Google OR-Tools v9.12
a fast and portable software suite for combinatorial optimization
Loading...
Searching...
No Matches
2d_packing_brute_force.cc
Go to the documentation of this file.
1// Copyright 2010-2025 Google LLC
2// Licensed under the Apache License, Version 2.0 (the "License");
3// you may not use this file except in compliance with the License.
4// You may obtain a copy of the License at
5//
6// http://www.apache.org/licenses/LICENSE-2.0
7//
8// Unless required by applicable law or agreed to in writing, software
9// distributed under the License is distributed on an "AS IS" BASIS,
10// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
11// See the License for the specific language governing permissions and
12// limitations under the License.
13
15
16#include <algorithm>
17#include <limits>
18#include <tuple>
19#include <utility>
20#include <vector>
21
22#include "absl/log/check.h"
23#include "absl/strings/str_cat.h"
24#include "absl/types/span.h"
28#include "ortools/sat/util.h"
29#include "ortools/util/bitset.h"
30
31namespace operations_research {
32namespace sat {
33
34static constexpr int kMaxProblemSize = 16;
35
36namespace {
37
38enum class RectangleRelationship {
39 TOUCHING_NEITHER_LEFT_OR_BOTTOM,
40 TOUCHING_BOTTOM,
41 TOUCHING_LEFT,
42 OVERLAP,
43};
44
45RectangleRelationship GetRectangleRelationship(const Rectangle& rectangle,
46 const Rectangle& other) {
47 if (rectangle.x_min < other.x_max && other.x_min < rectangle.x_max &&
48 rectangle.y_min < other.y_max && other.y_min < rectangle.y_max) {
49 return RectangleRelationship::OVERLAP;
50 }
51
52 if (rectangle.x_min == other.x_max && rectangle.y_min < other.y_max &&
53 other.y_min < rectangle.y_max) {
54 return RectangleRelationship::TOUCHING_LEFT;
55 }
56 if (rectangle.x_min < other.x_max && other.x_min < rectangle.x_max &&
57 rectangle.y_min == other.y_max) {
58 return RectangleRelationship::TOUCHING_BOTTOM;
59 }
60 return RectangleRelationship::TOUCHING_NEITHER_LEFT_OR_BOTTOM;
61}
62
63bool ShouldPlaceItemAtPosition(
64 int i, const Rectangle& item_position,
65 std::pair<IntegerValue, IntegerValue> bounding_box_size,
66 absl::Span<const Rectangle> item_positions,
67 const Bitset64<int>& placed_item_indexes) {
68 // Check if it fits in the BB.
69 if (item_position.x_max > bounding_box_size.first ||
70 item_position.y_max > bounding_box_size.second) {
71 return false;
72 }
73
74 // Break symmetry: force 0th item to be in the bottom left quarter.
75 if (i == 0 && (2 * item_position.x_min >
76 bounding_box_size.first - item_position.SizeX() ||
77 2 * item_position.y_min >
78 bounding_box_size.second - item_position.SizeY())) {
79 return false;
80 }
81
82 // Check if it is conflicting with another item.
83 bool touches_something_on_left = item_position.x_min == 0;
84 bool touches_something_on_bottom = item_position.y_min == 0;
85 for (const int j : placed_item_indexes) {
86 DCHECK_NE(i, j);
87 const RectangleRelationship pos =
88 GetRectangleRelationship(item_position, item_positions[j]);
89 if (pos == RectangleRelationship::OVERLAP) {
90 return false;
91 }
92 touches_something_on_left = touches_something_on_left ||
93 pos == RectangleRelationship::TOUCHING_LEFT;
94 touches_something_on_bottom = touches_something_on_bottom ||
95 pos == RectangleRelationship::TOUCHING_BOTTOM;
96 }
97
98 // Finally, check if it touching something both on the bottom and to the left.
99 if (!touches_something_on_left || !touches_something_on_bottom) {
100 return false;
101 }
102 return true;
103}
104
105struct PotentialPositionForItem {
106 IntegerValue x;
107 IntegerValue y;
108 bool already_explored;
109
110 Rectangle GetRectangle(IntegerValue x_size, IntegerValue y_size) const {
111 return {.x_min = x, .x_max = x + x_size, .y_min = y, .y_max = y + y_size};
112 }
113};
114
115// This implementation search for a solution in the following order:
116// - first place the 0-th item in the bottom left corner;
117// - then place the 1-th item either on the bottom of the bounding box to the
118// right of the 0-th item, or on the left of the bounding box on top of it;
119// - keep placing items, while respecting that each item should touch something
120// on both its bottom and left sides until either all items are placed (in
121// this case a solution is found and return) or we found an item that cannot
122// be placed on any possible solution.
123// - if an item cannot be placed, backtrack: try to place the last successfully
124// placed item in another position.
125//
126// This is a recursive implementation, each call will place the first non placed
127// item in a fixed order. Backtrack occur when we return from a recursive call.
128//
129// This return false iff it is infeasible to place the other items given the
130// already placed ones.
131//
132// This implementation is very similar to the "Left-Most Active Only" method
133// described in Clautiaux, François, Jacques Carlier, and Aziz Moukrim. "A new
134// exact method for the two-dimensional orthogonal packing problem." European
135// Journal of Operational Research 183.3 (2007): 1196-1211.
136//
137// TODO(user): try the graph-based algorithm by S. Fekete, J. Shepers, and
138// J. Van Der Ween, https://arxiv.org/abs/cs/0604045.
139bool BruteForceOrthogonalPackingImpl(
140 absl::Span<const IntegerValue> sizes_x,
141 absl::Span<const IntegerValue> sizes_y,
142 std::pair<IntegerValue, IntegerValue> bounding_box_size,
143 IntegerValue smallest_x, IntegerValue smallest_y,
144 absl::Span<Rectangle> item_positions, Bitset64<int>& placed_item_indexes,
146 potential_item_positions,
147 IntegerValue slack) {
148 const auto add_position_if_valid =
149 [&item_positions, bounding_box_size, &sizes_x, &sizes_y,
150 &placed_item_indexes](
152 IntegerValue x, IntegerValue y) {
153 const Rectangle rect = {.x_min = x,
154 .x_max = x + sizes_x[i],
155 .y_min = y,
156 .y_max = y + sizes_y[i]};
157 if (ShouldPlaceItemAtPosition(i, rect, bounding_box_size,
158 item_positions, placed_item_indexes)) {
159 positions.AppendToLastVector({x, y, false});
160 }
161 };
162
163 const int num_items = sizes_x.size();
165 new_potential_positions.reserve(num_items,
166 3 * potential_item_positions.num_entries());
167 bool has_unplaced_item = false;
168 for (int i = 0; i < num_items; ++i) {
169 if (placed_item_indexes[i]) {
170 continue;
171 }
172 if (potential_item_positions[i].empty()) {
173 return false;
174 }
175
176 has_unplaced_item = true;
177 placed_item_indexes.Set(i);
178 for (const PotentialPositionForItem& potential_position :
179 potential_item_positions[i]) {
180 if (potential_position.already_explored) {
181 continue;
182 }
183 // Place the item on its candidate position.
184 item_positions[i] =
185 potential_position.GetRectangle(sizes_x[i], sizes_y[i]);
186 const Rectangle& item_position = item_positions[i];
187
188 IntegerValue slack_loss = 0;
189 if (bounding_box_size.first - item_position.x_max < smallest_x) {
190 // After placing this item, nothing will fit between it and the top of
191 // the bounding box. Thus we have some space that will remain empty and
192 // we can deduce it from our budget.
193 slack_loss += item_position.SizeY() *
194 (bounding_box_size.first - item_position.x_max);
195 }
196 if (bounding_box_size.second - item_position.y_max < smallest_y) {
197 // Same as above but with the right edge.
198 slack_loss += item_position.SizeX() *
199 (bounding_box_size.second - item_position.y_max);
200 }
201 if (slack < slack_loss) {
202 continue;
203 }
204
205 // Now the hard part of the algorithm: create the new "potential
206 // positions" vector after placing this item. Describing the actual set of
207 // acceptable places to put consider for the next item in the search would
208 // be pretty complex. For example:
209 // +----------------------------+
210 // | |
211 // |x |
212 // |--------+ |
213 // |88888888| |
214 // |88888888| |
215 // |--------+ |
216 // |####| |
217 // |####|x x |
218 // |####| +------+ |
219 // |####| |......| |
220 // |####| |......| |
221 // |####| |......| |
222 // |####|x x |......| |
223 // |####+---------+......| |
224 // |####|OOOOOOOOO|......| |
225 // |####|OOOOOOOOO|......| |
226 // |####|OOOOOOOOO|......|x |
227 // +----+---------+------+------+
228 //
229 // We consider that every item must be touching something (other item or
230 // the box boundaries) to the left and to the bottom. Thus, when we add a
231 // new item, it is enough to consider at all positions where it would
232 // touch the new item on the bottom and something else on the left or
233 // touch the new item on the left and something else on the bottom. So we
234 // consider the following points:
235 // - all previous positions if they didn't got invalid due to the new
236 // item;
237 // - new position are derived getting the right-top most corner of the
238 // added item and connecting it to the bottom and the left with a line.
239 // New potential positions are the intersection of this line with either
240 // the current items or the box. For example, if we add a box to the
241 // example above (representing the two lines by '*'):
242 // +----------------------------+
243 // | |
244 // | |
245 // |--------+ |
246 // |88888888| |
247 // |88888888| |
248 // |--------+ |
249 // |####| |
250 // |####| |
251 // |####| +------+ |
252 // |x###|x |......|x |
253 // |************************** |
254 // |####| |......|@@@* |
255 // |####| |......|@@@* |
256 // |####+---------+......|@@@* |
257 // |####|OOOOOOOOO|......|@@@* |
258 // |####|OOOOOOOOO|......|@@@* |
259 // |####|OOOOOOOOO|......|@@@*x |
260 // +----+---------+------+------+
261 //
262 // This method finds potential locations that are not useful for any item,
263 // (like the point in the left boundary in the example above) but we will
264 // detect that by testing each item one by one. Importantly, we only pass
265 // valid positions down to the next search level.
266 new_potential_positions.clear();
267 bool is_unfeasible = false;
268 for (int j = 0; j < num_items; ++j) {
269 // We will find all potential positions for the j-th item.
270 new_potential_positions.Add({});
271 // No need to attribute potential positions to already placed items
272 // (including the one we just placed).
273 if (placed_item_indexes[j]) {
274 continue;
275 }
276 DCHECK_NE(i, j);
277 // Add the new "potential positions" derived from the new item.
278 for (const int k : placed_item_indexes) {
279 DCHECK_NE(j, k);
280 if (k == i) {
281 continue;
282 }
283
284 add_position_if_valid(new_potential_positions, j, item_position.x_max,
285 item_positions[k].y_max);
286 add_position_if_valid(new_potential_positions, j,
287 item_positions[k].x_max, item_position.y_max);
288 }
289
290 // Then copy previously valid positions that remain valid.
291 for (const PotentialPositionForItem& original_position :
292 potential_item_positions[j]) {
293 if (!original_position.GetRectangle(sizes_x[j], sizes_y[j])
294 .IsDisjoint(item_position)) {
295 // That was a valid position for item j, but now it is in conflict
296 // with newly added item i.
297 continue;
298 }
299 if (j < i) {
300 // We already explored all items of index less than i in all their
301 // current possible positions and they are all unfeasible. We still
302 // keep track of whether it fit there or not, since having any item
303 // that don't fit anywhere is a good stopping criteria. But we don't
304 // have to retest those positions down in the search tree.
305 PotentialPositionForItem position = original_position;
306 position.already_explored = true;
307 new_potential_positions.AppendToLastVector(position);
308 } else {
309 new_potential_positions.AppendToLastVector(original_position);
310 }
311 }
312 add_position_if_valid(new_potential_positions, j,
313 item_positions[i].x_max, 0);
314 add_position_if_valid(new_potential_positions, j, 0,
315 item_positions[i].y_max);
316 if (new_potential_positions[j].empty()) {
317 // After placing the item i, there is no valid place to choose for the
318 // item j. We must pick another placement for i.
319 is_unfeasible = true;
320 break;
321 }
322 }
323 if (is_unfeasible) {
324 continue;
325 }
326 if (BruteForceOrthogonalPackingImpl(
327 sizes_x, sizes_y, bounding_box_size, smallest_x, smallest_y,
328 item_positions, placed_item_indexes, new_potential_positions,
329 slack - slack_loss)) {
330 return true;
331 }
332 }
333 // Placing this item at the current bottom-left positions level failed.
334 // Restore placed_item_indexes to its original value and try another one.
335 placed_item_indexes.Set(i, false);
336 }
337 return !has_unplaced_item;
338}
339
340bool BruteForceOrthogonalPackingNoPreprocessing(
341 const absl::Span<PermutableItem> items,
342 const std::pair<IntegerValue, IntegerValue> bounding_box_size) {
343 IntegerValue smallest_x = std::numeric_limits<IntegerValue>::max();
344 IntegerValue smallest_y = std::numeric_limits<IntegerValue>::max();
345 const int num_items = items.size();
346 CHECK_LE(num_items, kMaxProblemSize);
347 IntegerValue slack = bounding_box_size.first * bounding_box_size.second;
348
349 for (const PermutableItem& item : items) {
350 smallest_x = std::min(smallest_x, item.size_x);
351 smallest_y = std::min(smallest_y, item.size_y);
352 slack -= item.size_x * item.size_y;
353 if (item.size_x > bounding_box_size.first ||
354 item.size_y > bounding_box_size.second) {
355 return false;
356 }
357 }
358 if (slack < 0) {
359 return false;
360 }
361
362 std::sort(items.begin(), items.end(),
363 [](const PermutableItem& a, const PermutableItem& b) {
364 return std::make_tuple(a.size_x * a.size_y, a.index) >
365 std::make_tuple(b.size_x * b.size_y, b.index);
366 });
367
368 std::vector<IntegerValue> new_sizes_x(num_items);
369 std::vector<IntegerValue> new_sizes_y(num_items);
371 potential_item_positions.reserve(num_items, num_items);
372 for (int i = 0; i < num_items; ++i) {
373 new_sizes_x[i] = items[i].size_x;
374 new_sizes_y[i] = items[i].size_y;
375 potential_item_positions.Add({PotentialPositionForItem{0, 0, false}});
376 }
377 std::vector<Rectangle> item_positions(num_items);
378 Bitset64<int> placed_item_indexes(num_items);
379 const bool found_solution = BruteForceOrthogonalPackingImpl(
380 new_sizes_x, new_sizes_y, bounding_box_size, smallest_x, smallest_y,
381 absl::MakeSpan(item_positions), placed_item_indexes,
382 potential_item_positions, slack);
383 if (!found_solution) {
384 return false;
385 }
386 for (int i = 0; i < num_items; ++i) {
387 items[i].position = item_positions[i];
388 }
389 return true;
390}
391
392// This function tries to pack a set of "tall" items with all the "shallow"
393// items that can fit in the area around them. See discussion about
394// the identically-feasible function v_1 in [1]. For example, for the packing:
395//
396// +----------------------------+
397// |------+ |
398// |888888+----| |
399// |888888|&&&&| |
400// |------+&&&&| |
401// |####| |&&&&| |
402// |####| +----+ |
403// |####| +------+ |
404// |####| |......| |
405// |####| |......|@@@ |
406// |####+---------+......|@@@ |
407// |####|OOOOOOOOO|......|@@@ |
408// |####|OOOOOOOOO|......|@@@ |
409// |####|OOOOOOOOO|......|@@@ |
410// |####|OOOOOOOOO|......|@@@ |
411// |####|OOOOOOOOO|......|@@@ |
412// +----+---------+------+------+
413//
414// We can move all "tall" and "shallow" items to the left and pack all the
415// shallow items on the space remaining on the top of the tall items:
416//
417// +----------------------------+
418// |------+ |
419// |888888+----| |
420// |888888|&&&&| |
421// |------+&&&&| |
422// |####| |&&&&| |
423// |####| +----+ |
424// |####+------+ |
425// |####|......| |
426// |####|......| @@@ |
427// |####|......+---------+@@@ |
428// |####|......|OOOOOOOOO|@@@ |
429// |####|......|OOOOOOOOO|@@@ |
430// |####|......|OOOOOOOOO|@@@ |
431// |####|......|OOOOOOOOO|@@@ |
432// |####|......|OOOOOOOOO|@@@ |
433// +----+------+---------+------+
434//
435// If the packing is successful, we can remove both set from the problem:
436// +----------------+
437// | |
438// | |
439// | |
440// | |
441// | |
442// | |
443// | |
444// | |
445// | @@@ |
446// |---------+@@@ |
447// |OOOOOOOOO|@@@ |
448// |OOOOOOOOO|@@@ |
449// |OOOOOOOOO|@@@ |
450// |OOOOOOOOO|@@@ |
451// |OOOOOOOOO|@@@ |
452// +---------+------+
453//
454// [1] Carlier, Jacques, François Clautiaux, and Aziz Moukrim. "New reduction
455// procedures and lower bounds for the two-dimensional bin packing problem with
456// fixed orientation." Computers & Operations Research 34.8 (2007): 2223-2250.
457//
458// See Preprocess() for the API documentation.
459bool PreprocessLargeWithSmallX(
460 absl::Span<PermutableItem>& items,
461 std::pair<IntegerValue, IntegerValue>& bounding_box_size,
462 int max_complexity) {
463 // The simplest way to implement this is to sort the shallow items alongside
464 // their corresponding tall items. More precisely, the smallest and largest
465 // items are at the end of the list. The reason we put the most interesting
466 // values in the end even if this means we want to iterate on the list
467 // backward is that if the heuristic is successful we will trim them from the
468 // back of the list of unfixed items.
469 std::sort(
470 items.begin(), items.end(),
471 [&bounding_box_size](const PermutableItem& a, const PermutableItem& b) {
472 const bool a_is_small = 2 * a.size_x <= bounding_box_size.first;
473 const bool b_is_small = 2 * b.size_x <= bounding_box_size.first;
474 const IntegerValue a_size_for_comp =
475 a_is_small ? a.size_x : bounding_box_size.first - a.size_x;
476 const IntegerValue b_size_for_comp =
477 b_is_small ? b.size_x : bounding_box_size.first - b.size_x;
478 return std::make_tuple(a_size_for_comp, !a_is_small, a.index) >
479 std::make_tuple(b_size_for_comp, !b_is_small, b.index);
480 });
481 IntegerValue total_large_item_width = 0;
482 IntegerValue largest_small_item_height = 0;
483 for (int i = items.size() - 1; i >= 1; --i) {
484 if (2 * items[i].size_x <= bounding_box_size.first) {
485 largest_small_item_height = items[i].size_x;
486 continue;
487 }
488 DCHECK_LE(items[i].size_x + largest_small_item_height,
489 bounding_box_size.first);
490 // We found a big item. So all values that we visited before are either
491 // taller than it or shallow enough to fit on top of it. Try to fit all that
492 // together!
493 if (items.subspan(i).size() > max_complexity) {
494 return false;
495 }
496 total_large_item_width += items[i].size_y;
497 if (BruteForceOrthogonalPackingNoPreprocessing(
498 items.subspan(i),
499 {bounding_box_size.first, total_large_item_width})) {
500 bounding_box_size.second -= total_large_item_width;
501 for (auto& item : items.subspan(i)) {
502 item.position.y_min += bounding_box_size.second;
503 item.position.y_max += bounding_box_size.second;
504 }
505 items = items.subspan(0, i);
506 return true;
507 }
508 }
509
510 return false;
511}
512
513// Same API as Preprocess().
514bool PreprocessLargeWithSmallY(
515 absl::Span<PermutableItem>& items,
516 std::pair<IntegerValue, IntegerValue>& bounding_box_size,
517 int max_complexity) {
518 absl::Span<PermutableItem> orig_items = items;
519 for (PermutableItem& item : orig_items) {
520 std::swap(item.size_x, item.size_y);
521 std::swap(item.position.x_min, item.position.y_min);
522 std::swap(item.position.x_max, item.position.y_max);
523 }
524 std::swap(bounding_box_size.first, bounding_box_size.second);
525 const bool ret =
526 PreprocessLargeWithSmallX(items, bounding_box_size, max_complexity);
527 std::swap(bounding_box_size.first, bounding_box_size.second);
528 for (PermutableItem& item : orig_items) {
529 std::swap(item.size_x, item.size_y);
530 std::swap(item.position.x_min, item.position.y_min);
531 std::swap(item.position.x_max, item.position.y_max);
532 }
533 return ret;
534}
535
536} // namespace
537
538// Try to find an equivalent smaller OPP problem by fixing large items.
539// The API is a bit unusual: it takes a reference to a mutable Span of sizes and
540// rectangles. When this function finds an item that can be fixed, it sets
541// the position of the PermutableItem, reorders `items` to put that item in the
542// end of the span and then resizes the span so it contain only non-fixed items.
543//
544// Note that the position of input items is not used and the position of
545// non-fixed items will not be modified by this function.
546bool Preprocess(absl::Span<PermutableItem>& items,
547 std::pair<IntegerValue, IntegerValue>& bounding_box_size,
548 int max_complexity) {
549 const int num_items = items.size();
550 if (num_items == 1) {
551 return false;
552 }
553 IntegerValue smallest_x = std::numeric_limits<IntegerValue>::max();
554 IntegerValue largest_x = std::numeric_limits<IntegerValue>::min();
555 IntegerValue smallest_y = std::numeric_limits<IntegerValue>::max();
556 IntegerValue largest_y = std::numeric_limits<IntegerValue>::min();
557 int largest_x_idx = -1;
558 int largest_y_idx = -1;
559 for (int i = 0; i < num_items; ++i) {
560 if (items[i].size_x > largest_x) {
561 largest_x = items[i].size_x;
562 largest_x_idx = i;
563 }
564 if (items[i].size_y > largest_y) {
565 largest_y = items[i].size_y;
566 largest_y_idx = i;
567 }
568 smallest_x = std::min(smallest_x, items[i].size_x);
569 smallest_y = std::min(smallest_y, items[i].size_y);
570 }
571
572 if (largest_x > bounding_box_size.first ||
573 largest_y > bounding_box_size.second) {
574 // No point in optimizing obviously infeasible instance.
575 return false;
576 }
577 const auto remove_item = [&items](int index_to_remove) {
578 std::swap(items[index_to_remove], items.back());
579 items.remove_suffix(1);
580 };
581 if (largest_x + smallest_x > bounding_box_size.first) {
582 // No item (not even the narrowest one) fit alongside the widest item. So we
583 // care only about fitting the remaining items in the remaining space.
584 bounding_box_size.second -= items[largest_x_idx].size_y;
585 items[largest_x_idx].position = {
586 .x_min = 0,
587 .x_max = largest_x,
588 .y_min = bounding_box_size.second,
589 .y_max = bounding_box_size.second + items[largest_x_idx].size_y};
590 remove_item(largest_x_idx);
591 Preprocess(items, bounding_box_size, max_complexity);
592 return true;
593 }
594 if (largest_y + smallest_y > bounding_box_size.second) {
595 bounding_box_size.first -= items[largest_y_idx].size_x;
596 items[largest_y_idx].position = {
597 .x_min = bounding_box_size.first,
598 .x_max = bounding_box_size.first + items[largest_y_idx].size_x,
599 .y_min = 0,
600 .y_max = largest_y};
601 remove_item(largest_y_idx);
602 Preprocess(items, bounding_box_size, max_complexity);
603 return true;
604 }
605
606 if (PreprocessLargeWithSmallX(items, bounding_box_size, max_complexity)) {
607 Preprocess(items, bounding_box_size, max_complexity);
608 return true;
609 }
610
611 if (PreprocessLargeWithSmallY(items, bounding_box_size, max_complexity)) {
612 Preprocess(items, bounding_box_size, max_complexity);
613 return true;
614 }
615
616 return false;
617}
618
620 absl::Span<const IntegerValue> sizes_x,
621 absl::Span<const IntegerValue> sizes_y,
622 std::pair<IntegerValue, IntegerValue> bounding_box_size,
623 int max_complexity) {
624 const int num_items = sizes_x.size();
625
626 if (num_items > 2 * max_complexity) {
627 // It is unlikely that preprocessing will remove half of the items, so don't
628 // lose time trying.
629 return {.status = BruteForceResult::Status::kTooBig};
630 }
631 CHECK_LE(num_items, kMaxProblemSize);
632
633 std::vector<PermutableItem> items(num_items);
634 for (int i = 0; i < num_items; ++i) {
635 items[i] = {
636 .size_x = sizes_x[i], .size_y = sizes_y[i], .index = i, .position = {}};
637 }
638 absl::Span<PermutableItem> post_processed_items = absl::MakeSpan(items);
639 std::pair<IntegerValue, IntegerValue> post_processed_bounding_box_size =
640 bounding_box_size;
641 const bool post_processed =
642 Preprocess(post_processed_items, post_processed_bounding_box_size,
643 max_complexity - 1);
644 if (post_processed_items.size() > max_complexity) {
645 return {.status = BruteForceResult::Status::kTooBig};
646 }
647 const bool is_feasible = BruteForceOrthogonalPackingNoPreprocessing(
648 post_processed_items, post_processed_bounding_box_size);
649 VLOG_EVERY_N_SEC(2, 3)
650 << "Solved by brute force a problem of " << num_items << " items"
651 << (post_processed ? absl::StrCat(" (", post_processed_items.size(),
652 " after preprocessing)")
653 : "")
654 << ": solution " << (is_feasible ? "found" : "not found") << ".";
655 if (!is_feasible) {
657 }
658 std::vector<Rectangle> result(num_items);
659 for (const PermutableItem& item : items) {
660 result[item.index] = item.position;
661 }
662 VLOG_EVERY_N_SEC(3, 3) << "Found a feasible packing by brute force. Dot:\n "
663 << RenderDot(
664 Rectangle{.x_min = 0,
665 .x_max = bounding_box_size.first,
666 .y_min = 0,
667 .y_max = bounding_box_size.second},
668 result);
670 .positions_for_solution = result};
671}
672
673} // namespace sat
674} // namespace operations_research
void Set(IndexType i)
Sets the bit at position i to 1.
Definition bitset.h:544
void clear()
Restore to empty vector<vector<>>.
Definition util.h:825
void reserve(int size)
Reserve memory if it is already known or tightly estimated.
Definition util.h:87
void AppendToLastVector(const V &value)
Definition util.h:755
int Add(absl::Span< const V > values)
Definition util.h:746
BruteForceResult BruteForceOrthogonalPacking(absl::Span< const IntegerValue > sizes_x, absl::Span< const IntegerValue > sizes_y, std::pair< IntegerValue, IntegerValue > bounding_box_size, int max_complexity)
bool Preprocess(absl::Span< PermutableItem > &items, std::pair< IntegerValue, IntegerValue > &bounding_box_size, int max_complexity)
Exposed for testing.
static constexpr int kMaxProblemSize
std::string RenderDot(std::optional< Rectangle > bb, absl::Span< const Rectangle > solution, std::string_view extra_dot_payload)
In SWIG mode, we don't want anything besides these top-level includes.