Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
pseudo_costs.cc
Go to the documentation of this file.
1// Copyright 2010-2025 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
15
16#include <algorithm>
17#include <cmath>
18#include <cstdint>
19#include <cstdlib>
20#include <limits>
21#include <string>
22#include <tuple>
23#include <utility>
24#include <vector>
25
26#include "absl/log/check.h"
27#include "absl/strings/str_cat.h"
28#include "absl/types/span.h"
31#include "ortools/sat/integer.h"
35#include "ortools/sat/model.h"
37#include "ortools/sat/sat_parameters.pb.h"
38#include "ortools/sat/util.h"
40
41namespace operations_research {
42namespace sat {
43
44// We prefer the product to combine the cost of two branches.
45double PseudoCosts::CombineScores(double down_branch, double up_branch) const {
46 if (true) {
47 return std::max(1e-6, down_branch) * std::max(1e-6, up_branch);
48 } else {
49 const double min_value = std::min(up_branch, down_branch);
50 const double max_value = std::max(up_branch, down_branch);
51 const double mu = 1.0 / 6.0;
52 return (1.0 - mu) * min_value + mu * max_value;
53 }
54}
55
56std::string PseudoCosts::ObjectiveInfo::DebugString() const {
57 return absl::StrCat("lb: ", lb, " ub:", ub, " lp_bound:", lp_bound);
58}
59
61 : parameters_(*model->GetOrCreate<SatParameters>()),
62 integer_trail_(model->GetOrCreate<IntegerTrail>()),
63 encoder_(model->GetOrCreate<IntegerEncoder>()),
64 lp_values_(model->GetOrCreate<ModelLpValues>()),
65 lps_(model->GetOrCreate<LinearProgrammingConstraintCollection>()) {
66 const int num_vars = integer_trail_->NumIntegerVariables().value();
67 pseudo_costs_.resize(num_vars);
68 is_relevant_.resize(num_vars, false);
69 scores_.resize(num_vars, 0.0);
70
71 // If objective_var == kNoIntegerVariable, there is not really any point using
72 // this class.
73 auto* objective = model->Get<ObjectiveDefinition>();
74 if (objective != nullptr) {
75 objective_var_ = objective->objective_var;
76 }
77}
78
79PseudoCosts::ObjectiveInfo PseudoCosts::GetCurrentObjectiveInfo() {
80 ObjectiveInfo result;
81 if (objective_var_ == kNoIntegerVariable) return result;
82
83 result.lb = integer_trail_->LowerBound(objective_var_);
84 result.ub = integer_trail_->UpperBound(objective_var_);
85
86 // We sum the objectives over the LP components.
87 // Note that in practice, when we use the pseudo-costs, there is just one.
88 result.lp_bound = 0.0;
89 result.lp_at_optimal = true;
90 for (const auto* lp : *lps_) {
91 if (!lp->AtOptimal()) result.lp_at_optimal = false;
92 result.lp_bound += lp->ObjectiveLpLowerBound();
93 }
94 return result;
95}
96
98 saved_info_ = GetCurrentObjectiveInfo();
99 return saved_info_.lp_at_optimal;
100}
101
103 absl::Span<const double> lp_values) {
104 bound_changes_.clear();
105 for (const IntegerLiteral l : encoder_->GetIntegerLiterals(decision)) {
107 entry.var = l.var;
108 entry.lower_bound_change = l.bound - integer_trail_->LowerBound(l.var);
109 if (l.var < lp_values.size()) {
110 entry.lp_increase =
111 std::max(0.0, ToDouble(l.bound) - lp_values[l.var.value()]);
112 }
113 bound_changes_.push_back(entry);
114 }
115
116 // NOTE: We ignore literal associated to var != value.
117 for (const auto [var, value] : encoder_->GetEqualityLiterals(decision)) {
118 {
120 entry.var = var;
121 entry.lower_bound_change = value - integer_trail_->LowerBound(var);
122 bound_changes_.push_back(entry);
123 }
124
125 // Also do the negation.
126 {
128 entry.var = NegationOf(var);
129 entry.lower_bound_change =
130 (-value) - integer_trail_->LowerBound(NegationOf(var));
131 bound_changes_.push_back(entry);
132 }
133 }
134}
135
137 if (objective_var_ == kNoIntegerVariable) return;
138 SaveLpInfo();
139 SaveBoundChanges(decision, *lp_values_);
140}
141
143 IntegerVariable var, absl::Span<const double> lp_values) {
144 DCHECK_NE(var, kNoIntegerVariable);
145 BranchingInfo result;
146 const IntegerValue lb = integer_trail_->LowerBound(var);
147 const IntegerValue ub = integer_trail_->UpperBound(var);
148 if (lb == ub) {
149 result.is_fixed = true;
150 return result;
151 }
152
153 const double lp_value = lp_values[var.value()];
154 double down_fractionality = lp_value - std::floor(lp_value);
155 IntegerValue down_target = IntegerValue(std::floor(lp_value));
156 if (lp_value >= ToDouble(ub)) {
157 down_fractionality = 1.0;
158 down_target = ub - 1;
159 } else if (lp_value <= ToDouble(lb)) {
160 down_fractionality = 0.0;
161 down_target = lb;
162 }
163
164 result.is_integer = std::abs(lp_value - std::round(lp_value)) < 1e-6;
165 result.down_fractionality = down_fractionality;
166 result.down_branch = IntegerLiteral::LowerOrEqual(var, down_target);
167
168 const int max_index = std::max(var.value(), NegationOf(var).value());
169 if (max_index < average_unit_objective_increase_.size()) {
170 result.down_score =
171 down_fractionality *
172 average_unit_objective_increase_[NegationOf(var)].CurrentAverage();
173 result.up_score = (1.0 - down_fractionality) *
174 average_unit_objective_increase_[var].CurrentAverage();
175 result.score = CombineScores(result.down_score, result.up_score);
176
177 const int reliablitity = std::min(
178 average_unit_objective_increase_[var].NumRecords(),
179 average_unit_objective_increase_[NegationOf(var)].NumRecords());
180 result.is_reliable = reliablitity >= 4;
181 }
182
183 return result;
184}
185
186void PseudoCosts::UpdateBoolPseudoCosts(absl::Span<const Literal> reason,
187 IntegerValue objective_increase) {
188 const double relative_increase =
189 ToDouble(objective_increase) / static_cast<double>(reason.size());
190 for (const Literal lit : reason) {
191 if (lit.Index() >= lit_pseudo_costs_.size()) {
192 lit_pseudo_costs_.resize(lit.Index() + 1);
193 }
194 lit_pseudo_costs_[lit].AddData(relative_increase);
195 }
196}
197
198double PseudoCosts::BoolPseudoCost(Literal lit, double lp_value) const {
199 if (lit.Index() >= lit_pseudo_costs_.size()) return 0.0;
200
201 const double down_fractionality = lp_value;
202 const double up_fractionality = 1.0 - lp_value;
203 const double up_branch =
204 up_fractionality * lit_pseudo_costs_[lit].CurrentAverage();
205 const double down_branch =
206 down_fractionality *
207 lit_pseudo_costs_[lit.NegatedIndex()].CurrentAverage();
208 return CombineScores(down_branch, up_branch);
209}
210
211double PseudoCosts::ObjectiveIncrease(bool conflict) {
212 const ObjectiveInfo new_info = GetCurrentObjectiveInfo();
213 const double obj_lp_diff =
214 std::max(0.0, new_info.lp_bound - saved_info_.lp_bound);
215 const IntegerValue obj_int_diff = new_info.lb - saved_info_.lb;
216
217 double obj_increase =
218 obj_lp_diff > 0.0 ? obj_lp_diff : ToDouble(obj_int_diff);
219 if (conflict) {
220 // We count a conflict as a max increase + 1.0
221 obj_increase = ToDouble(saved_info_.ub) - ToDouble(saved_info_.lb) + 1.0;
222 }
223 return obj_increase;
224}
225
227 if (objective_var_ == kNoIntegerVariable) return;
228 const ObjectiveInfo new_info = GetCurrentObjectiveInfo();
229
230 // We store a pseudo cost for this literal. We prefer the pure LP version, but
231 // revert to integer version if there is no lp. TODO(user): tune that.
232 //
233 // We only collect lp increase when the lp is at optimal, otherwise it might
234 // just be the "artificial" continuing of the current lp solve that create the
235 // increase.
236 if (saved_info_.lp_at_optimal) {
237 // Update the average unit increases.
238 const double obj_increase = ObjectiveIncrease(conflict);
239 for (const auto [var, lb_change, lp_increase] : bound_changes_) {
240 if (lp_increase < 1e-6) continue;
241 if (var >= average_unit_objective_increase_.size()) {
242 average_unit_objective_increase_.resize(var + 1);
243 }
244 average_unit_objective_increase_[var].AddData(obj_increase / lp_increase);
245 }
246 }
247
248 // TODO(user): Handle this case.
249 if (conflict) return;
250
251 // We also store one for any associated IntegerVariable.
252 const IntegerValue obj_bound_improvement =
253 (new_info.lb - saved_info_.lb) + (saved_info_.ub - new_info.ub);
254 DCHECK_GE(obj_bound_improvement, 0);
255 if (obj_bound_improvement == IntegerValue(0)) return;
256
257 for (const auto [var, lb_change, lp_increase] : bound_changes_) {
258 if (lb_change == IntegerValue(0)) continue;
259
260 if (var >= pseudo_costs_.size()) {
261 // Create space for new variable and its negation.
262 const int new_size = std::max(var, NegationOf(var)).value() + 1;
263 is_relevant_.resize(new_size, false);
264 scores_.resize(new_size, 0.0);
265 pseudo_costs_.resize(new_size, IncrementalAverage(0.0));
266 }
267
268 pseudo_costs_[var].AddData(ToDouble(obj_bound_improvement) /
269 ToDouble(lb_change));
270
271 const IntegerVariable positive_var = PositiveVariable(var);
272 const IntegerVariable negative_var = NegationOf(positive_var);
273 const int64_t count = pseudo_costs_[positive_var].NumRecords() +
274 pseudo_costs_[negative_var].NumRecords();
275 if (count >= parameters_.pseudo_cost_reliability_threshold()) {
276 scores_[positive_var] =
277 CombineScores(GetCost(positive_var), GetCost(negative_var));
278 if (!is_relevant_[positive_var]) {
279 is_relevant_[positive_var] = true;
280 relevant_variables_.push_back(positive_var);
281 }
282 }
283 }
284}
285
286// TODO(user): Supports search randomization tolerance.
287// TODO(user): Implement generic class to choose the randomized
288// solution, and supports sub-linear variable selection.
290 IntegerVariable chosen_var = kNoIntegerVariable;
291 double best_score = -std::numeric_limits<double>::infinity();
292
293 // TODO(user): Avoid the O(num_relevant_variable) loop.
294 // In practice since a variable only become relevant after 100 records, this
295 // list might be small compared to the number of variable though.
296 for (const IntegerVariable positive_var : relevant_variables_) {
297 const IntegerValue lb = integer_trail_->LowerBound(positive_var);
298 const IntegerValue ub = integer_trail_->UpperBound(positive_var);
299 if (lb >= ub) continue;
300 if (scores_[positive_var] > best_score) {
301 chosen_var = positive_var;
302 best_score = scores_[positive_var];
303 }
304 }
305
306 // Pick the direction with best pseudo cost.
307 if (chosen_var != kNoIntegerVariable &&
308 GetCost(chosen_var) < GetCost(NegationOf(chosen_var))) {
309 chosen_var = NegationOf(chosen_var);
310 }
311 return chosen_var;
312}
313
314} // namespace sat
315} // namespace operations_research
Manages incremental averages.
Definition util.h:595
IntegerValue LowerBound(IntegerVariable i) const
Returns the current lower/upper bound of the given integer variable.
Definition integer.h:1301
IntegerValue UpperBound(IntegerVariable i) const
Definition integer.h:1305
A class that stores the collection of all LP constraints in a model.
LiteralIndex NegatedIndex() const
Definition sat_base.h:92
LiteralIndex Index() const
Definition sat_base.h:91
T Get(std::function< T(const Model &)> f) const
Similar to Add() but this is const.
Definition model.h:93
void AfterTakingDecision(bool conflict=false)
double CombineScores(double down_branch, double up_branch) const
Combines the score of the two branch into one score.
void UpdateBoolPseudoCosts(absl::Span< const Literal > reason, IntegerValue objective_increase)
void BeforeTakingDecision(Literal decision)
IntegerVariable GetBestDecisionVar()
Returns the variable with best reliable pseudo cost that is not fixed.
BranchingInfo EvaluateVar(IntegerVariable var, absl::Span< const double > lp_values)
double BoolPseudoCost(Literal lit, double lp_value) const
double ObjectiveIncrease(bool conflict)
void SaveBoundChanges(Literal decision, absl::Span< const double > lp_values)
double GetCost(IntegerVariable var) const
Returns the pseudo cost of given variable. Currently used for testing only.
std::vector< IntegerVariable > NegationOf(absl::Span< const IntegerVariable > vars)
Returns the vector of the negated variables.
Definition integer.cc:52
const IntegerVariable kNoIntegerVariable(-1)
IntegerVariable PositiveVariable(IntegerVariable i)
double ToDouble(IntegerValue value)
In SWIG mode, we don't want anything besides these top-level includes.
static IntegerLiteral LowerOrEqual(IntegerVariable i, IntegerValue bound)