Google OR-Tools v9.15
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
rays.cc
Go to the documentation of this file.
1// Copyright 2010-2025 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
15
16#include <optional>
17#include <utility>
18#include <vector>
19
20#include "absl/log/check.h"
21#include "absl/status/status.h"
22#include "absl/status/statusor.h"
23#include "absl/strings/str_cat.h"
28
30namespace {
31
32absl::StatusOr<GlpkRay> ComputePrimalRay(glp_prob* const problem,
33 const int non_basic_variable) {
34 const int num_cstrs = glp_get_num_rows(problem);
35
36 // Check that the non_basic_variable is indeed non basic.
37 const int non_basic_variable_status =
39 /*num_cstrs=*/num_cstrs,
40 /*k=*/non_basic_variable);
41 CHECK_NE(non_basic_variable_status, GLP_BS);
42
43 // When we perform the (primal) simplex algorithm, we detect the primal
44 // unboundness when we have a non-basic variable (here variable can be a
45 // structural or an auxiliary variable) which contributes to increase (for
46 // maximization, decrease for minimization) the objective but none of the
47 // basic variables bounds are limiting its growth. GLPK returns the index of
48 // this non-basic tableau variable.
49 //
50 // To be more precise, here we will use the conventions used in
51 // glpk-5.0/doc/glpk.pdf available from glpk-5.0.tar.gz.
52 //
53 // From (glpk eq. 3.13) we know that the values of the basic variables are
54 // dependent on the values of the non-basic ones:
55 //
56 // x_B = 𝚵 x_N
57 //
58 // where 𝚵 is the tableau defined by (glpk eq. 3.12):
59 //
60 // 𝚵 = -B^-1 N
61 //
62 // Thus if the c-th non basic variable is changed:
63 //
64 // x'_N = x_N + t e_c , e_c ∈ R^n is the c-th standard unit vector
65 // t ∈ R is the change
66 //
67 // Then to keep the primal feasible we must have:
68 //
69 // x'_B = 𝚵 x'_N
70 // = 𝚵 x_N + t 𝚵 e_c
71 // = 𝚵 x_N + t 𝚵 e_c
72 // = x_B + t 𝚵 e_c
73 //
74 // We thus have the primal ray:
75 //
76 // x'_N - x_N = t e_c
77 // x'_B - x_B = t 𝚵 e_c
78 //
79 // From (glpk eq. 3.34) we know that the primal objective is:
80 //
81 // z = d^T x_N + c_0
82 //
83 // I.e. reduced cost d_j shows how the non-basic variable x_j influences the
84 // objective.
85 //
86 // Thus if the problem is a minimization we know that:
87 //
88 // t > 0 , if d_c < 0
89 // t < 0 , if d_c > 0
90 //
91 // Since if it was not the case, the primal simplex algorithm would not have
92 // picked this variable.
93 //
94 // The signs for a maximization are reversed:
95 //
96 // t < 0 , if d_c < 0
97 // t > 0 , if d_c > 0
98 const double reduced_cost = ComputeFormVarReducedCost(
99 problem, /*num_cstrs=*/num_cstrs, /*k=*/non_basic_variable);
100 const double t = (glp_get_obj_dir(problem) == GLP_MAX ? 1.0 : -1.0) *
101 (reduced_cost >= 0 ? 1.0 : -1.0);
102
103 // In case of bounded variables, we can check that the result agrees with the
104 // current active bound. We can't do so for free variables though.
105 switch (non_basic_variable_status) {
106 case GLP_NL: // At lower-bound.
107 if (t == -1.0) {
108 return absl::InternalError(
109 "a non-basic variable at its lower-bound is reported as cause of "
110 "unboundness but the reduced cost's sign indicates that the solver "
111 "considered making it smaller");
112 }
113 break;
114 case GLP_NU: // At upper-bound.
115 if (t == 1.0) {
116 return absl::InternalError(
117 "a non-basic variable at its upper-bound is reported as cause of "
118 "unboundness but the reduced cost's sign indicates that the solver "
119 "considered making it bigger");
120 }
121 break;
122 case GLP_NF: // Free (unbounded).
123 break;
124 default: // GLP_BS (basic), GLP_NS (fixed) or invalid value
125 return absl::InternalError(absl::StrCat(
126 "unexpected ", BasisStatusString(non_basic_variable_status),
127 " reported as cause of unboundness"));
128 }
129
130 GlpkRay::SparseVector ray_non_zeros;
131
132 // As seen in the maths above:
133 //
134 // x'_N - x_N = t e_c
135 //
136 ray_non_zeros.emplace_back(non_basic_variable, t);
137
138 // As seen in the maths above:
139 //
140 // x'_B - x_B = t 𝚵 e_c
141 //
142 // Here 𝚵 e_c is the c-th column of the tableau. We thus use the GLPK function
143 // that returns this column.
144 std::vector<int> inds(num_cstrs + 1);
145 std::vector<double> vals(num_cstrs + 1);
146 const int non_zeros =
147 glp_eval_tab_col(problem, non_basic_variable, inds.data(), vals.data());
148 for (int i = 1; i <= non_zeros; ++i) {
149 ray_non_zeros.emplace_back(inds[i], t * vals[i]);
150 }
151
152 return GlpkRay(GlpkRayType::kPrimal, std::move(ray_non_zeros));
153}
154
155absl::StatusOr<GlpkRay> ComputeDualRay(glp_prob* const problem,
156 const int basic_variable) {
157 const int num_cstrs = glp_get_num_rows(problem);
158
159 // Check that the basic_variable is indeed basic.
160 {
161 const int status = ComputeFormVarStatus(problem,
162 /*num_cstrs=*/num_cstrs,
163 /*k=*/basic_variable);
164 CHECK_EQ(status, GLP_BS) << BasisStatusString(status);
165 }
166
167 // The dual simplex proceeds by repeatedly finding basic variables (here
168 // variable includes structural and auxiliary variables) that are primal
169 // infeasible and replacing them in the basis with a non-basic variable whose
170 // growth is limited by their reduced cost.
171 //
172 // This algorithm detects dual unboundness when we have a basic variable is
173 // primal infeasible (out of its bounds) but there are no non-basic variable
174 // that would limit the growth of its reduced cost, and thus the growth of the
175 // dual objective.
176 //
177 // To be more precise, here we will use the conventions used in
178 // glpk-5.0/doc/glpk.pdf available from glpk-5.0.tar.gz. The dual simplex
179 // algorithm is defined by (https://d-nb.info/978580478/34): Koberstein,
180 // Achim. "The dual simplex method, techniques for a fast and stable
181 // implementation." Unpublished doctoral thesis, Universität Paderborn,
182 // Paderborn, Germany (2005).
183 //
184 // In the following reasoning, we will considering the dual after the
185 // permutation of the basis (glpk eq. 3.27):
186 //
187 // B^T π + λ_B = c_B
188 // N^T π + λ_N = c_N
189 //
190 // We will now see what happens when we relax a basic variable that would
191 // leave the base. See (Koberstein §3.1.2) for details.
192 //
193 // Let's assume we have (π, λ_B, λ_N) that is a basic dual feasible
194 // solution. By definition:
195 //
196 // λ_B = 0
197 //
198 // If we relax the equality constraint of the basic variable r that is primal
199 // infeasible, that is if we relax λ_B_r and get another solution (π', λ'_B,
200 // λ'_N). By definition, all other basic variables stays at equality and thus:
201 //
202 // λ'_B = t e_r , e_r ∈ R^m is the standard unit vector
203 // t ∈ R is the relaxation
204 //
205 // From (glpk eq. 3.30) we have:
206 //
207 // λ'_N = N^T B^-T λ'_B + (c_N - N^T B^-T c_B)
208 // λ'_N = t (B^-1 N)^T e_r + λ_N
209 //
210 // Using the (glpk eq. 3.12) definition of the tableau:
211 //
212 // 𝚵 = -B^-1 N
213 //
214 // We have:
215 //
216 // λ'_N = -t 𝚵^T e_r + λ_N
217 //
218 // That is that the change of the reduced cost of the basic variable r has to
219 // be compensated by the change of the reduced costs the non-basic variables.
220 //
221 // We can write the new dual objective:
222 //
223 // Z' = l^T λ'_l + u^T λ'_u
224 //
225 // If the problem is a minimization we have:
226 //
227 // Z' = sum_{j:λ'_N_j >= 0} l_N_j λ'_N_j +
228 // sum_{j:λ'_N_j <= 0} u_N_j λ'_N_j +
229 // {l_B_r, if t >= 0, u_B_r, else} t
230 //
231 // Here we assume the signs of λ'_N are identical to the ones of λ_N (this is
232 // not an issue with dual simplex since we want to make one non-basic tight to
233 // use it in the basis) we can replace λ'_N with the value computed above and
234 // considering the initial solution was basic which implied that non-basic
235 // where at their bound we can rewrite the objective as:
236 //
237 // Z' = Z - t e_r^T 𝚵 x_N + {l_B_r, if t >= 0, u_B_r, else} t
238 //
239 // We have, using (glpk eq. 3.13):
240 //
241 // e_r^T 𝚵 x_N = e_r^T x_B = x_B_r
242 //
243 // And thus, for a minimization we have:
244 //
245 // Z' - Z = t * {l_B_r - x_B_r, if t >= 0,
246 // u_B_r - x_B_r, if t <= 0}
247 //
248 // Depending on the type of constraint, i.e. depending on whether l_B_r and/or
249 // u_B_r are finite), we have constraints on the sign of `t`. But we can see
250 // that since we pick the basic variable r because it was primal infeasible,
251 // then it should break one of its finite bounds.
252 //
253 // either x_B_r < l_B_r
254 // or u_B_r < x_B_r
255 //
256 // If l_B_r is finite and x_B_r < l_B_r, then choosing:
257 //
258 // t >= 0
259 //
260 // leads to:
261 //
262 // Z' - Z >= 0
263 //
264 // and we see from (glpk eq. 3.17) and the "rule of signs" table (glpk page
265 // 101) that we keep the solution dual feasible by doing so.
266 //
267 // The same logic applies if x_B_r > u_B_r:
268 //
269 // t <= 0
270 //
271 // leads to:
272 //
273 // Z' - Z >= 0
274 //
275 // The dual objective increase in both cases; which is what we want for a
276 // minimization problem since the dual is a maximization.
277 //
278 // For a maximization problem the results are similar but the sign of t
279 // changes (which is expected since the dual is a minimization):
280 //
281 // Z' - Z = t * {l_B_r - x_B_r, if t <= 0,
282 // u_B_r - x_B_r, if t >= 0}
283 //
284 // If a problem is dual unbounded, this means that it is possible to grow t
285 // without limit. I.e. is possible to choose any value for t without making
286 // any λ'_N change sign.
287 //
288 // We can then express the changes of λ' from t:
289 //
290 // λ'_B = t e_r
291 // λ'_N = -t 𝚵^T e_r + λ_N
292 //
293 // Since λ_B = 0, we can rewrite those as:
294 //
295 // λ'_B - λ_B = t e_r
296 // λ'_N - λ_N = -t 𝚵^T e_r
297 //
298 // That is the dual ray.
299 const double primal_value = ComputeFormVarPrimalValue(
300 problem, /*num_cstrs=*/num_cstrs, /*k=*/basic_variable);
301
302 const double upper_bound = ComputeFormVarUpperBound(
303 problem, /*num_cstrs=*/num_cstrs, /*k=*/basic_variable);
304 const double lower_bound = ComputeFormVarLowerBound(
305 problem, /*num_cstrs=*/num_cstrs, /*k=*/basic_variable);
306 if (!(primal_value > upper_bound || primal_value < lower_bound)) {
307 return absl::InternalError(
308 "dual ray computation failed: GLPK identified a basic variable as the "
309 "source of unboundness but its primal value is within its bounds");
310 }
311
312 // As we have seen in the maths above, depending on which primal bound is
313 // violated and the optimization direction, we choose the sign of t.
314 //
315 // Here the problem is unbounded so we can pick any value for t we want.
316 const double t = (glp_get_obj_dir(problem) == GLP_MAX ? 1.0 : -1.0) *
317 (primal_value > upper_bound ? 1.0 : -1.0);
318
319 GlpkRay::SparseVector ray_non_zeros;
320
321 // As seen in the math above:
322 //
323 // λ'_B - λ_B = t e_r
324 //
325 ray_non_zeros.emplace_back(basic_variable, t);
326
327 // As we have seen above, to keep the dual feasible, we must update the
328 // reduced costs of the non-basic variables by the formula:
329 //
330 // λ'_N - λ_N = -t 𝚵^T e_r
331 //
332 // Here 𝚵^T e_r is the r-th row of the tableau. We thus use the GLPK function
333 // that returns this row.
334 const int num_structural_vars = glp_get_num_cols(problem);
335 std::vector<int> inds(num_structural_vars + 1);
336 std::vector<double> vals(num_structural_vars + 1);
337 const int non_zeros =
338 glp_eval_tab_row(problem, basic_variable, inds.data(), vals.data());
339 for (int i = 1; i <= non_zeros; ++i) {
340 ray_non_zeros.emplace_back(inds[i], -t * vals[i]);
341 }
342
343 return GlpkRay(GlpkRayType::kDual, std::move(ray_non_zeros));
344}
345
346} // namespace
347
350
351absl::StatusOr<std::optional<GlpkRay>> GlpkComputeUnboundRay(
352 glp_prob* const problem) {
353 const int unbound_ray = glp_get_unbnd_ray(problem);
354 if (unbound_ray <= 0) {
355 // No ray, do nothing.
356 DCHECK_EQ(unbound_ray, 0);
357 return std::nullopt;
358 }
359
360 // The factorization may not exists when GLPK's trivial_lp() is used to solve
361 // a trivial LP. Here we force the computation of the factorization if
362 // necessary.
363 if (!glp_bf_exists(problem)) {
364 const int factorization_rc = glp_factorize(problem);
365 if (factorization_rc != 0) {
366 return util::InternalErrorBuilder() << "glp_factorize() failed: "
367 << ReturnCodeString(factorization_rc);
368 }
369 }
370
371 // The function glp_get_unbnd_ray() returns either:
372 // - a non-basic tableau variable if we have primal unboundness.
373 // - a basic tableau variable if we have dual unboundness.
374 const bool is_dual_ray =
375 ComputeFormVarStatus(problem,
376 /*num_cstrs=*/glp_get_num_rows(problem),
377 /*k=*/unbound_ray) == GLP_BS;
379 (is_dual_ray ? ComputeDualRay(problem, unbound_ray)
380 : ComputePrimalRay(problem, unbound_ray)));
381 return ray;
382}
383
384} // namespace operations_research::math_opt
#define ASSIGN_OR_RETURN(lhs, rexpr)
absl::StatusOr< std::optional< GlpkRay > > GlpkComputeUnboundRay(glp_prob *const problem)
Definition rays.cc:351
double ComputeFormVarPrimalValue(glp_prob *const problem, const int num_cstrs, const int k)
int ComputeFormVarStatus(glp_prob *const problem, const int num_cstrs, const int k)
std::string BasisStatusString(const int stat)
double ComputeFormVarReducedCost(glp_prob *const problem, const int num_cstrs, const int k)
double ComputeFormVarLowerBound(glp_prob *const problem, const int num_cstrs, const int k)
double ComputeFormVarUpperBound(glp_prob *const problem, const int num_cstrs, const int k)
std::string ReturnCodeString(const int rc)
STL namespace.
StatusBuilder InternalErrorBuilder()
GlpkRay(GlpkRayType type, SparseVector non_zero_components)
Definition rays.cc:348
std::vector< std::pair< int, double > > SparseVector
Definition rays.h:56