLowerBound(self, index):
6319        r"""
6320        Returns true if a soft lower bound has been set for a given variable
6321        index.
6322        """
6323        return _pywrapcp.RoutingDimension_HasCumulVarSoftLowerBound(self, index)
6324
6325    def GetCumulVarSoftLowerBound(self, index):
6326        r"""
6327        Returns the soft lower bound of a cumul variable for a given variable
6328        index. The "hard" lower bound of the variable is returned if no soft lower
6329        bound has been set.
6330        """
6331        return _pywrapcp.RoutingDimension_GetCumulVarSoftLowerBound(self, index)
6332
6333    def GetCumulVarSoftLowerBoundCoefficient(self, index):
6334        r"""
6335        Returns the cost coefficient of the soft lower bound of a cumul variable
6336        for a given variable index. If no soft lower bound has been set, 0 is
6337        returned.
6338        """
6339        return _pywrapcp.RoutingDimension_GetCumulVarSoftLowerBoundCoefficient(self, index)
6340
6341    def SetBreakIntervalsOfVehicle(self, breaks, vehicle, node_visit_transits):
6342        r"""
6343        Sets the breaks for a given vehicle. Breaks are represented by
6344        IntervalVars. They may interrupt transits between nodes and increase
6345        the value of corresponding slack variables.
6346        A break may take place before the start of a vehicle, after the end of
6347        a vehicle, or during a travel i -> j.
6348
6349        In that case, the interval [break.Start(), break.End()) must be a subset
6350        of [CumulVar(i) + pre_travel(i, j), CumulVar(j) - post_travel(i, j)). In
6351        other words, a break may not overlap any node n's visit, given by
6352        [CumulVar(n) - post_travel(_, n), CumulVar(n) + pre_travel(n, _)).
6353        This formula considers post_travel(_, start) and pre_travel(end, _) to be
6354        0; pre_travel will never be called on any (_, start) and post_travel will
6355        never we called on any (end, _). If pre_travel_evaluator or
6356        post_travel_evaluator is -1, it will be taken as a function that always
6357        returns 0.
6358        Deprecated, sets pre_travel(i, j) = node_visit_transit[i].
6359        """
6360        return _pywrapcp.RoutingDimension_SetBreakIntervalsOfVehicle(self, breaks, vehicle, node_visit_transits)
6361
6362    def SetBreakDistanceDurationOfVehicle(self, distance, duration, vehicle):
6363        r"""
6364        With breaks supposed to be consecutive, this forces the distance between
6365        breaks of size at least minimum_break_duration to be at most distance.
6366        This supposes that the time until route start and after route end are
6367        infinite breaks.
6368        """
6369        return _pywrapcp.RoutingDimension_SetBreakDistanceDurationOfVehicle(self, distance, duration, vehicle)
6370
6371    def InitializeBreaks(self):
6372        r"""
6373        Sets up vehicle_break_intervals_, vehicle_break_distance_duration_,
6374        pre_travel_evaluators and post_travel_evaluators.
6375        """
6376        return _pywrapcp.RoutingDimension_InitializeBreaks(self)
6377
6378    def HasBreakConstraints(self):
6379        r""" Returns true if any break interval or break distance was defined."""
6380        return _pywrapcp.RoutingDimension_HasBreakConstraints(self)
6381
6382    def GetPreTravelEvaluatorOfVehicle(self, vehicle):
6383        return _pywrapcp.RoutingDimension_GetPreTravelEvaluatorOfVehicle(self, vehicle)
6384
6385    def GetPostTravelEvaluatorOfVehicle(self, vehicle):
6386        return _pywrapcp.RoutingDimension_GetPostTravelEvaluatorOfVehicle(self, vehicle)
6387
6388    def base_dimension(self):
6389        r""" Returns the parent in the dependency tree if any or nullptr otherwise."""
6390        return _pywrapcp.RoutingDimension_base_dimension(self)
6391
6392    def ShortestTransitionSlack(self, node):
6393        r"""
6394        It makes sense to use the function only for self-dependent dimension.
6395        For such dimensions the value of the slack of a node determines the
6396        transition cost of the next transit. Provided that
6397          1. cumul[node] is fixed,
6398          2. next[node] and next[next[node]] (if exists) are fixed,
6399        the value of slack[node] for which cumul[next[node]] + transit[next[node]]
6400        is minimized can be found in O(1) using this function.
6401        """
6402        return _pywrapcp.RoutingDimension_ShortestTransitionSlack(self, node)
6403
6404    def name(self):
6405        r""" Returns the name of the dimension."""
6406        return _pywrapcp.RoutingDimension_name(self)
6407
6408    def SetPickupToDeliveryLimitFunctionForPair(self, limit_function, pair_index):
6409        return _pywrapcp.RoutingDimension_SetPickupToDeliveryLimitFunctionForPair(self, limit_function, pair_index)
6410
6411    def HasPickupToDeliveryLimits(self):
6412        return _pywrapcp.RoutingDimension_HasPickupToDeliveryLimits(self)
6413
6414    def AddNodePrecedence(self, first_node, second_node, offset):
6415        return _pywrapcp.RoutingDimension_AddNodePrecedence(self, first_node, second_node, offset)
6416
6417    def GetSpanUpperBoundForVehicle(self, vehicle):
6418        return _pywrapcp.RoutingDimension_GetSpanUpperBoundForVehicle(self, vehicle)
6419
6420    def GetSpanCostCoefficientForVehicle(self, vehicle):
6421        return _pywrapcp.RoutingDimension_GetSpanCostCoefficientForVehicle(self, vehicle)
6422
6423    def GetSlackCostCoefficientForVehicle(self, vehicle):
6424        return _pywrapcp.RoutingDimension_GetSlackCostCoefficientForVehicle(self, vehicle)
6425
6426    def global_span_cost_coefficient(self):
6427        return _pywrapcp.RoutingDimension_global_span_cost_coefficient(self)
6428
6429    def GetGlobalOptimizerOffset(self):
6430        return _pywrapcp.RoutingDimension_GetGlobalOptimizerOffset(self)
6431
6432    def GetLocalOptimizerOffsetForVehicle(self, vehicle):
6433        return _pywrapcp.RoutingDimension_GetLocalOptimizerOffsetForVehicle(self, vehicle)
6434
6435    def SetSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6436        r"""
6437        If the span of vehicle on this dimension is larger than bound,
6438        the cost will be increased by cost * (span - bound).
6439        """
6440        return _pywrapcp.RoutingDimension_SetSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle)
6441
6442    def HasSoftSpanUpperBounds(self):
6443        return _pywrapcp.RoutingDimension_HasSoftSpanUpperBounds(self)
6444
6445    def GetSoftSpanUpperBoundForVehicle(self, vehicle):
6446        return _pywrapcp.RoutingDimension_GetSoftSpanUpperBoundForVehicle(self, vehicle)
6447
6448    def SetQuadraticCostSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6449        r"""
6450        If the span of vehicle on this dimension is larger than bound,
6451        the cost will be increased by cost * (span - bound)^2.
6452        """
6453        return _pywrapcp.RoutingDimension_SetQuadraticCostSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle)
6454
6455    def HasQuadraticCostSoftSpanUpperBounds(self):
6456        return _pywrapcp.RoutingDimension_HasQuadraticCostSoftSpanUpperBounds(self)
6457
6458    def GetQuadraticCostSoftSpanUpperBoundForVehicle(self, vehicle):
6459        return _pywrapcp.RoutingDimension_GetQuadraticCostSoftSpanUpperBoundForVehicle(self, vehicle)

Dimensions represent quantities accumulated at nodes along the routes. They represent quantities such as weights or volumes carried along the route, or distance or times.

Quantities at a node are represented by "cumul" variables and the increase or decrease of quantities between nodes are represented by "transit" variables. These variables are linked as follows:

if j == next(i), cumuls(j) = cumuls(i) + transits(i) + slacks(i) + state_dependent_transits(i)

where slack is a positive slack variable (can represent waiting times for a time dimension), and state_dependent_transits is a non-purely functional version of transits_. Favour transits over state_dependent_transits when possible, because purely functional callbacks allow more optimisations and make the model faster and easier to solve. for a given vehicle, it is passed as an external vector, it would be better to have this information here.

RoutingDimension(*args, **kwargs)
6180    def __init__(self, *args, **kwargs):
6181        raise AttributeError("No constructor defined")
thisown
6178    thisown = property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc="The membership flag")

The membership flag

def model(self):
6185    def model(self):
6186        r""" Returns the model on which the dimension was created."""
6187        return _pywrapcp.RoutingDimension_model(self)

Returns the model on which the dimension was created.

def GetTransitValue(self, from_index, to_index, vehicle):
6189    def GetTransitValue(self, from_index, to_index, vehicle):
6190        r"""
6191        Returns the transition value for a given pair of nodes (as var index);
6192        this value is the one taken by the corresponding transit variable when
6193        the 'next' variable for 'from_index' is bound to 'to_index'.
6194        """
6195        return _pywrapcp.RoutingDimension_GetTransitValue(self, from_index, to_index, vehicle)

Returns the transition value for a given pair of nodes (as var index); this value is the one taken by the corresponding transit variable when the 'next' variable for 'from_index' is bound to 'to_index'.

def GetTransitValueFromClass(self, from_index, to_index, vehicle_class):
6197    def GetTransitValueFromClass(self, from_index, to_index, vehicle_class):
6198        r"""
6199        Same as above but taking a vehicle class of the dimension instead of a
6200        vehicle (the class of a vehicle can be obtained with vehicle_to_class()).
6201        """
6202        return _pywrapcp.RoutingDimension_GetTransitValueFromClass(self, from_index, to_index, vehicle_class)

Same as above but taking a vehicle class of the dimension instead of a vehicle (the class of a vehicle can be obtained with vehicle_to_class()).

def CumulVar(self, index):
6204    def CumulVar(self, index):
6205        r"""
6206        Get the cumul, transit and slack variables for the given node (given as
6207        int64_t var index).
6208        """
6209        return _pywrapcp.RoutingDimension_CumulVar(self, index)

Get the cumul, transit and slack variables for the given node (given as int64_t var index).

def TransitVar(self, index):
6211    def TransitVar(self, index):
6212        return _pywrapcp.RoutingDimension_TransitVar(self, index)
def FixedTransitVar(self, index):
6214    def FixedTransitVar(self, index):
6215        return _pywrapcp.RoutingDimension_FixedTransitVar(self, index)
def SlackVar(self, index):
6217    def SlackVar(self, index):
6218        return _pywrapcp.RoutingDimension_SlackVar(self, index)
def SetSpanUpperBoundForVehicle(self, upper_bound, vehicle):
6220    def SetSpanUpperBoundForVehicle(self, upper_bound, vehicle):
6221        r"""
6222        Sets an upper bound on the dimension span on a given vehicle. This is the
6223        preferred way to limit the "length" of the route of a vehicle according to
6224        a dimension.
6225        """
6226        return _pywrapcp.RoutingDimension_SetSpanUpperBoundForVehicle(self, upper_bound, vehicle)

Sets an upper bound on the dimension span on a given vehicle. This is the preferred way to limit the "length" of the route of a vehicle according to a dimension.

def SetSpanCostCoefficientForVehicle(self, coefficient, vehicle):
6228    def SetSpanCostCoefficientForVehicle(self, coefficient, vehicle):
6229        r"""
6230        Sets a cost proportional to the dimension span on a given vehicle,
6231        or on all vehicles at once. "coefficient" must be nonnegative.
6232        This is handy to model costs proportional to idle time when the dimension
6233        represents time.
6234        The cost for a vehicle is
6235          span_cost = coefficient * (dimension end value - dimension start value).
6236        """
6237        return _pywrapcp.RoutingDimension_SetSpanCostCoefficientForVehicle(self, coefficient, vehicle)

Sets a cost proportional to the dimension span on a given vehicle, or on all vehicles at once. "coefficient" must be nonnegative. This is handy to model costs proportional to idle time when the dimension represents time. The cost for a vehicle is span_cost = coefficient * (dimension end value - dimension start value).

def SetSpanCostCoefficientForAllVehicles(self, coefficient):
6239    def SetSpanCostCoefficientForAllVehicles(self, coefficient):
6240        return _pywrapcp.RoutingDimension_SetSpanCostCoefficientForAllVehicles(self, coefficient)
def SetSlackCostCoefficientForVehicle(self, coefficient, vehicle):
6242    def SetSlackCostCoefficientForVehicle(self, coefficient, vehicle):
6243        r"""
6244        Sets a cost proportional to the dimension total slack on a given vehicle,
6245        or on all vehicles at once. "coefficient" must be nonnegative.
6246        This is handy to model costs only proportional to idle time when the
6247        dimension represents time.
6248        The cost for a vehicle is
6249          slack_cost = coefficient *
6250                (dimension end value - dimension start value - total_transit).
6251        """
6252        return _pywrapcp.RoutingDimension_SetSlackCostCoefficientForVehicle(self, coefficient, vehicle)

Sets a cost proportional to the dimension total slack on a given vehicle, or on all vehicles at once. "coefficient" must be nonnegative. This is handy to model costs only proportional to idle time when the dimension represents time. The cost for a vehicle is slack_cost = coefficient * (dimension end value - dimension start value - total_transit).

def SetSlackCostCoefficientForAllVehicles(self, coefficient):
6254    def SetSlackCostCoefficientForAllVehicles(self, coefficient):
6255        return _pywrapcp.RoutingDimension_SetSlackCostCoefficientForAllVehicles(self, coefficient)
def SetGlobalSpanCostCoefficient(self, coefficient):
6257    def SetGlobalSpanCostCoefficient(self, coefficient):
6258        r"""
6259        Sets a cost proportional to the *global* dimension span, that is the
6260        difference between the largest value of route end cumul variables and
6261        the smallest value of route start cumul variables.
6262        In other words:
6263        global_span_cost =
6264          coefficient * (Max(dimension end value) - Min(dimension start value)).
6265        """
6266        return _pywrapcp.RoutingDimension_SetGlobalSpanCostCoefficient(self, coefficient)

Sets a cost proportional to the global dimension span, that is the difference between the largest value of route end cumul variables and the smallest value of route start cumul variables. In other words: global_span_cost = coefficient * (Max(dimension end value) - Min(dimension start value)).

def SetCumulVarSoftUpperBound(self, index, upper_bound, coefficient):
6268    def SetCumulVarSoftUpperBound(self, index, upper_bound, coefficient):
6269        r"""
6270        Sets a soft upper bound to the cumul variable of a given variable index.
6271        If the value of the cumul variable is greater than the bound, a cost
6272        proportional to the difference between this value and the bound is added
6273        to the cost function of the model:
6274          cumulVar <= upper_bound -> cost = 0
6275           cumulVar > upper_bound -> cost = coefficient * (cumulVar - upper_bound)
6276        This is also handy to model tardiness costs when the dimension represents
6277        time.
6278        """
6279        return _pywrapcp.RoutingDimension_SetCumulVarSoftUpperBound(self, index, upper_bound, coefficient)

Sets a soft upper bound to the cumul variable of a given variable index. If the value of the cumul variable is greater than the bound, a cost proportional to the difference between this value and the bound is added to the cost function of the model: cumulVar <= upper_bound -> cost = 0 cumulVar > upper_bound -> cost = coefficient * (cumulVar - upper_bound) This is also handy to model tardiness costs when the dimension represents time.

def HasCumulVarSoftUpperBound(self, index):
6281    def HasCumulVarSoftUpperBound(self, index):
6282        r"""
6283        Returns true if a soft upper bound has been set for a given variable
6284        index.
6285        """
6286        return _pywrapcp.RoutingDimension_HasCumulVarSoftUpperBound(self, index)

Returns true if a soft upper bound has been set for a given variable index.

def GetCumulVarSoftUpperBound(self, index):
6288    def GetCumulVarSoftUpperBound(self, index):
6289        r"""
6290        Returns the soft upper bound of a cumul variable for a given variable
6291        index. The "hard" upper bound of the variable is returned if no soft upper
6292        bound has been set.
6293        """
6294        return _pywrapcp.RoutingDimension_GetCumulVarSoftUpperBound(self, index)

Returns the soft upper bound of a cumul variable for a given variable index. The "hard" upper bound of the variable is returned if no soft upper bound has been set.

def GetCumulVarSoftUpperBoundCoefficient(self, index):
6296    def GetCumulVarSoftUpperBoundCoefficient(self, index):
6297        r"""
6298        Returns the cost coefficient of the soft upper bound of a cumul variable
6299        for a given variable index. If no soft upper bound has been set, 0 is
6300        returned.
6301        """
6302        return _pywrapcp.RoutingDimension_GetCumulVarSoftUpperBoundCoefficient(self, index)

Returns the cost coefficient of the soft upper bound of a cumul variable for a given variable index. If no soft upper bound has been set, 0 is returned.

def SetCumulVarSoftLowerBound(self, index, lower_bound, coefficient):
6304    def SetCumulVarSoftLowerBound(self, index, lower_bound, coefficient):
6305        r"""
6306        Sets a soft lower bound to the cumul variable of a given variable index.
6307        If the value of the cumul variable is less than the bound, a cost
6308        proportional to the difference between this value and the bound is added
6309        to the cost function of the model:
6310          cumulVar > lower_bound -> cost = 0
6311          cumulVar <= lower_bound -> cost = coefficient * (lower_bound -
6312                      cumulVar).
6313        This is also handy to model earliness costs when the dimension represents
6314        time.
6315        """
6316        return _pywrapcp.RoutingDimension_SetCumulVarSoftLowerBound(self, index, lower_bound, coefficient)

Sets a soft lower bound to the cumul variable of a given variable index. If the value of the cumul variable is less than the bound, a cost proportional to the difference between this value and the bound is added to the cost function of the model: cumulVar > lower_bound -> cost = 0 cumulVar <= lower_bound -> cost = coefficient * (lower_bound - cumulVar). This is also handy to model earliness costs when the dimension represents time.

def HasCumulVarSoftLowerBound(self, index):
6318    def HasCumulVarSoftLowerBound(self, index):
6319        r"""
6320        Returns true if a soft lower bound has been set for a given variable
6321        index.
6322        """
6323        return _pywrapcp.RoutingDimension_HasCumulVarSoftLowerBound(self, index)

Returns true if a soft lower bound has been set for a given variable index.

def GetCumulVarSoftLowerBound(self, index):
6325    def GetCumulVarSoftLowerBound(self, index):
6326        r"""
6327        Returns the soft lower bound of a cumul variable for a given variable
6328        index. The "hard" lower bound of the variable is returned if no soft lower
6329        bound has been set.
6330        """
6331        return _pywrapcp.RoutingDimension_GetCumulVarSoftLowerBound(self, index)

Returns the soft lower bound of a cumul variable for a given variable index. The "hard" lower bound of the variable is returned if no soft lower bound has been set.

def GetCumulVarSoftLowerBoundCoefficient(self, index):
6333    def GetCumulVarSoftLowerBoundCoefficient(self, index):
6334        r"""
6335        Returns the cost coefficient of the soft lower bound of a cumul variable
6336        for a given variable index. If no soft lower bound has been set, 0 is
6337        returned.
6338        """
6339        return _pywrapcp.RoutingDimension_GetCumulVarSoftLowerBoundCoefficient(self, index)

Returns the cost coefficient of the soft lower bound of a cumul variable for a given variable index. If no soft lower bound has been set, 0 is returned.

def SetBreakIntervalsOfVehicle(self, breaks, vehicle, node_visit_transits):
6341    def SetBreakIntervalsOfVehicle(self, breaks, vehicle, node_visit_transits):
6342        r"""
6343        Sets the breaks for a given vehicle. Breaks are represented by
6344        IntervalVars. They may interrupt transits between nodes and increase
6345        the value of corresponding slack variables.
6346        A break may take place before the start of a vehicle, after the end of
6347        a vehicle, or during a travel i -> j.
6348
6349        In that case, the interval [break.Start(), break.End()) must be a subset
6350        of [CumulVar(i) + pre_travel(i, j), CumulVar(j) - post_travel(i, j)). In
6351        other words, a break may not overlap any node n's visit, given by
6352        [CumulVar(n) - post_travel(_, n), CumulVar(n) + pre_travel(n, _)).
6353        This formula considers post_travel(_, start) and pre_travel(end, _) to be
6354        0; pre_travel will never be called on any (_, start) and post_travel will
6355        never we called on any (end, _). If pre_travel_evaluator or
6356        post_travel_evaluator is -1, it will be taken as a function that always
6357        returns 0.
6358        Deprecated, sets pre_travel(i, j) = node_visit_transit[i].
6359        """
6360        return _pywrapcp.RoutingDimension_SetBreakIntervalsOfVehicle(self, breaks, vehicle, node_visit_transits)

Sets the breaks for a given vehicle. Breaks are represented by IntervalVars. They may interrupt transits between nodes and increase the value of corresponding slack variables. A break may take place before the start of a vehicle, after the end of a vehicle, or during a travel i -> j.

In that case, the interval [break.Start(), break.End()) must be a subset of [CumulVar(i) + pre_travel(i, j), CumulVar(j) - post_travel(i, j)). In other words, a break may not overlap any node n's visit, given by [CumulVar(n) - post_travel(_, n), CumulVar(n) + pre_travel(n, _)). This formula considers post_travel(_, start) and pre_travel(end, _) to be 0; pre_travel will never be called on any (_, start) and post_travel will never we called on any (end, _). If pre_travel_evaluator or post_travel_evaluator is -1, it will be taken as a function that always returns 0. Deprecated, sets pre_travel(i, j) = node_visit_transit[i].

def SetBreakDistanceDurationOfVehicle(self, distance, duration, vehicle):
6362    def SetBreakDistanceDurationOfVehicle(self, distance, duration, vehicle):
6363        r"""
6364        With breaks supposed to be consecutive, this forces the distance between
6365        breaks of size at least minimum_break_duration to be at most distance.
6366        This supposes that the time until route start and after route end are
6367        infinite breaks.
6368        """
6369        return _pywrapcp.RoutingDimension_SetBreakDistanceDurationOfVehicle(self, distance, duration, vehicle)

With breaks supposed to be consecutive, this forces the distance between breaks of size at least minimum_break_duration to be at most distance. This supposes that the time until route start and after route end are infinite breaks.

def InitializeBreaks(self):
6371    def InitializeBreaks(self):
6372        r"""
6373        Sets up vehicle_break_intervals_, vehicle_break_distance_duration_,
6374        pre_travel_evaluators and post_travel_evaluators.
6375        """
6376        return _pywrapcp.RoutingDimension_InitializeBreaks(self)

Sets up vehicle_break_intervals_, vehicle_break_distance_duration_, pre_travel_evaluators and post_travel_evaluators.

def HasBreakConstraints(self):
6378    def HasBreakConstraints(self):
6379        r""" Returns true if any break interval or break distance was defined."""
6380        return _pywrapcp.RoutingDimension_HasBreakConstraints(self)

Returns true if any break interval or break distance was defined.

def GetPreTravelEvaluatorOfVehicle(self, vehicle):
6382    def GetPreTravelEvaluatorOfVehicle(self, vehicle):
6383        return _pywrapcp.RoutingDimension_GetPreTravelEvaluatorOfVehicle(self, vehicle)
def GetPostTravelEvaluatorOfVehicle(self, vehicle):
6385    def GetPostTravelEvaluatorOfVehicle(self, vehicle):
6386        return _pywrapcp.RoutingDimension_GetPostTravelEvaluatorOfVehicle(self, vehicle)
def base_dimension(self):
6388    def base_dimension(self):
6389        r""" Returns the parent in the dependency tree if any or nullptr otherwise."""
6390        return _pywrapcp.RoutingDimension_base_dimension(self)

Returns the parent in the dependency tree if any or nullptr otherwise.

def ShortestTransitionSlack(self, node):
6392    def ShortestTransitionSlack(self, node):
6393        r"""
6394        It makes sense to use the function only for self-dependent dimension.
6395        For such dimensions the value of the slack of a node determines the
6396        transition cost of the next transit. Provided that
6397          1. cumul[node] is fixed,
6398          2. next[node] and next[next[node]] (if exists) are fixed,
6399        the value of slack[node] for which cumul[next[node]] + transit[next[node]]
6400        is minimized can be found in O(1) using this function.
6401        """
6402        return _pywrapcp.RoutingDimension_ShortestTransitionSlack(self, node)

It makes sense to use the function only for self-dependent dimension. For such dimensions the value of the slack of a node determines the transition cost of the next transit. Provided that

  1. cumul[node] is fixed,
  2. next[node] and next[next[node]] (if exists) are fixed, the value of slack[node] for which cumul[next[node]] + transit[next[node]] is minimized can be found in O(1) using this function.
def name(self):
6404    def name(self):
6405        r""" Returns the name of the dimension."""
6406        return _pywrapcp.RoutingDimension_name(self)

Returns the name of the dimension.

def SetPickupToDeliveryLimitFunctionForPair(self, limit_function, pair_index):
6408    def SetPickupToDeliveryLimitFunctionForPair(self, limit_function, pair_index):
6409        return _pywrapcp.RoutingDimension_SetPickupToDeliveryLimitFunctionForPair(self, limit_function, pair_index)
def HasPickupToDeliveryLimits(self):
6411    def HasPickupToDeliveryLimits(self):
6412        return _pywrapcp.RoutingDimension_HasPickupToDeliveryLimits(self)
def AddNodePrecedence(self, first_node, second_node, offset):
6414    def AddNodePrecedence(self, first_node, second_node, offset):
6415        return _pywrapcp.RoutingDimension_AddNodePrecedence(self, first_node, second_node, offset)
def GetSpanUpperBoundForVehicle(self, vehicle):
6417    def GetSpanUpperBoundForVehicle(self, vehicle):
6418        return _pywrapcp.RoutingDimension_GetSpanUpperBoundForVehicle(self, vehicle)
def GetSpanCostCoefficientForVehicle(self, vehicle):
6420    def GetSpanCostCoefficientForVehicle(self, vehicle):
6421        return _pywrapcp.RoutingDimension_GetSpanCostCoefficientForVehicle(self, vehicle)
def GetSlackCostCoefficientForVehicle(self, vehicle):
6423    def GetSlackCostCoefficientForVehicle(self, vehicle):
6424        return _pywrapcp.RoutingDimension_GetSlackCostCoefficientForVehicle(self, vehicle)
def global_span_cost_coefficient(self):
6426    def global_span_cost_coefficient(self):
6427        return _pywrapcp.RoutingDimension_global_span_cost_coefficient(self)
def GetGlobalOptimizerOffset(self):
6429    def GetGlobalOptimizerOffset(self):
6430        return _pywrapcp.RoutingDimension_GetGlobalOptimizerOffset(self)
def GetLocalOptimizerOffsetForVehicle(self, vehicle):
6432    def GetLocalOptimizerOffsetForVehicle(self, vehicle):
6433        return _pywrapcp.RoutingDimension_GetLocalOptimizerOffsetForVehicle(self, vehicle)
def SetSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6435    def SetSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6436        r"""
6437        If the span of vehicle on this dimension is larger than bound,
6438        the cost will be increased by cost * (span - bound).
6439        """
6440        return _pywrapcp.RoutingDimension_SetSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle)

If the span of vehicle on this dimension is larger than bound, the cost will be increased by cost * (span - bound).

def HasSoftSpanUpperBounds(self):
6442    def HasSoftSpanUpperBounds(self):
6443        return _pywrapcp.RoutingDimension_HasSoftSpanUpperBounds(self)
def GetSoftSpanUpperBoundForVehicle(self, vehicle):
6445    def GetSoftSpanUpperBoundForVehicle(self, vehicle):
6446        return _pywrapcp.RoutingDimension_GetSoftSpanUpperBoundForVehicle(self, vehicle)
def SetQuadraticCostSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6448    def SetQuadraticCostSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle):
6449        r"""
6450        If the span of vehicle on this dimension is larger than bound,
6451        the cost will be increased by cost * (span - bound)^2.
6452        """
6453        return _pywrapcp.RoutingDimension_SetQuadraticCostSoftSpanUpperBoundForVehicle(self, bound_cost, vehicle)

If the span of vehicle on this dimension is larger than bound, the cost will be increased by cost * (span - bound)^2.

def HasQuadraticCostSoftSpanUpperBounds(self):
6455    def HasQuadraticCostSoftSpanUpperBounds(self):
6456        return _pywrapcp.RoutingDimension_HasQuadraticCostSoftSpanUpperBounds(self)
def GetQuadraticCostSoftSpanUpperBoundForVehicle(self, vehicle):
6458    def GetQuadraticCostSoftSpanUpperBoundForVehicle(self, vehicle):
6459        return _pywrapcp.RoutingDimension_GetQuadraticCostSoftSpanUpperBoundForVehicle(self, vehicle)
def SolveModelWithSat(model, search_parameters, initial_solution, solution):
6464def SolveModelWithSat(model, search_parameters, initial_solution, solution):
6465    r"""
6466    Attempts to solve the model using the cp-sat solver. As of 5/2019, will
6467    solve the TSP corresponding to the model if it has a single vehicle.
6468    Therefore the resulting solution might not actually be feasible. Will return
6469    false if a solution could not be found.
6470    """
6471    return _pywrapcp.SolveModelWithSat(model, search_parameters, initial_solution, solution)

Attempts to solve the model using the cp-sat solver. As of 5/2019, will solve the TSP corresponding to the model if it has a single vehicle. Therefore the resulting solution might not actually be feasible. Will return false if a solution could not be found.