Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
model.proto
Go to the documentation of this file.
1// Copyright 2010-2025 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
14// An encoding format for mathematical optimization problems.
15
16syntax = "proto3";
17
18package operations_research.service.v1.mathopt;
19
20import "ortools/service/v1/mathopt/sparse_containers.proto";
21
22option java_multiple_files = true;
23option java_package = "com.google.ortools.service.v1.mathopt";
24option csharp_namespace = "Google.OrTools.Service";
25
26// As used below, we define "#variables" = size(VariablesProto.ids).
27message VariablesProto {
28 // Must be nonnegative and strictly increasing. The max(int64) value can't be
29 // used.
30 repeated int64 ids = 1;
31
32 // Should have length equal to #variables, values in [-inf, inf).
33 repeated double lower_bounds = 2;
34
35 // Should have length equal to #variables, values in (-inf, inf].
36 repeated double upper_bounds = 3;
37
38 // Should have length equal to #variables. Value is false for continuous
39 // variables and true for integer variables.
40 repeated bool integers = 4;
41
42 // If not set, assumed to be all empty strings. Otherwise, should have length
43 // equal to #variables.
44 //
45 // All nonempty names must be distinct. TODO(b/169575522): we may relax this.
46 repeated string names = 5;
47}
48
49message ObjectiveProto {
50 // false is minimize, true is maximize
51 bool maximize = 1;
52
53 // Must be finite and not NaN.
54 double offset = 2;
55
56 // ObjectiveProto terms that are linear in the decision variables.
57 //
58 // Requirements:
59 // * linear_coefficients.ids are elements of VariablesProto.ids.
60 // * VariablesProto not specified correspond to zero.
61 // * linear_coefficients.values must all be finite.
62 // * linear_coefficients.values can be zero, but this just wastes space.
63 SparseDoubleVectorProto linear_coefficients = 3;
64
65 // Objective terms that are quadratic in the decision variables.
66 //
67 // Requirements in addition to those on SparseDoubleMatrixProto messages:
68 // * Each element of quadratic_coefficients.row_ids and each element of
69 // quadratic_coefficients.column_ids must be an element of
70 // VariablesProto.ids.
71 // * The matrix must be upper triangular: for each i,
72 // quadratic_coefficients.row_ids[i] <=
73 // quadratic_coefficients.column_ids[i].
74 //
75 // Notes:
76 // * Terms not explicitly stored have zero coefficient.
77 // * Elements of quadratic_coefficients.coefficients can be zero, but this
78 // just wastes space.
79 SparseDoubleMatrixProto quadratic_coefficients = 4;
80
81 // Parent messages may have uniqueness requirements on this field; e.g., see
82 // ModelProto.objectives and AuxiliaryObjectivesUpdatesProto.new_objectives.
83 string name = 5;
84
85 // For multi-objective problems, the priority of this objective relative to
86 // the others (lower is more important). This value must be nonnegative.
87 // Furthermore, each objective priority in the model must be distinct at solve
88 // time. This condition is not validated at the proto level, so models may
89 // temporarily have objectives with the same priority.
90 int64 priority = 6;
91}
92
93// As used below, we define "#linear constraints" =
94// size(LinearConstraintsProto.ids).
95message LinearConstraintsProto {
96 // Must be nonnegative and strictly increasing. The max(int64) value can't be
97 // used.
98 repeated int64 ids = 1;
99
100 // Should have length equal to #linear constraints, values in [-inf, inf).
101 repeated double lower_bounds = 2;
102
103 // Should have length equal to #linear constraints, values in (-inf, inf].
104 repeated double upper_bounds = 3;
105
106 // If not set, assumed to be all empty strings. Otherwise, should have length
107 // equal to #linear constraints.
108 //
109 // All nonempty names must be distinct. TODO(b/169575522): we may relax this.
110 repeated string names = 4;
111}
112
113// A single quadratic constraint of the form:
114// lb <= sum{linear_terms} + sum{quadratic_terms} <= ub.
115//
116// If a variable involved in this constraint is deleted, it is treated as if it
117// were set to zero.
118message QuadraticConstraintProto {
119 // Terms that are linear in the decision variables.
120 //
121 // In addition to requirements on SparseDoubleVectorProto messages we require
122 // that:
123 // * linear_terms.ids are elements of VariablesProto.ids.
124 // * linear_terms.values must all be finite and not-NaN.
125 //
126 // Notes:
127 // * Variable ids omitted have a corresponding coefficient of zero.
128 // * linear_terms.values can be zero, but this just wastes space.
129 SparseDoubleVectorProto linear_terms = 1;
130
131 // Terms that are quadratic in the decision variables.
132 //
133 // In addition to requirements on SparseDoubleMatrixProto messages we require
134 // that:
135 // * Each element of quadratic_terms.row_ids and each element of
136 // quadratic_terms.column_ids must be an element of VariablesProto.ids.
137 // * The matrix must be upper triangular: for each i,
138 // quadratic_terms.row_ids[i] <= quadratic_terms.column_ids[i].
139 //
140 // Notes:
141 // * Terms not explicitly stored have zero coefficient.
142 // * Elements of quadratic_terms.coefficients can be zero, but this just
143 // wastes space.
144 SparseDoubleMatrixProto quadratic_terms = 2;
145
146 // Must have value in [-inf, inf), and be less than or equal to `upper_bound`.
147 double lower_bound = 3;
148
149 // Must have value in (-inf, inf], and be greater than or equal to
150 // `lower_bound`.
151 double upper_bound = 4;
152
153 // Parent messages may have uniqueness requirements on this field; e.g., see
154 // ModelProto.quadratic_constraints and
155 // QuadraticConstraintUpdatesProto.new_constraints.
156 string name = 5;
157}
158
159// A single second-order cone constraint of the form:
160//
161// ||`arguments_to_norm`||_2 <= `upper_bound`,
162//
163// where `upper_bound` and each element of `arguments_to_norm` are linear
164// expressions.
165//
166// If a variable involved in this constraint is deleted, it is treated as if it
167// were set to zero.
168message SecondOrderConeConstraintProto {
169 LinearExpressionProto upper_bound = 1;
170 repeated LinearExpressionProto arguments_to_norm = 2;
171
172 // Parent messages may have uniqueness requirements on this field; e.g., see
173 // `ModelProto.second_order_cone_constraints` and
174 // `SecondOrderConeConstraintUpdatesProto.new_constraints`.
175 string name = 3;
176}
177
178// Data for representing a single SOS1 or SOS2 constraint.
179//
180// If a variable involved in this constraint is deleted, it is treated as if it
181// were set to zero.
182message SosConstraintProto {
183 // The expressions over which to apply the SOS constraint:
184 // * SOS1: At most one element takes a nonzero value.
185 // * SOS2: At most two elements take nonzero values, and they must be
186 // adjacent in the repeated ordering.
187 repeated LinearExpressionProto expressions = 1;
188
189 // Either empty or of equal length to expressions. If empty, default weights
190 // are 1, 2, ...
191 // If present, the entries must be unique.
192 repeated double weights = 2;
193
194 // Parent messages may have uniqueness requirements on this field; e.g., see
195 // ModelProto.sos1_constraints and SosConstraintUpdatesProto.new_constraints.
196 string name = 3;
197}
198
199// Data for representing a single indicator constraint of the form:
200// Variable(indicator_id) = (activate_on_zero ? 0 : 1) ⇒
201// lower_bound <= expression <= upper_bound.
202//
203// If a variable involved in this constraint (either the indicator, or appearing
204// in `expression`) is deleted, it is treated as if it were set to zero. In
205// particular, deleting the indicator variable means that the indicator
206// constraint is vacuous if `activate_on_zero` is false, and that it is
207// equivalent to a linear constraint if `activate_on_zero` is true.
208message IndicatorConstraintProto {
209 // An ID corresponding to a binary variable, or unset. If unset, the indicator
210 // constraint is ignored. If set, we require that:
211 // * VariablesProto.integers[indicator_id] = true,
212 // * VariablesProto.lower_bounds[indicator_id] >= 0,
213 // * VariablesProto.upper_bounds[indicator_id] <= 1.
214 // These conditions are not validated by MathOpt, but if not satisfied will
215 // lead to the solver returning an error upon solving.
216 optional int64 indicator_id = 1;
217
218 // If true, then if the indicator variable takes value 0, the implied
219 // constraint must hold. Otherwise, if the indicator variable takes value 1,
220 // then the implied constraint must hold.
221 bool activate_on_zero = 6;
222
223 // Must be a valid linear expression with respect to the containing model:
224 // * All stated conditions on `SparseDoubleVectorProto`,
225 // * All elements of `expression.values` must be finite,
226 // * `expression.ids` are a subset of `VariablesProto.ids`.
227 SparseDoubleVectorProto expression = 2;
228
229 // Must have value in [-inf, inf); cannot be NaN.
230 double lower_bound = 3;
231
232 // Must have value in (-inf, inf]; cannot be NaN.
233 double upper_bound = 4;
234
235 // Parent messages may have uniqueness requirements on this field; e.g., see
236 // `ModelProto.indicator_constraints` and
237 // `IndicatorConstraintUpdatesProto.new_constraints`.
238 string name = 5;
239}
240
241// An optimization problem.
242// MathOpt supports:
243// - Continuous and integer decision variables with optional finite bounds.
244// - Linear and quadratic objectives (single or multiple objectives), either
245// minimized or maximized.
246// - A number of constraints types, including:
247// * Linear constraints
248// * Quadratic constraints
249// * Second-order cone constraints
250// * Logical constraints
251// > SOS1 and SOS2 constraints
252// > Indicator constraints
253//
254// By default, constraints are represented in "id-to-data" maps. However, we
255// represent linear constraints in a more efficient "struct-of-arrays" format.
256message ModelProto {
257 string name = 1;
258 VariablesProto variables = 2;
259
260 // The primary objective in the model.
261 ObjectiveProto objective = 3;
262
263 // Auxiliary objectives for use in multi-objective models.
264 //
265 // Map key IDs must be in [0, max(int64)). Each priority, and each nonempty
266 // name, must be unique and also distinct from the primary `objective`.
267 map<int64, ObjectiveProto> auxiliary_objectives = 10;
268 LinearConstraintsProto linear_constraints = 4;
269
270 // The variable coefficients for the linear constraints.
271 //
272 // If a variable involved in this constraint is deleted, it is treated as if
273 // it were set to zero.
274 //
275 // Requirements:
276 // * linear_constraint_matrix.row_ids are elements of linear_constraints.ids.
277 // * linear_constraint_matrix.column_ids are elements of variables.ids.
278 // * Matrix entries not specified are zero.
279 // * linear_constraint_matrix.values must all be finite.
280 SparseDoubleMatrixProto linear_constraint_matrix = 5;
281
282 // Mapped constraints (i.e., stored in "constraint ID"-to-"constraint data"
283 // map). For each subsequent submessage, we require that:
284 // * Each key is in [0, max(int64)).
285 // * Each key is unique in its respective map (but not necessarily across
286 // constraint types)
287 // * Each value contains a name field (called `name`), and each nonempty
288 // name must be distinct across all map entries (but not necessarily
289 // across constraint types).
290
291 // Quadratic constraints in the model.
292 map<int64, QuadraticConstraintProto> quadratic_constraints = 6;
293
294 // Second-order cone constraints in the model.
295 map<int64, SecondOrderConeConstraintProto> second_order_cone_constraints = 11;
296
297 // SOS1 constraints in the model, which constrain that at most one
298 // `expression` can be nonzero. The optional `weights` entries are an
299 // implementation detail used by the solver to (hopefully) converge more
300 // quickly. In more detail, solvers may (or may not) use these weights to
301 // select branching decisions that produce "balanced" children nodes.
302 map<int64, SosConstraintProto> sos1_constraints = 7;
303
304 // SOS2 constraints in the model, which constrain that at most two entries of
305 // `expression` can be nonzero, and they must be adjacent in their ordering.
306 // If no `weights` are provided, this ordering is their linear ordering in the
307 // `expressions` list; if `weights` are presented, the ordering is taken with
308 // respect to these values in increasing order.
309 map<int64, SosConstraintProto> sos2_constraints = 8;
310
311 // Indicator constraints in the model, which enforce that, if a binary
312 // "indicator variable" is set to one, then an "implied constraint" must hold.
313 map<int64, IndicatorConstraintProto> indicator_constraints = 9;
314}