Package | Description |
---|---|
com.google.ortools.pdlp |
Modifier and Type | Method and Description |
---|---|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.addAllRandomProjectionSeeds(java.lang.Iterable<? extends java.lang.Integer> values)
Seeds for generating (pseudo-)random projections of iterates during
termination checks.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.addRandomProjectionSeeds(int value)
Seeds for generating (pseudo-)random projections of iterates during
termination checks.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clear() |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearAdaptiveLinesearchParameters()
optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearDiagonalQpTrustRegionSolverTolerance()
The solve tolerance of the experimental trust region solver for diagonal
QPs, controlling the accuracy of binary search over a one-dimensional
scaling parameter.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearHandleSomePrimalGradientsOnFiniteBoundsAsResiduals()
See
https://developers.google.com/optimization/lp/pdlp_math#treating_some_variable_bounds_as_infinite
for a description of this flag.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearInfiniteConstraintBoundThreshold()
Constraint bounds with absolute value at least this threshold are replaced
with infinities.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearInitialPrimalWeight()
The initial value of the primal weight (i.e., the ratio of primal and dual
step sizes).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearInitialStepSizeScaling()
Scaling factor applied to the initial step size (all step sizes if
linesearch_rule == CONSTANT_STEP_SIZE_RULE).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearL2NormRescaling()
If true, applies L_2 norm rescaling after the Ruiz rescaling.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearLinesearchRule()
Linesearch rule applied at each major iteration.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearLInfRuizIterations()
Number of L_infinity Ruiz rescaling iterations to apply to the constraint
matrix.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearLogIntervalSeconds()
Time between iteration-level statistics logging (if `verbosity_level > 1`).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearMajorIterationFrequency()
The frequency at which extra work is performed to make major algorithmic
decisions, e.g., performing restarts and updating the primal weight.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearMalitskyPockParameters()
optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearNecessaryReductionForRestart()
For ADAPTIVE_HEURISTIC only: A relative reduction in the potential function
by this amount triggers a restart if, additionally, the quality of the
iterates appears to be getting worse.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearNumShards()
For more efficient parallel computation, the matrices and vectors are
divided (virtually) into num_shards shards.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearNumThreads()
The number of threads to use.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearPresolveOptions()
optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearPrimalWeightUpdateSmoothing()
This parameter controls exponential smoothing of log(primal_weight) when a
primal weight update occurs (i.e., when the ratio of primal and dual step
sizes is adjusted).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearRandomProjectionSeeds()
Seeds for generating (pseudo-)random projections of iterates during
termination checks.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearRecordIterationStats()
If true, the iteration_stats field of the SolveLog output will be populated
at every iteration.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearRestartStrategy()
NO_RESTARTS and EVERY_MAJOR_ITERATION occasionally outperform the default.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearSchedulerType()
The type of scheduler used for CPU multi-threading.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearSufficientReductionForRestart()
For ADAPTIVE_HEURISTIC and ADAPTIVE_DISTANCE_BASED only: A relative
reduction in the potential function by this amount always triggers a
restart.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearTerminationCheckFrequency()
The frequency (based on a counter reset every major iteration) to check for
termination (involves extra work) and log iteration stats.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearTerminationCriteria()
optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearUseDiagonalQpTrustRegionSolver()
When solving QPs with diagonal objective matrices, this option can be
turned on to enable an experimental solver that avoids linearization of the
quadratic term.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearUseFeasibilityPolishing()
If true, periodically runs feasibility polishing, which attempts to move
from latest average iterate to one that is closer to feasibility (i.e., has
smaller primal and dual residuals) while probably increasing the objective
gap.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.clearVerbosityLevel()
The verbosity of logging.
0: No informational logging.
|
PrimalDualHybridGradientParams.Builder |
SolveLog.Builder.getParamsBuilder()
If solved with PDLP, the parameters for this solve.
|
PrimalDualHybridGradientParams.Builder |
FeasibilityPolishingDetails.Builder.getParamsBuilder()
optional .operations_research.pdlp.PrimalDualHybridGradientParams params = 3; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.mergeAdaptiveLinesearchParameters(AdaptiveLinesearchParams value)
optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.mergeFrom(com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.mergeFrom(com.google.protobuf.Message other) |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.mergeFrom(PrimalDualHybridGradientParams other) |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.mergeMalitskyPockParameters(MalitskyPockParams value)
optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.mergePresolveOptions(PrimalDualHybridGradientParams.PresolveOptions value)
optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.mergeTerminationCriteria(TerminationCriteria value)
optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1; |
static PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.newBuilder() |
static PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.newBuilder(PrimalDualHybridGradientParams prototype) |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.newBuilderForType() |
protected PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.newBuilderForType(com.google.protobuf.AbstractMessage.BuilderParent parent) |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setAdaptiveLinesearchParameters(AdaptiveLinesearchParams.Builder builderForValue)
optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setAdaptiveLinesearchParameters(AdaptiveLinesearchParams value)
optional .operations_research.pdlp.AdaptiveLinesearchParams adaptive_linesearch_parameters = 18; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setDiagonalQpTrustRegionSolverTolerance(double value)
The solve tolerance of the experimental trust region solver for diagonal
QPs, controlling the accuracy of binary search over a one-dimensional
scaling parameter.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setHandleSomePrimalGradientsOnFiniteBoundsAsResiduals(boolean value)
See
https://developers.google.com/optimization/lp/pdlp_math#treating_some_variable_bounds_as_infinite
for a description of this flag.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setInfiniteConstraintBoundThreshold(double value)
Constraint bounds with absolute value at least this threshold are replaced
with infinities.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setInitialPrimalWeight(double value)
The initial value of the primal weight (i.e., the ratio of primal and dual
step sizes).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setInitialStepSizeScaling(double value)
Scaling factor applied to the initial step size (all step sizes if
linesearch_rule == CONSTANT_STEP_SIZE_RULE).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setL2NormRescaling(boolean value)
If true, applies L_2 norm rescaling after the Ruiz rescaling.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setLinesearchRule(PrimalDualHybridGradientParams.LinesearchRule value)
Linesearch rule applied at each major iteration.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setLInfRuizIterations(int value)
Number of L_infinity Ruiz rescaling iterations to apply to the constraint
matrix.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setLogIntervalSeconds(double value)
Time between iteration-level statistics logging (if `verbosity_level > 1`).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setMajorIterationFrequency(int value)
The frequency at which extra work is performed to make major algorithmic
decisions, e.g., performing restarts and updating the primal weight.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setMalitskyPockParameters(MalitskyPockParams.Builder builderForValue)
optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setMalitskyPockParameters(MalitskyPockParams value)
optional .operations_research.pdlp.MalitskyPockParams malitsky_pock_parameters = 19; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setNecessaryReductionForRestart(double value)
For ADAPTIVE_HEURISTIC only: A relative reduction in the potential function
by this amount triggers a restart if, additionally, the quality of the
iterates appears to be getting worse.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setNumShards(int value)
For more efficient parallel computation, the matrices and vectors are
divided (virtually) into num_shards shards.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setNumThreads(int value)
The number of threads to use.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setPresolveOptions(PrimalDualHybridGradientParams.PresolveOptions.Builder builderForValue)
optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setPresolveOptions(PrimalDualHybridGradientParams.PresolveOptions value)
optional .operations_research.pdlp.PrimalDualHybridGradientParams.PresolveOptions presolve_options = 16; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setPrimalWeightUpdateSmoothing(double value)
This parameter controls exponential smoothing of log(primal_weight) when a
primal weight update occurs (i.e., when the ratio of primal and dual step
sizes is adjusted).
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setRandomProjectionSeeds(int index,
int value)
Seeds for generating (pseudo-)random projections of iterates during
termination checks.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setRecordIterationStats(boolean value)
If true, the iteration_stats field of the SolveLog output will be populated
at every iteration.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setRestartStrategy(PrimalDualHybridGradientParams.RestartStrategy value)
NO_RESTARTS and EVERY_MAJOR_ITERATION occasionally outperform the default.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setSchedulerType(SchedulerType value)
The type of scheduler used for CPU multi-threading.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setSufficientReductionForRestart(double value)
For ADAPTIVE_HEURISTIC and ADAPTIVE_DISTANCE_BASED only: A relative
reduction in the potential function by this amount always triggers a
restart.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setTerminationCheckFrequency(int value)
The frequency (based on a counter reset every major iteration) to check for
termination (involves extra work) and log iteration stats.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setTerminationCriteria(TerminationCriteria.Builder builderForValue)
optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setTerminationCriteria(TerminationCriteria value)
optional .operations_research.pdlp.TerminationCriteria termination_criteria = 1; |
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setUseDiagonalQpTrustRegionSolver(boolean value)
When solving QPs with diagonal objective matrices, this option can be
turned on to enable an experimental solver that avoids linearization of the
quadratic term.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setUseFeasibilityPolishing(boolean value)
If true, periodically runs feasibility polishing, which attempts to move
from latest average iterate to one that is closer to feasibility (i.e., has
smaller primal and dual residuals) while probably increasing the objective
gap.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.Builder.setVerbosityLevel(int value)
The verbosity of logging.
0: No informational logging.
|
PrimalDualHybridGradientParams.Builder |
PrimalDualHybridGradientParams.toBuilder() |
Modifier and Type | Method and Description |
---|---|
SolveLog.Builder |
SolveLog.Builder.setParams(PrimalDualHybridGradientParams.Builder builderForValue)
If solved with PDLP, the parameters for this solve.
|
FeasibilityPolishingDetails.Builder |
FeasibilityPolishingDetails.Builder.setParams(PrimalDualHybridGradientParams.Builder builderForValue)
optional .operations_research.pdlp.PrimalDualHybridGradientParams params = 3; |
Copyright © 2025. All rights reserved.