Google OR-Tools
v9.11
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
mathutil.cc
Go to the documentation of this file.
1
// Copyright 2010-2024 Google LLC
2
// Licensed under the Apache License, Version 2.0 (the "License");
3
// you may not use this file except in compliance with the License.
4
// You may obtain a copy of the License at
5
//
6
// http://www.apache.org/licenses/LICENSE-2.0
7
//
8
// Unless required by applicable law or agreed to in writing, software
9
// distributed under the License is distributed on an "AS IS" BASIS,
10
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11
// See the License for the specific language governing permissions and
12
// limitations under the License.
13
14
#if defined(_MSC_VER)
15
#define _USE_MATH_DEFINES
16
#include <cmath>
17
#endif
18
19
#include "
ortools/base/logging.h
"
20
#include "
ortools/base/mathutil.h
"
21
22
namespace
operations_research
{
23
24
// The formula is extracted from the following page
25
// http://en.wikipedia.org/w/index.php?title=Stirling%27s_approximation
26
double
MathUtil::Stirling
(
double
n) {
27
static
const
double
kLog2Pi = log(2 * M_PI);
28
const
double
logN = log(n);
29
return
(n * logN - n + 0.5 * (kLog2Pi + logN)
// 0.5 * log(2 * M_PI * n)
30
+ 1 / (12 * n) - 1 / (360 * n * n * n));
31
}
32
33
double
MathUtil::LogCombinations
(
int
n,
int
k) {
34
CHECK_GE(n, k);
35
CHECK_GT(n, 0);
36
CHECK_GE(k, 0);
37
38
// use symmetry to pick the shorter calculation
39
if
(k > n / 2) {
40
k = n - k;
41
}
42
43
// If we have more than 30 logarithms to calculate, we'll use
44
// Stirling's approximation for log(n!).
45
if
(k > 15) {
46
return
Stirling
(n) -
Stirling
(k) -
Stirling
(n - k);
47
}
else
{
48
double
result = 0;
49
for
(
int
i = 1; i <= k; i++) {
50
result += log(n - k + i) - log(i);
51
}
52
return
result;
53
}
54
}
55
}
// namespace operations_research
logging.h
operations_research::MathUtil::Stirling
static double Stirling(double n)
Definition
mathutil.cc:26
operations_research::MathUtil::LogCombinations
static double LogCombinations(int n, int k)
Definition
mathutil.cc:33
mathutil.h
operations_research
In SWIG mode, we don't want anything besides these top-level includes.
Definition
binary_indexed_tree.h:21
ortools
base
mathutil.cc
Generated by
1.12.0